Selected topics from Quantum Chromodynamics Part I: Introduction

Wolfgang Schäfer¹

¹ Institute of Nuclear Physics, PAN, Kraków

Trans-European School of High-Energy Physics 2023 Bezmiechowa Górna, Poland, 14.7.-22.7. 2023

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Introduction, the global symmetries of QCD, pions as Goldstone bosons and their interactions at low energy.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

- electron structure and hadron structure, electromagnetic form factors, deep inelastic scattering and parton distributions
- **()** Diffractive and elastic scattering. Processes with rapidity gaps.

Quantum Electro Dynamics

QED Lagrangian

$$\mathcal{L} = \bar{\psi}(x) \left(i \gamma^{\mu} D_{\mu} - m \right) \psi(x) - \frac{1}{4} F_{\mu\nu}(x) F^{\mu\nu}(x)$$
$$D_{\mu} = \partial_{\mu} - i e A_{\mu}, F_{\mu\nu} = \partial_{\mu} A_{\nu} - \partial_{\nu} A_{\mu}.$$

- The construction principle: gauge invariance, a "symmetry" under local phase transformations.
- QED: U(1) gauge group: $\psi(x) \to \exp(-ie\phi(x))\psi(x)$ and $A_{\mu} \to A_{\mu} i\partial_{\mu}\phi(x)$.

•
$$D_{\mu}\psi(x) \rightarrow \exp(ie\phi(x))D_{\mu}\psi(x)$$
, and $F_{\mu\nu}(x) \rightarrow F_{\mu\nu}(x)$.

- We can add any number of fermions. Each of them can have its own charge ef.
- Gauge invariance is a mathematical apparatus to construct unitary(=quantum) and relativistically invariant theories with vector fields. The latter are an ingredient extrapolated from experiment.
- The massless vector field A_μ has four components, but only two of them describe independent physical degrees of freedom (photons).
- In the quantum theory the charge α_{em} becomes scale dependent and increases at short distances. For practical purposes we are (almost) always in the domain of a weakly coupled system and may enjoy perturbation theory in $\alpha_{em} = e^2/(4\pi) \sim 1/137$.

Symmetries of Quantum Chromo Dynamics

QCD Lagrangian

$$\mathcal{L} = \sum_{f=1}^{n_f} \bar{\psi}_f(x) \Big(i \gamma^{\mu} D_{\mu} - m_f \Big) \psi_f(x) - \frac{1}{4} F^{a}_{\mu\nu}(x) F^{a\mu\nu}(x)$$

$$(D_{\mu})_{ij} = \partial_{\mu} \delta_{ij} - i g A^{a}_{\mu} t^{a}_{ij}$$

$$F^{a}_{\mu\nu} = \partial_{\mu} A^{a}_{\nu} - \partial_{\nu} A^{a}_{\mu} - g^2 f_{abc} A^{a}_{\mu} A^{b}_{\nu}, \ i, j = 1, \dots, N_c, \ a = 1, \dots, N_c^2 - 1$$

- The construction principle: gauge invariance, a "symmetry" under local phase transformations.
- QCD: $SU(N_c)$ gauge group, for $N_c = 3$ colors: $\psi_{f,i}(x) \rightarrow \Omega_{ij}(x)\psi_{f,j}(x)$.
- We want that the covariant derivative $D_{\mu} = \partial_{\mu} ig\hat{A}_{\mu}$ (here $\hat{A}_{\mu} = A^{a}_{\mu}t^{a}_{ij}$) transforms as $D_{\mu}\psi \rightarrow \Omega(x)D_{\mu}\psi$.
- From that requirement one obtains gauge trf. of the gauge field, $\hat{A}_{\mu} \rightarrow \Omega \hat{A}_{\mu} \Omega^{-1} \frac{i}{g} (\partial_{\mu} \Omega) \Omega^{-1} = \Omega (\hat{A}_{\mu} \Omega^{-1} \partial_{\mu} \Omega)) \Omega^{-1}.$
- Field strength tensor: $\hat{F}_{\mu\nu} = F^a_{\mu\nu} t^a \rightarrow \Omega \hat{F}_{\mu\nu} \Omega^{-1}$. Note, that $F^a_{\mu\nu} F^{a\mu\nu} \propto Tr[\hat{F}_{\mu\nu} \hat{F}^{\mu\nu}]$.
- Here the gauge transformation is an element of the non-abelian group $SU(N_c)$. Nonabelian gauge invariance requires that all quark flavors couple with the same coupling constant strength.
- The theory without quarks is called a Yang-Mills theory. It shares with QCD the properties of asymptotic freedom (i.e. vanishing of $\alpha_S = g^2/(4\pi)$ at short distances) and confinement of color charge at large distances. These are related to the three- and four gluon couplings.

