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Plan of the lectures

1 Introduction, the global symmetries of QCD, pions as Goldstone bosons and their interactions
at low energy.

2 Electron structure and hadron structure, electromagnetic form factors, deep inelastic
scattering and parton distributions

3 Diffractive and elastic scattering. Processes with rapidity gaps.



Quantum Electro Dynamics

QED Lagrangian

L = ψ̄(x)
(

iγµDµ −m
)
ψ(x)−

1
4

Fµν(x)Fµν(x)

Dµ = ∂µ − ieAµ , Fµν = ∂µAν − ∂νAµ .

The construction principle: gauge invariance, a “symmetry” under local phase transformations.
QED: U(1) gauge group: ψ(x)→ exp(−ieφ(x))ψ(x) and Aµ → Aµ − i∂µφ(x).
Dµψ(x)→ exp(ieφ(x))Dµψ(x), and Fµν(x)→ Fµν(x).
We can add any number of fermions. Each of them can have its own charge ef .
Gauge invariance is a mathematical apparatus to construct unitary(=quantum) and
relativistically invariant theories with vector fields. The latter are an ingredient extrapolated
from experiment.
The massless vector field Aµ has four components, but only two of them describe independent
physical degrees of freedom (photons).
In the quantum theory the charge αem becomes scale dependent and increases at short
distances. For practical purposes we are (almost) always in the domain of a weakly coupled
system and may enjoy perturbation theory in αem = e2/(4π) ∼ 1/137.



Symmetries of Quantum Chromo Dynamics

QCD Lagrangian

L =
nf∑

f =1

ψ̄f (x)
(

iγµDµ −mf

)
ψf (x)−

1
4

F a
µν(x)F aµν(x)

(Dµ)ij = ∂µδij − igAa
µta

ij

F a
µν = ∂µAa

ν − ∂νAa
µ − g2fabcAa

µAb
ν , i , j = 1, . . . ,Nc , a = 1, . . . ,N2

c − 1

The construction principle: gauge invariance, a “symmetry” under local phase transformations.
QCD: SU(Nc ) gauge group, for Nc = 3 colors: ψf ,i (x)→ Ωij (x)ψf ,j (x).
We want that the covariant derivative Dµ = ∂µ − igÂµ (here Âµ = Aa

µta
ij ) transforms as

Dµψ → Ω(x)Dµψ.
From that requirement one obtains gauge trf. of the gauge field,
Âµ → ΩÂµΩ−1 − i

g (∂µΩ)Ω−1 = Ω(Âµ − Ω−1∂µΩ))Ω−1.

Field strength tensor: F̂µν = F a
µνta → ΩF̂µνΩ−1. Note, that F a

µνF aµν ∝ Tr [F̂µν F̂µν ].
Here the gauge transformation is an element of the non-abelian group SU(Nc ). Nonabelian
gauge invariance requires that all quark flavors couple with the same coupling constant
strength.
The theory without quarks is called a Yang-Mills theory. It shares with QCD the properties of
asymptotic freedom (i.e. vanishing of αS = g2/(4π) at short distances) and confinement of
color charge at large distances. These are related to the three- and four gluon couplings.



The global symmetries of Quantum Chromo Dynamics

QCD Lagrangian

L =
nf∑

f =1

ψ̄f (x)
(

iγµDµ −mf

)
ψf (x)−

1
4

F a
µν(x)F aµν(x)

(Dµ)ij = ∂µδij − igAa
µta

ij

F a
µν = ∂µAa

ν − ∂νAa
µ − g2fabcAa

µAb
ν , i , j = 1, . . . ,Nc , a = 1, . . . ,N2

c − 1

Due to confinement, the degrees of freedom of the QCD Lagrangian are not the observable
particles.
The QCD Lagrangian in terms of quark and gluon degrees of freedom can be used for
perturbation theory at short space/time distance scales or large momentum scales. Special
types of observables can be calculated in terms of quarks and gluons.
Highly involved numerical calculations (Lattice QCD) can give information on the spectrum
and phase structure of QCD.
At low energies strong interactions are often formulated in terms of hadronic degrees of
freedom π,K , η,N,∆,Λ . . .
The formulation of QCD as a theory as a theory of hadrons becomes “rigorous” in the infrared
limit. Low energy QCD is a theory of weakly interacting Goldstone bosons – the pions.
Charge conjugation C , space reflection parity P and time reversal invariance T are exact.



