

Data Acquisition, Trigger and Control (for large Physics Experiments) Concepts & Principles

Clara Gaspar, July 2023

Acknowledgements:

This presentation is based on the work of many people throughout many years, Thanks!

The LHC Experiments

Clara Gaspar, July 2023

Data Acquisition at the LHC

- Data Acquisition enables physics analyses to be performed on the data produced by the detector. Definitions:
 - I Trigger System
 - Selects in Real Time "interesting" events from the bulk of collisions. Decides if YES or NO the event should be read out of the detector and stored
 - Data Acquisition System
 - Gathers the data produced by the detector and stores it (for positive trigger decisions)
 - Control System
 - Provides the overall Operation, Configuration and Monitoring

Clara Gaspar, July 2023

LHC (2009)

Bunch Crossing Rate Bunch Separation

Nr. Electronic Channels

Raw data rate Data rate on Tape

Event size Rate on Tape Analysis 40 MHz 25 ns

 $\approx 10\ 000\ 000$

 \approx 1 000 TB/s \approx 100 MB/s

≈ 1 MB 100 Hz 10⁻⁶ Hz (Higgs)

	Event Size (MByte)	L1 Rate (KHz)	Bandwidth (GByte/s)	Storage Rate (KHz)	Storage (GBytes/s)
ALICE	25	1	25	0.050	1.250
ATLAS	1	100	100	0.200	0.200
CMS	1	100	100	0.200	0.200
LHCb	0.05	1000	50	5	0.250

Basic Concepts

Clara Gaspar, July 2023

Clara Gaspar, July 2023

Trivial DAQ with a real trigger (2)

Trivial DAQ with a real trigger (3)

p p crossing rate 40 MHz (L=10³³- 4×10³⁴cm⁻² s⁻¹)

- Level 1 trigger time exceeds bunch interval
- Event overlap & signal pileup (multiple crossings since the detector cell memory greater than 25 ns)
- Very high number of channels

Trivial DAQ in LHC

Clara Gaspar, July 2023

The Real Thing

Trigger

- The Trigger system detects whether an event is interesting or not
 - Typical ATLAS and CMS^{*} event
 - 20 collisions may overlap
 - This repeats every 25 ns
 - A Higgs event

^{*)}LHCb isn't much nicer and in Alice (PbPb) it can be even worse

- Since the detector data is not promptly available and the trigger function is highly complex, it is evaluated by successive approximations:
 - Hardware trigger(s):
 - Fast trigger, uses data only from few detectors
 - I has a limited time budget
 - Normally implemented using custom electronics
 - → Level 1, Sometimes Level 2
 - Software trigger(s):
 - Refines the decisions of the hardware trigger by using more detailed data and more complex algorithms.
 - I It is usually implemented using processors running a program.
 - → High Level Triggers (HLT)

- Calorimeters
 - Cluster finding
 - Energy deposition evaluation
 - Coarse-grained wrt. real detector resolution to save data

Muon systems

n

p

- Track finding
- Momentum evaluation
- Dedicated fast sensors

g

Example: LHCb Calorimeter Trigger

LHC: Trigger communication loop

- 40 MHz synchronous digital system
- Synchronization at the exit of the pipeline non trivial. ⇒ Timing calibration

Trigger Levels in LHCb (up to 2020)

- Level-0 (4 µs) (custom processors)
 - I High p_T for electrons, muons, hadrons

■ HLT (≈ms) (commercial processors)

- I Refinement of the Level-1. Background rejection.
- Event reconstruction. Select physics channels.
- Needs the full event

Trigger Levels in ATLAS

L

- Level-1 (3 µs) (custom processors)
 - Energy clusters in calorimeters
 - Muon trigger: tracking coincidence matrix.
- Level-2 (≈ms) (~commercial processors)
 - I Few Regions Of Interest relevant to trigger decisions
 - I Selected information (ROI) by routers and switches
 - I More sophisticated algorithms on fullgranularity data
- Level-3 (≈s) (commercial processors)
 - Reconstructs the event using all data
 - I Selection of interesting physics channels

Data Acquisition

Front-end electronics

Detector dependent (Home made)

- On Detector
 - I Pre-amplification, Discrimination, Shaping amplification and Multiplexing of a few channels
 - **Problems: Radiation levels, power consumption**
- I Transmission
 - I Long Cables (50-100 m), electrical or fiber-optics
- I In Counting Rooms
 - I Hundreds of FE crates : Reception, A/D conversion and Buffering

- Every Readout Unit has a piece of the collision data tagged with a unique id
- All pieces must be brought together into a single Compute unit
- The Compute Unit runs the software filtering (High Level Trigger)

Network Technology

- Need to use what is popular -> best price
- Myrinet very popular when LHC experiments started being designed Used by CMS until 2014
- Others could postpone the decision and used Ethernet

Higher level triggers (3, 4, ...)