The global symmetries of Quantum Chromo Dynamics

QCD Lagrangian

$$\mathcal{L} = \sum_{f=1}^{n_f} \bar{\psi}_f(x) \left(i\gamma^{\mu} D_{\mu} - m_f \right) \psi_f(x) - \frac{1}{4} F^a_{\mu\nu}(x) F^{a\mu\nu}(x)$$

$$(D_{\mu})_{ij} = \partial_{\mu} \delta_{ij} - ig A^a_{\mu} t^a_{ij}$$

$$F^a_{\mu\nu} = \partial_{\mu} A^a_{\nu} - \partial_{\nu} A^a_{\mu} - g^2 f_{abc} A^a_{\mu} A^b_{\nu}, i, j = 1, \dots, N_c, a = 1, \dots, N_c^2 - 1$$

- Due to **confinement**, the degrees of freedom of the QCD Lagrangian are not the observable particles.
- The QCD Lagrangian in terms of quark and gluon degrees of freedom can be used for perturbation theory at short space/time distance scales or large momentum scales. Special types of observables can be calculated in terms of quarks and gluons.
- Highly involved numerical calculations (Lattice QCD) can give information on the spectrum and phase structure of QCD.
- At low energies strong interactions are often formulated in terms of hadronic degrees of freedom $\pi, K, \eta, N, \Delta, \Lambda \dots$
- The formulation of QCD as a theory as a theory of hadrons becomes "rigorous" in the infrared limit. Low energy QCD is a theory of weakly interacting Goldstone bosons the **pions**.
- Charge conjugation C, space reflection parity P and time reversal invariance T are exact.

The global symmetries of Quantum Chromo Dynamics

Quark part of QCD Lagrangian

$$\mathcal{L} = \sum_{f=1}^{n_f} \bar{\psi}_f(x) \Big(i \gamma^{\mu} D_{\mu} - m_f \Big) \psi_f(x) \Big)$$

- Flavor conservation: For each flavor we have a global phase symmetry $\psi_f \rightarrow \exp(i\theta_f)\psi_f$. Conservation laws: strangeness, baryon number, I_3 (3rd component of isospin), electric charge, charme, etc...
- Approximate flavor symmetry: If quark masses are equal, \mathcal{L} is invariant under transformations of the type $\psi_f \rightarrow U_{f'f}\psi_f$ for a unitary transformation $U_{f'f}$. Existence of two very light quarks u and d and athird fairly light one, s accounts for the rather accurate isospin SU(2) and approximate flavor SU(3) invariance of the strong interactions.
- Approximate chiral symmetry: Ignoring masses of u, d, s quarks \mathcal{L} is invariant under separate unitary rotations of right- and left handed quark fields.

$$\psi_{L,f} \to U_{f'f}^L \psi_{Lf}, \ \psi_{R,f} \to U_{f'f}^R \psi_{Rf}.$$

• This gives rise to a very large $U(3) \times U(3)$ symmetry. This symmetry is not visible in the spectrum and is **spontaneously broken** –or realized in the Nambu-Goldstone mode.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

• a U(1) subgroup, the axial U(1) is broken by quantum effects ("anomalous").

Chiral symmetry, right- and left-handed quarks

- right- and left handed fermion fields can be defined by the help of the matrix γ_5 which anticommutes with all Dirac matrices: $\gamma_{\mu}\gamma_5 + \gamma_5\gamma_{\mu} = 0$ and fulfills $\gamma_5^2 = 1$.
- Projectors:

$$\hat{P}_R = rac{1}{2}(1+\gamma_5)\,,\,\hat{P}_L = rac{1}{2}(1-\gamma_5)\,,\,\hat{P}_R + \hat{P}_L = 1\,.$$

• Projectors on orthogonal subspaces: $\hat{P}_R \hat{P}_L = \hat{P}_L \hat{P}_R = 0$, $\hat{P}_R^2 = \hat{P}_L^2 = 1$.