The global symmetries of Quantum Chromo Dynamics

Quark part of QCD Lagrangian

L =
nf∑

f =1

ψ̄f (x)
(

iγµDµ −mf

)
ψf (x)

Flavor conservation: For each flavor we have a global phase symmetry ψf → exp(iθf )ψf .
Conservation laws: strangeness, baryon number, I3 (3rd component of isospin), electric
charge, charme, etc...
Approximate flavor symmetry: If quark masses are equal, L is invariant under transformations
of the type ψf → Uf ′f ψf for a unitary transformation Uf ′f . Existence of two very light quarks
u and d and athird fairly light one, s accounts for the rather accurate isospin SU(2) and
approximate flavor SU(3) invariance of the strong interactions.
Approximate chiral symmetry: Ignoring masses of u, d , s quarks L is invariant under separate
unitary rotations of right- and left handed quark fields.

ψL,f → UL
f ′f ψLf , ψR,f → UR

f ′f ψRf .

This gives rise to a very large U(3)× U(3) symmetry. This symmetry is not visible in the
spectrum and is spontaneously broken –or realized in the Nambu-Goldstone mode.
a U(1) subgroup, the axial U(1) is broken by quantum effects (“anomalous”).



Chiral symmetry, right- and left-handed quarks

right- and left handed fermion fields can be defined by the help of the matrix γ5 which
anticommutes with all Dirac matrices: γµγ5 + γ5γµ = 0 and fulfills γ25 = 1.
Projectors:

P̂R =
1
2

(1 + γ5) , P̂L =
1
2

(1− γ5) , P̂R + P̂L = 1 .

Projectors on orthogonal subspaces: P̂R P̂L = P̂LP̂R = 0, P̂2
R = P̂2

L = 1.
they can be used to decompose a fermion field into its right- and left handed parts:

ψ(x) = P̂Rψ(x) + P̂Lψ(x) = ψR (x) + ψL(x).

conjugate quark field? ψ̄(x) = ψ†(x)γ0

ψ̄R = P̂Rψ = (P̂Rψ)†γ0 = ψ†
1
2

(1 + γ5)γ0 = ψ†γ0
1
2

(1− γ5) = ψ̄P̂L .

Vector and scalar

ψ̄γµψ = ψ̄RγµψR + ψ̄LγµψL

ψ̄ψ = ψ̄RψL + ψ̄LψR



Chiral symmetry, right- and left-handed quarks

Right and left handed spinors are equivalent to helicity for massless fermions.
Recall Dirac four spinors, take limit m→ 0, or E � m:

uλ(p) =

√
E + m
2E

(
χλ

~σ·~p
E+m χλ

)
−→

1
√
2

(
χλ

~σ·~p
|~p| χλ

)
.

with

γ5 =
(
0 I
I 0

)
−→ P̂R,L =

1
2

(
I ±I
±I I

)
projects on right and left handed spinors

uR (p) =
1
√
2

(
χ↑
χ↑

)
, uL(p) =

1
√
2

(
χ↓
−χ↓

)
for massless fermions “chirality” is equivalent to helicity.



Invariance of action under continuous transformations of the field

The relation between symmetries and conservation theorems is captured by Noether’s
theorem.
continuous transformations of fields. Consider “infinitesimal” variations

φ(x)→ φ′(x) = φ(x) + δφ(x) .

The action (and therefore Euler-Lagrange equations) are left invariant if e.g. the Lagrange
density (Lagrangian) is invariant

δL = L(φ′(x), ∂µφ′(x))− L(φ(x), ∂µφ(x)) = 0

in fact strict invariance of the Lagrangian is not necessary, it is enough that the Lagrangian
changes by a total derivative

δL = ∂µf µ ,

the action will still be invariant up to a surface term, which is taken care of by boundary
conditions.



