
Optimizing reverse-mode 
automatic differentiation with 
advanced activity analysis

Petro Zarytskyi
IRIS-HEP Fellow

Taras Shevchenko National University of Kyiv, Ukraine
Mentors: Vassil Vassilev, David Lange



Introduction: Automatic Differentiation
Automatic differentiation is a method of differentiation of functions expressed as procedures. It 
involves breaking up the function into simple operations and applying chain rule to each one of 
them. This can be done both ways: from the input to the output (forward mode) and vice versa 

(reverse mode). This project focuses on the second approach which is more efficient for 
computing gradients. In reverse mode, we need two passes: a forward pass to store the 

intermediate values of all the variables and a backward pass to compute derivatives.



Introduction: Clad

Clad is an automatic differentiation Clang plugin for C++. It automatically generates code that 
computes derivatives of functions given by the user.



Activity Analysis

This includes removing:

● The derivatives of variables that don’t depend on the input values in a differentiable way
● The derivatives of variables that don’t influence the output values in a differentiable way
● Variables that are not used to compute the derivatives of the output values

As well as possibly: 

● Removing computations that are not needed to evaluate the final derivatives 
● Simplifying operations with implicit zeros



TBR (To-Be-Recorded) Analysis

Reverse-mode automatic differentiation requires storing intermediate values of variables that 
have impact on derivatives to restore those in the backward pass. However, we don’t actually 
have to store all of them.

DECLARED CHANGED CHANGED USED USED CHANGED

History of usage of a variable x

USED



TBR (To-Be-Recorded) Analysis

Reverse-mode automatic differentiation requires storing intermediate values of variables that 
have impact on derivatives to restore those in the backward pass. However, we don’t actually 
have to store all of them.

DECLARED CHANGED CHANGED USED USED CHANGED

History of usage of a variable x

USED



Examples

Original code Code differentiated by Clad 

k doesn’t depend on x and y in a differentiable way!



Examples

Original code Code differentiated by Clad 

k doesn’t depend on x and y in a differentiable way!

Dead code



Examples

Original code Code differentiated by Clad 

k doesn’t influence the return value in a 
differentiable way!



Examples

Original code Code differentiated by Clad 

k doesn’t influence the return value in a 
differentiable way!

Dead code



Goals

● Find the best optimizing strategy for Clad and implementing it
● Investigate the potential of the Clang static analysis and data-flow analysis infrastructure to 

capture advanced optimization opportunities
● Investigate the possibility of enabling Clad in ADBench infrastructure
● Test in major workflows such as ROOT’s RooFit package
● Writing new tests / documentation
● Create benchmarks to compare the efficiency with activity analysis on and off