• they can be used to decompose a fermion field into its right- and left handed parts:

$$\psi(x) = \hat{P}_R \psi(x) + \hat{P}_L \psi(x) = \psi_R(x) + \psi_L(x).$$

• conjugate quark field? $ar{\psi}(x) = \psi^{\dagger}(x)\gamma_{0}$

$$ar{\psi}_R = \overline{\hat{P}_R \psi} = (\hat{P}_R \psi)^\dagger \gamma_0 = \psi^\dagger rac{1}{2} (1+\gamma_5) \gamma_0 = \psi^\dagger \gamma_0 rac{1}{2} (1-\gamma_5) = ar{\psi} \hat{P}_L \,.$$

Vector and scalar

$$\begin{split} \bar{\psi}\gamma_{\mu}\psi &= \bar{\psi}_{R}\gamma_{\mu}\psi_{R} + \bar{\psi}_{L}\gamma_{\mu}\psi_{L} \\ \bar{\psi}\psi &= \bar{\psi}_{R}\psi_{L} + \bar{\psi}_{L}\psi_{R} \end{split}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへぐ

Chiral symmetry, right- and left-handed quarks

- Right and left handed spinors are equivalent to helicity for massless fermions.
- Recall Dirac four spinors, take limit $m \rightarrow 0$, or $E \gg m$:

$$u_{\lambda}(p) = \sqrt{\frac{E+m}{2E}} \begin{pmatrix} \chi_{\lambda} \\ \frac{\vec{\sigma} \cdot \vec{p}}{E+m} \chi_{\lambda} \end{pmatrix} \longrightarrow \frac{1}{\sqrt{2}} \begin{pmatrix} \chi_{\lambda} \\ \frac{\vec{\sigma} \cdot \vec{p}}{|\vec{p}|} \chi_{\lambda} \end{pmatrix}.$$

with

$$\gamma_5 = \begin{pmatrix} 0 & \mathbb{I} \\ \mathbb{I} & 0 \end{pmatrix} \longrightarrow \hat{P}_{R,L} = \frac{1}{2} \begin{pmatrix} \mathbb{I} & \pm \mathbb{I} \\ \pm \mathbb{I} & \mathbb{I} \end{pmatrix}$$

projects on right and left handed spinors

$$u_R(p) = rac{1}{\sqrt{2}} egin{pmatrix} \chi_\uparrow \ \chi_\uparrow \end{pmatrix}, \ u_L(p) = rac{1}{\sqrt{2}} egin{pmatrix} \chi_\downarrow \ -\chi_\downarrow \end{pmatrix}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

• for massless fermions "chirality" is equivalent to helicity.

Invariance of action under continuous transformations of the field

- The relation between symmetries and conservation theorems is captured by Noether's theorem.
- continuous transformations of fields. Consider "infinitesimal" variations

$$\phi(x) \rightarrow \phi'(x) = \phi(x) + \delta \phi(x)$$
.

 The action (and therefore Euler-Lagrange equations) are left invariant if e.g. the Lagrange density (Lagrangian) is invariant

$$\delta \mathcal{L} = \mathcal{L}(\phi'(x), \partial_{\mu}\phi'(x)) - \mathcal{L}(\phi(x), \partial_{\mu}\phi(x)) = 0$$

• in fact strict invariance of the Lagrangian is not necessary, it is enough that the Lagrangian changes by a total derivative

$$\delta \mathcal{L} = \partial_{\mu} f^{\mu}$$
,

the action will still be invariant up to a surface term, which is taken care of by boundary conditions.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Noether current and charge

 $\bullet\,$ Let's for a moment assume we found a transformation under which the Lagrangian is invariant $\delta \mathcal{L}=$ 0. Then:

$$\mathbf{0} = \delta \mathcal{L} = \frac{\partial \mathcal{L}}{\partial \phi} \delta \phi + \frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \phi)} \partial_{\mu} \delta \phi = \partial_{\mu} \frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \phi)} \delta \phi + \frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \phi)} \partial_{\mu} \delta \phi = \partial_{\mu} \left(\frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \phi)} \delta \phi \right)$$

• This means we have a conserved current!

Noether current:

$$j^{\mu} = \frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \phi)} \delta \phi \,, \, \partial_{\mu} j^{\mu} = \mathbf{0} \leftrightarrow \frac{\partial j^{0}}{\partial t} + \vec{\nabla} \cdot \vec{j} = \mathbf{0}$$

• Together with the Noether current comes a conserved charge:

$$Q(t)=\int d^3ec x j^0(t,ec x)
ightarrow rac{dQ(t)}{dt}=-\int d^3ec x\,ec
abla ec j(t,ec x)=0$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Consequences of symmetries, Wigner-Weyl realization

- The interesting point here is that global symmetries can manifest themselves in phenomena in two very different manners.
- From Quantum Mechanics we are familiar with the following situation, say our Hamiltonian is invariant under some symmetry represented by a unitary transformation *U*:

$$U\hat{H}U^{\dagger}=\hat{H}$$
 .