Noether current and charge

Let’s for a moment assume we found a transformation under which the Lagrangian is invariant
δL = 0. Then:

0 = δL =
∂L
∂φ

δφ+
∂L

∂(∂µφ)
∂µδφ = ∂µ

∂L
∂(∂µφ)

δφ+
∂L

∂(∂µφ)
∂µδφ = ∂µ

(
∂L

∂(∂µφ)
δφ

)
This means we have a conserved current!

Noether current:

jµ =
∂L

∂(∂µφ)
δφ , ∂µjµ = 0↔

∂j0

∂t
+ ~∇ ·~j = 0

Together with the Noether current comes a conserved charge:

Q(t) =
∫

d3~x j0(t, ~x) →
dQ(t)

dt
= −

∫
d3~x ~∇~j(t, ~x) = 0



Consequences of symmetries, Wigner-Weyl realization

The interesting point here is that global symmetries can manifest themselves in phenomena in
two very different manners.
From Quantum Mechanics we are familiar with the following situation, say our Hamiltonian is
invariant under some symmetry represented by a unitary transformation U:

UĤU† = Ĥ .

we have eigenstates |A〉 with energies EA: Ĥ|A〉 = EA|A〉.
If we apply our symmetry U to the eigenstates |A〉, the transformed states |B〉 = U|A〉 are also
eigenstates and are degenerate with |A〉. Proof:

EA = 〈A|H|A〉 = 〈A|U†UĤU†U|A〉 = 〈B|Ĥ|B〉 = EB .

we deal with a multiplet of degenerate states which transform into each other under the
symmetry transformation.
An example from hadronic physics would be the isospin symmetry. Isospin doublets
(p, n), (K+,K0), triplets π+, π0, π−, ρ+, ρ0, ρ−, quadruplets ∆++,∆+,∆0,∆−.
This situation is called the Wigner-Weyl realization (or mode) of the symmetry.
It is common for systems with a finite number of degrees of freedom. The hidden assumption
is the existence of a unique ground state.



Consequences of symmetries, Nambu-Goldstone realization

The situation is more complicated in Quantum Field Theory. The Wigner-Weyl mode is
certainly a possibility and as we have seen of practical importance. QFT is a framework with
infinitely many degrees of freedom. It turns out that global symmetries do not necessary
imply a degenerate set of equal mass particles.
We can have a situation, where the ground state is not invariant under the symmetry
transformation. This is “spontaneous symmetry breaking”, or a realization of the symmetry in
the Nambu-Goldstone mode.
Everything we said about the existence of Noether currents and charges remains true. Let us
try to indicate what changes:
In QFT the fields themselves become operators. Particle states can be written as fields acting
on the ground state (“vacuum”, |0〉).

|A〉 = Φ̂A|0〉 , |B〉 = Φ̂B |0〉 .

Symmetry transformation, say rotate ΦA into ΦB :

Φ̂′A = UΦ̂AU† = ΦB

U|A〉 = UΦ̂A|0〉 = UΦ̂AU†U|0〉 = Φ̂BU|0〉 6= Φ̂B |0〉 .

For the symmetry transformation to rotate between the states |A〉, |B〉, we would have to have
that the vacuum is invariant U|0〉 = |0〉, or (1 + εaQa)|0〉 = |0〉 → Q̂a|0〉 = 0.
Spontaneous symmetry breaking: Noether charges do not “annihilate the vacuum”. For each
Q̂a|0〉 6= 0 there exists a massless boson (Nambu-Goldstone boson).



Spontaneous symmetry breaking for a complex scalar field

complex scalar field with Lagrangian:

L = ∂µφ
∗∂µφ− V (φ) , V (φ) = µ2φ∗φ+ λ(φ∗φ)2 = λ

(
φ∗φ+

µ2

2λ

)2
+ const .