- LHC experiments can not afford to write all acquired data into mass-storage. -> Only useful events should be written to the storage
- The event filter function selects events that will be used in the data analysis. Selected physics channels.
- Uses commercially available processors (common PCs) But needs thousands of them running in parallel.

Full Event "Reconstruction"

- Reconstruct all charged particle trajectories
 - Find segments, connect them, re-fit to physical trajectory
- Associate the particles with the correct p-p collision
 - Multiple interactions in each crossing

- I Measure all the energy depositions in the calorimeters
 - I with fine granularity
- Associate tracks and energy depositions
- Decide whether it's interesting

ATLAS HLT Farm

- With or Without Event Manager
- Push or Pull Protocols

LHCb DAQ (up to 2020)

- Event data
- --- Timing and Fast Control Signals
- Control and Monitoring data

Average event size 50 kB Average rate into farm 1 MHz Average rate to tape 5 kHz

Clara Gaspar, July 2023

Operations

Experiments run 24/24 7/7

In LHCb Only 2 (non-expert) operators

Monitoring

Detect any problems as soon as possible

Configuration

Prepare for a particular running mode

Automation

- Avoid human mistakes
- Speed up standard procedures

Monitoring Dataflow

LHCb Data Quality (old)

Monitor the quality of the data being acquired Compare with

- reference
- Automatic analyses

LHCb Data Quality: Monet

💠 Vision_1: vision\fwAlarmScreenNg\fwAlarmScreenNg.xml					- 🗆 X
NextGen Alarm Screen (Beta)					
Source Live 💌					
Filter #1: Exclude 🗙 Filter #2: Exclude 🗙 🕇					
Filter Type: Include Exclude					Apply
Device Name: *	Device Description	*	Alarm Scop	e: 🔹 💌	Alarm Direction: * 💌
Device Type: *	Logical Name: *			Acknowledged: * 💌	
System: *	Alarm Text:	*R1DAQ1*,*R2DAQ1*			Severity: W E F Filter
# *					
Short : Device DP Element Description Alarm Te	xt		Dir.	Value	†2 Acl ↓ Time
W LBECSINFO:lbAlarm AutoAnalysisTest SCIFI: M W LBECSINFO:lbAlarm AutoAnalysisTest VELOalio	ore than 35% diffe nment: Histogram	erent than the reference - Please change Run, drops M0: 23, M1: is empty - Ignore	CAME	TRUE TRUE	2023.07.13 18:10:41.915 2023.07.13 18:10:41.514
Displaying 2 of 384 alarms	ge multiple 🤾	Settings Messages: 5		C	onnected to 96 systems Systems

Types of User Interfaces

- Alarm Screens and/or Message Displays
- Monitoring Displays

System

LHCD

State

READY

Efficiency 🛛 🤟 Trigger Rates

TDET 🕂 VELOA 🔒 VELOC 🔒 TT 🔒

ECAL 📲 HCAL 👔 MUONA 🗿 MUONC 🖁

07-Feb-2013 05:28:21 - LHCb executing action CHANGE_RUN

HOT ALLOCATED .

LHCb Elog

LHCD

Sub-System

DCS

DAI

DAO

Runinfo

TEC

HLT

Storage

Monitorine

Reconstructio

Calibration

10/

LHCb Deferrer

TFC Control | TELL1s |

Messages:

07-Feb-2013 05:03:42 - LHCb in state ACTIVE

07-Feb-2013 05:03:42 - LHCb in state RUNNING

Deferred HLT Info

Diek Heane 29%

Sub-Detectors

OTA_DAC

OTA_TF

RICHI

MUONA

MUON

TMUA

View Al Owners

OTA HLT

IOTA Storag

OTA DAO FE

OTA_DAQ_FEE

OTA DAO TELLI

OTA DAO FEE T

Run Control & DCS Control

Save Other + 1:1 0g auto

DAQ Upgrades

	Up	o to Yesterd	ау	Upgrade (2022-2026)				
	L1 Rate (KHz)	Event Size (MByte)	Bandwidth (GByte/s)	L1 Rate (KHz)	Event Size (MByte)	Bandwidth (GByte/s)		
ALICE	1	25	25	50	20	1000		
ATLAS	100	1	100	200	4	800		
CMS	100	1	100	1000	4	4000		
LHCb	1000	0.05	50	40000	0.1	4000		

DAQ network throughput

Reasons:

- More Physics/Faster Physics/Better Physics
- (Improved Detectors)
- Reduce impact of Hw Triggers:
 - Working with partial information and with drastic simplifications has a price:
 - I Potentially interesting and valuable events are lost
 - I Directions:
 - I Eliminate / reduce hardware Level-1 (ALICE, LHCb)
 - I Substantially upgrade Level-1 (ATLAS, CMS)
- Emphasize Real-Time Alignment and Calibration

LHCb Upgrade

40 MHz Trigger-less Readout

- < 10% detector channels kept</pre>
- 100% or R/O electronics replaced
- New DAQ system
- New Data Center

MUON 2-5

IT

HCAL

ECAL

OT

PS

SPD

M1

RICH2

1st Large Physics Experiment to completely abolish the Hardware Trigger -> Probably the largest Data Acquisition System in the world today

Spoiler: Commissioned last year -> And it works!!

In 2012: More CPU needed for better Trigger

Since: unused interfill CPU + free disk space

Resource Optimization in 2012 -> Deferred HLT

- Idea: Buffer data to disk when HLT busy / Process in inter-fill gap
- More time for more complex algorithms

In 2015: Better Trigger and Trigger output data

Since: HLT anyway composed of two steps

Even better Resource Optimization in 2015 -> Split HLT

- I Idea: Buffer ALL data to disk after HLT1 / Perform Calibration & Alignment / Run HLT2 permanently in background
- Calibration and Alignment previously done Offine -> Better data! 1 MHz

Clara Gaspar, July 2023

In 2022: Even better -> No HW Trigger

Since: Better readout and network technology available

Selected Concepts:

- **I** Simplicity (whenever possible)
- Integration & Homogeneity
- Promote HW Standardization
 - Same hardware components for all sub-systems
- I Promote SW Uniformity
 - I Guidelines, Framework Components, Templates
- I Separate Data/Control paths
 - From the Front Ends to the High Level Trigger

New Data Acquisition Hardware and Dataflow Software

New Infrastructure & Sub-Detector Equipment

Front-end electronics

Use CERN GBT chip (Gigabit Transceiver)

A radiation hard ASIC (Application Specific Integrated Circuit)

But unlike the drawing: separately for DAQ and for Timing & Control

PCIe40 cards in EB PCs

- I PCIexpress card
- Large FPGA
- 48 GBT links, 10 Gb/s each
- Versatile via the firmware

Located on surface

Distance from FE: ~350m

In total:

- 1 ~ 10000 optical links
 - ~ 500 readout boards
 - ~ 100 TFC/ECS cards (separated from data path)

Used also by ALICE (and others)

- Again, use what is popular
 -> best price
- Basically the choice was Infiniband and/or Ethernet

Two options tested

Only one worked well within our time and budget (traffic pattern: All to One/flow control /switch buffering very expensive)

Technology: Infiniband + Ethernet for Distribution Dedicated EB (TDR baseline)

Technology: Ethernet (Would have been simpler and known) Distributed EB

Several R&D Projects in all these areas

Two options: CPU vs GPU

Both worked: Cost (and politics/sociology) made the difference

LHCb Current DAQ Core

Clara Gaspar, July 2023

Improvements all the way to analysis strategy: Turbo stream

- Since we can automatically perform final alignment and calibration online
- So we can achieve offline quality alignment and calibration in the trigger
- Store only part of the event \rightarrow allows for higher output bandwidth

Why do we need alignment & Calibration?

- Physical movements, magnetic field, temperature, pressure effects
- Better mass resolution
- Better particle identification (PID)
- Store less background \rightarrow More bandwidth for physics!

What and when do we align?

((~7min),(~12min),(~3h),(~2h)) - time needed for both data accumulation and running the task

A large CPU Farm

- Around 4000 PCs (many inherited for free)
- Also runs Calibration and Alignment tasks
- A brand new Computer Center

Configuration, Control and Monitoring

Control System Tasks

Configuration

- Selecting which components take part in a certain "Activity"
- Loading several millions of parameters (according to the "Activity")

Control core

I Sequencing and Synchronization of operations across the various components

Monitoring, Error Reporting & Recovery

- Detect and recover problems as fast as possible
- Automate Standard Operations

User Interfacing

Allow the operator to visualize and interact with the system

Can be based on Commercial SCADA Systems (Supervisory Control and Data Acquisition)

- Commonly used for:
 - I Industrial Automation
 - Control of Power Plants, etc.
- I Providing:
 - Run-time Database and Tools
 - Archiving of Monitoring Data including display and trending Tools.
 - Alarm definition and reporting tools
 - User Interface design tools
- I Used in LHC experiments DCS and LHCb for everything

Or can be home made

Experiment Control System

Implementation: (JCOP project)

Framework

Deployment:

Runs distributed over >100 PCs (Virtual Machines)

Control Units are logical entities:

- Behave as a Finite State Machine / Rule Based system:
 - Capable of Partitioning: Exclude/Include children
 - Can take local decisions: Sequence & Automate Operations or Recover Errors

Device Units

Provide the interface to the device (hardware or software)

Distributed "Intelligent" Hierarchical System

Status & Alarms

Main Tools:

RunControl

- Handles the DAQ & Dataflow
- Allows to:
 - Configure the system
 - Start & Stop runs

AutoPilot

Knows how to start and keep a run going from any state.