For µ2 > 0 we have the potential on the LHS. µ is the mass of the particle, and in the ground
state we have φ = 0, or 〈0|φ|0〉 = 0.
Again, the situation completely changes, if we allow µ2 < 0. Then we cannot interpret the
quadratic term as a mass term. Minima of potential:

|φ|2min = −
µ2

2λ
.

Now we have infinitely many degenerate ground states with φmin = |φ|mineiα.



Spontaneous symmetry breaking for a complex scalar field

We can parametrize φ = (φ1 + iφ2)/
√
2. Let’s choose for the ground state the mimimum for

α = 0 (φ1-direction).

Now the minimum is at φ1 =
√
−µ2/λ = v . Then we again shift the fields

φ1 = v + η(x), φ2 = ξ(x)

The Lagrangian becomes:

L =
1
2
∂µη∂

µη +
1
2
∂µξ∂

µξ −
1
2

(−2µ2)η2 −
λ

4
(η2 + ξ2)2 − λv(η2 + ξ2)η

η is a massive particle, mη = −2µ2.
We have a massless mode. ξ is a Nambu-Goldstone boson.



Spontaneous symmetry breaking for a complex scalar field

Despite the spontaneous breaking of the symmetry, the Noether current is still conserved.

jµ = −i
(
φ∗∂µφ− ∂µφ∗φ

)
= v∂µξ + η∂µξ − ξ∂µη

The Noether current has a nonzero matrix element between a 1-Goldstone boson state and
the vacuum

〈ξ(p)|jµ|0〉 = v pµ exp(−ip · x)

It means that the Noether charge does not annihilate the vacuum. It creates a
zero-momentum Goldstone boson.

Q̂|0〉 ∝ δ(3)(~p)|ξ(p)〉



Exponential parametrization

a subtlety of field theory is that we have a freedom to redefine fields, while maintaining all
observables (on-shell amplitudes). It is a certain freedom in the choice of “coordinates” in the
field space.
For the case at hand, there is a more convenient parametrization of φ(x) which highlights
another property of Goldstone boson physics.

φ =
1
√
2

(v + η(x)) exp
[

i
θ

v

]
Now, the field θ(x) will be the Goldstone degree of freedom, while η(x) still is a massive mode.

L =
1
2

(
1 +

η

v

)2
∂µθ∂

µθ +
1
2
∂µη∂

µη −
1
2

(−2µ2)η2 + aη3 + bη4

The Goldstone particle does not appear in the potential terms. It only has derivative
interactions with the η-field. ∝ η∂µθ∂µθ and η2∂µθ∂µθ.
Goldstone bosons are weakly coupled at low momenta. A new possibility for a perturbative
expansion emerges.



Symmetries of massless QCD

Quark part of massless QCD Lagrangian

L =
nf∑

f =1

ψ̄f (x)iγµDµψf (x) =
nf∑

f =1

(
ψ̄R,f (x)iγµDµψR,f (x) + ψ̄L,f (x)iγµDµψL,f (x)

)
We can perform independent SU(nf ) flavor rotations on R and L fields! Huge
SU(nf )× SU(nf ) symmetry.
a global symmetry comes with conserved Noether currents and charges. They are:

V a
µ = ψ̄γµ

λa

2
ψ = ψ̄Rγµ

λa

2
ψR + ψ̄Lγµ

λa

2
ψL

Aa
µ = ψ̄γµγ5

λa

2
ψ = ψ̄Rγµ

λa

2
ψR − ψ̄Lγµ

λa

2
ψL

Here λa/2 are the n2f − 1 generators of the SU(nf ) flavor group. In practice nf = 2 or nf = 3.
The vector charges generate the isospin symmetry for nf = 2 and the SU(3) flavor symmetry
for nf = 3, which we studied in the quark model.
The axial charges are spontaneously broken! Each broken charge gives rise to a Goldstone
boson. These are 3 GBs for nf = 2 massless flavors – π+, π−, π0, and 8 GBs for 3 massless
flavours (3 pions, 4 Kaons and the η (stricly speaking the η8)).



How do we know that axial charges are spontaneously broken?

Could it be that the chiral symmetry is realized in the Wigner-Weyl mode?
Then we should see the SUL(2)× SUR (2) symmetry in the spectrum.
in WW-mode, the axial charges have to annihilate the vacuum Q̂a

5 |0〉 = 0. We could use the
standard argument from QM, that the charge has to commute with the Hamiltonian. Say, we
have an eigenstate Ĥ|P〉 = EP |P〉. Then

ĤQ̂a
5 |P〉 = Q̂a

5Ĥ|P〉 = EP Q̂a
5 |P〉 . .

The state Q̂a
5 |P〉 is degenerate with |P〉, but has opposite parity. “Parity doubling”.

There is no indication of parity doubling in the meson or baryon spectrum of QCD. E.g. The
Nucleon, with Jπ = 1

2
+ has M ∼ 1 GeV, but the closest Jπ = 1

2
− resonance is at about

M ∼ 1.6 GeV. Similarly, there is a large splitting between the octet of pseudoscalar 0− mesons
and scalar 0+ mesons.



How do we know that axial charges are spontaneously broken?

Could it be that the chiral symmetry is realized in the Wigner-Weyl mode?
Then we should see the SUL(2)× SUR (2) symmetry in the spectrum.
in WW-mode, the axial charges have to annihilate the vacuum Q̂a

5 |0〉 = 0. We could use the
standard argument from QM, that the charge has to commute with the Hamiltonian. Say, we
have an eigenstate Ĥ|P〉 = EP |P〉. Then

ĤQ̂a
5 |P〉 = Q̂a

5Ĥ|P〉 = EP Q̂a
5 |P〉 . .

The state Q̂a
5 |P〉 is degenerate with |P〉, but has opposite parity. “Parity doubling”.

There is no indication of parity doubling in the meson or baryon spectrum of QCD. E.g. The
Nucleon, with Jπ = 1

2
+ has M ∼ 1 GeV, but the closest Jπ = 1

2
− resonance is at about

M ∼ 1.6 GeV. Similarly, there is a large splitting between the octet of pseudoscalar 0− mesons
and scalar 0+ mesons.
Note that in QCD, the chiral symmetry is broken explicitly by the quark mass terms.



Constructing a Lagrangian for the Goldstone bosons

We have learned, that spontaneous symmetry breaking is associated with a vacuum
expectation value (VEV) for some field. What is the VEV in QCD?
Chiral condensate:

Σ̂ij = 〈0|qi
Lq̄j

R |0〉 = δij v .

It transforms under the chiral group SUL(nf )× SUR (nf )

Σ̂→ gLΣ̂g†R .

It is invariant under a “diagonal subgroup is we rotate by gL = gR = g : Σ̂ = gΣ̂g†.
We can easily construct a model(“Sigma-model”) with the same symmetry breaking pattern
SUL(nf )× SUR (nf )→ SU(nf ).

L =
1
4

Tr
[
∂µΣ̂†(x)∂µΣ̂(x)

]
−
λ

4

(1
2

Tr
[

Σ̂†(x)Σ̂(x)
]
− v2

)2
.

We can parametrize

Σ̂(x) = (v + s(x))U(x) , with U†U = 1 .

The Lagrangian becomes

L =
v2

4
(1 +

s
v

)2Tr
[
∂µU†∂µU

]
+

1
2
∂µs∂µs −

1
2

M2s2 + . . .



Effective Lagrangian for pions

The lowest order Lagrangian for Goldstone bosons is universal, and will look the same for
every theory with the same breaking pattern. Let us concentrate on the case
SUL(2)× SUR (2)→ SUIsospin(2) in massless QCD:

L(2) =
F 2

4
Tr
[
∂µU†∂µU

]
, U(x) = exp

[ i~π(x) · ~τ
F

]
.

F is a constant of dimension Mass, called the pion decay constant.
explicit chiral symmetry breaking from quark masses:

δL = mu ūRuL + md d̄RdL + h.c.

it can be included into the effective Lagrangian as

δL(2) =
1
4

F 2BTr
[

M̂
(

U + U†
)]

, M̂ =
(

mu 0
0 md

)
.