BigBrother

- Based on the LHC state:
 - Controls SD Voltages
 - VELO Closure
 - RunControl

Run Control

Run Control & The Autopilot:

- Configures, Starts and Keeps the RUN going.
- Configuration Driven by an "Activity"

Clara Gaspar, July 2023

Based on LHC state, controls:

- Voltages
- VELO Closure
- Run Control

Can sequence activities, ex.:

- I End-of-fill Calibration
- Confirmation requests and Information

Voice Messages

Detector Control System

LHCb Control System

Concluding Remarks

- Trigger and Data Acquisition systems have become increasingly complex.
- Luckily the requirements of telecommunications and computing in general have strongly contributed to the development of standard technologies:
 - I Hardware: Fast ADCs, Field-Programmable Gate Arrays, Analog memories, multi-core PCs, Networks, Helical scan recording, Data compression, Image processing (GPUs), ...
 - Software: Distributed computing, Software development environments, Supervisory systems, Artificial Intelligence tools...
- We can now build a large fraction of our systems using commercial components (customization will still be needed in the front-end).
- It is essential that we keep up-to-date with the progress being made by industry.

LHC/LHCb Fill Sequence

Handshake: Confirm Handshake -> Prepare detector -> Confirm Ready
 Simple Confirmation

Other Tools & Components

Main Framework Components:

Communications

- I Device Access and Message Exchange between processes
- Intelligence: Finite State Machines/Expert System Functionality
 - System Description, Synchronization and Sequencing
 - Error Recovery, Assistance and Automation

Databases

- Configuration, Archive, Conditions, etc.
- User Interfaces
 - Visualization and Operation

Other Services:

- Process Management (start/stop processes across machines)
- Resource Management (allocate/de-allocate common resources)
- Logging, etc.

Communications (example)

DIM – Distributed Information Management System

- Efficient and light weight data exchange across processes (and machines)
- Available for:
 - C, C++, Java, Python
 - Linux, Windows, etc.
- Client/Server (Publish/Subscribe)
- Services
 - Set of data, any type or size
 - Single items, arrays or structures
 - Free name space
 - But better use a naming convention
 - Servers publish Services.
 - Clients subscribe to Services.
 - I Once, at regular intervals or on change
 - Clients can also send Commands to Servers

Name Server

Keeps the coordinates of available Services

86

Automation (example)

SMI++ - State Management Interface

- A Tool for the Automation of large distributed control systems
- Method:
 - Classes and Objects
 - Allow the decomposition of a complex system into smaller manageable entities
 - Finite State Machines

- I Allow the modeling of the behavior of each entity and of the interaction between entities in terms of STATES and ACTIONS
- Rule-based reasoning
 - React to asynchronous events (allow Automation and Error Recovery)

- Finite State Logic
 - Objects are described as FSMs their main attribute is a STATE
- Parallelism
 - Actions can be sent in parallel to several objects.

- Synchronization and Sequencing
 - The user can also wait until actions finish before sending the next one.
- Asynchronous Rules
 - Actions can be triggered by logical conditions on the state of other objects.

class: EventBuilder /associated state: UNKNOWN /dead_state state: NOT_READY action : Configure state: READY action : Start action : Reset state: RUNNING action : Stop	class: DAQ state: NOT_READY /initial_state action: GET_READY (do Configure all_in Electronics) do Configure all_in EBS if (all_in EBS in_state READY) then move_to READY endif	class: TopControl state: STANDBY when (LHC in_state PHYSICS) do STARTUP action: STARTUP (do GET_READY all_in SubDetDCS) do GET_READY all_in SubDetDAQ object: BigBrother is_of_class TopControl
object: EB1 is_of_class EventBuilder object: EB2 is_of_class EventBuilder object: EB3 is_of_class EventBuilder object: EB3 is_of_class EventBuilder objectset: EBS {EB1, EB2, EB3,}	state: READY when (any_in EBS in_state ERROR) do RECOVER when (any_in EBS not_in_state READY) move_to N action: RECOVER do Recover all_in EBS state: ERROR object: SubDetDAQ is_of_class DAQ	OT_READY

Three main logical Database concepts in the Online System

But naming, grouping and technology can be different in the different experiments...
Clara Gaspar, July 2023