We can expand to second order in the pion fields:

L(2) → (mu + md )F 2B +
1
2
∂µ~π · ∂µ~π −

1
2

(mu + md )B~π · ~π

pion mass term: m2
π = (mu + md )B.

constant term shifts the vacuum energy by

∆Evac = −(mu + md )F 2B ×Volume = 〈0|Ĥ0|0〉 = 〈0|mu ūu + md d̄d |0〉 ×Volume

Therefore: 〈0|mu ūu + md d̄d |0〉 = −(mu + md )F 2B



Chiral perturbation theory

Gell-Mann–Oakes–Renner relation: (in the limit 〈0|ūu|0〉 = 〈0|d̄d |0〉.)

m2
π =

1
F 2 (mu + md ) |〈0|ūu|0〉| .

pions indeed are massless in the limit mu ,md → 0.
The chiral condensate can be determined e.g. form Lattice QCD 〈0|ūu|0〉 ∼ −(245MeV)3

to second order in derivatives, we also have interactions between pions. Let us extract the
four-point vertices:

L(2) →
1

6F 2 ~π
2 ~π∂µ∂

µ · ~π +
1

2F 2 (~π · ∂µ~π)2 +
m2
π

24F 2 (~π · ~π)2 .

effective field theory with expansion parameter ε = p2/(4πF )2,m2
π/(4πF )2.

F ∼ 92.2 MeV, so that 4πF ∼ 1 GeV.
From here we can obtain ππ scattering amplitudes.
The ππ system can have isospin I = 0, 1, 2.
By Bose symmetry the permissible angular momenta are for I = 0, 2 : ` = 0, 2, . . . ,
I = 1, ` = 1.
scattering amplitudes are expanded in cm-momentum k:

T I
` = k2`

(
aI
` + 2bI

`

k2

m2
π

+ . . .

)
.



Pion decay constant

By the Noether method, we can find that the axial current in our effective theory is given by

~jA
µ = −F∂µ~π

Then, as we studied in our example, the axial current has a matrix element between the
(strong-interaction) vacuum and the Goldstone boson.

〈0|jA,i
µ |πj (p)〉 = δij pµ F

We are lucky, that this matrix element is just related to the decay width of the charge pion
π+ → µ+νµ, from where it is determined to be F ∼ 92.4MeV.



Chiral perturbation theory

from Donnelly et al. Foundations of Nuclear and Particle Physics, CUP

Weinberg’s famous results:

a00 =
7m2

π

32πF 2 , a20 = −
m2
π

16πF 2 , a11 =
m2
π

24πF 2 , b0
0 =

m2
π

4πF 2 , b2
0 = −

m2
π

8πF 2

As F is fixed from π → µν decays these are absolute predictions!
experimental information comes e.g. form K → 3π decays, or the lifetime of π+π− atoms.
the higher order corrections require the Lagrangian at higher order! A limitation to the
formalism are possible resonances.



Relations between quark masses

Just from symmetry considerations, we cannot say anything about the values of the light
quark masses. We can however extract information on their ratios.
Extending to SU(3) flavor symmetry, one can obtain:

M2
π± = 2m̂B, M2

π0 = 2m̂B − ε

M2
K± = (mu + ms )B, M2

K0 = (md + ms )B

M2
η =

2
3

(m̂ + 2ms )B + ε.

with

m̂ =
1
2

(mu + md ), ε =
B
4

(mu −md )2

ms − m̂
.

Then, we can calculate from the measured meson masses:

md −mu

md + mu
=

M2
K0 −M2

π0 + (M2
π±
−M2

K± )
M2
π0

= 0.29 .

ms − m̂
2m̂

=
M2

K0 −M2
π0

M2
π0

= 12.6

Light quark mass differences are not small! Remeber that in the constituent quark model, we
argued that u and d constituent quarks have the same mass ∼ 300 MeV.
PDG: mu ∼ 2.16MeV, md ∼ 4.67MeV, ms ∼ 93.4MeV. Isospin emerges, because
mu ,md � ΛQCD ∼ 200MeV.