- we have eigenstates $|A\rangle$ with energies E_A : $\hat{H}|A\rangle = E_A|A\rangle$.
- If we apply our symmetry U to the eigenstates |A⟩, the transformed states |B⟩ = U|A⟩ are also eigenstates and are degenerate with |A⟩. Proof:

$$E_A = \langle A|H|A \rangle = \langle A|U^{\dagger}U\hat{H}U^{\dagger}U|A \rangle = \langle B|\hat{H}|B \rangle = E_B.$$

- we deal with a multiplet of degenerate states which transform into each other under the symmetry transformation.
- An example from hadronic physics would be the isospin symmetry. Isospin doublets $(p, n), (K^+, K^0)$, triplets $\pi^+, \pi^0, \pi^-, \rho^+, \rho^0, \rho^-$, quadruplets $\Delta^{++}, \Delta^+, \Delta^0, \Delta^-$.
- This situation is called the Wigner-Weyl realization (or mode) of the symmetry.
- It is common for systems with a finite number of degrees of freedom. The hidden assumption is the existence of a unique ground state.

Consequences of symmetries, Nambu-Goldstone realization

- The situation is more complicated in Quantum Field Theory. The Wigner-Weyl mode is certainly a possibility and as we have seen of practical importance. QFT is a framework with infinitely many degrees of freedom. It turns out that global symmetries do not necessary imply a degenerate set of equal mass particles.
- We can have a situation, where the ground state is not invariant under the symmetry transformation. This is "spontaneous symmetry breaking", or a realization of the symmetry in the Nambu-Goldstone mode.
- Everything we said about the existence of Noether currents and charges remains true. Let us try to indicate what changes:
- In QFT the fields themselves become operators. Particle states can be written as fields acting on the ground state ("vacuum", |0)).

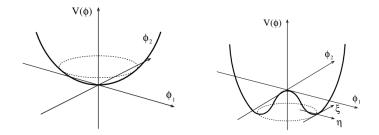
$$|A
angle=\hat{\Phi}_{A}|0
angle\,,\,|B
angle=\hat{\Phi}_{B}|0
angle\;.$$

• Symmetry transformation, say rotate Φ_A into Φ_B :

$$\begin{split} \hat{\Phi}'_A &= & U \hat{\Phi}_A U^{\dagger} = \Phi_B \\ U |A\rangle &= & U \hat{\Phi}_A |0\rangle = U \hat{\Phi}_A U^{\dagger} U |0\rangle = \hat{\Phi}_B U |0\rangle \neq \hat{\Phi}_B |0\rangle \,. \end{split}$$

- For the symmetry transformation to rotate between the states $|A\rangle$, $|B\rangle$, we would have to have that the vacuum is invariant $U|0\rangle = |0\rangle$, or $(1 + \epsilon^a Q^a)|0\rangle = |0\rangle \rightarrow \hat{Q}^a|0\rangle = 0$.
- Spontaneous symmetry breaking: Noether charges do not "annihilate the vacuum". For each $\hat{Q}^a|0\rangle \neq 0$ there exists a massless boson (Nambu-Goldstone boson).

Spontaneous symmetry breaking for a complex scalar field



o complex scalar field with Lagrangian:

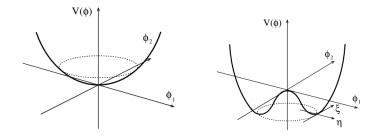
$$\mathcal{L} = \partial_{\mu}\phi^*\partial^{\mu}\phi - V(\phi), \ V(\phi) = \mu^2\phi^*\phi + \lambda(\phi^*\phi)^2 = \lambda\left(\phi^*\phi + \frac{\mu^2}{2\lambda}\right)^2 + \text{const}.$$

- For $\mu^2 > 0$ we have the potential on the LHS. μ is the mass of the particle, and in the ground state we have $\phi = 0$, or $\langle 0|\phi|0\rangle = 0$.
- Again, the situation completely changes, if we allow μ² < 0. Then we cannot interpret the quadratic term as a mass term. Minima of potential:

$$|\phi|^2_{\min} = -rac{\mu^2}{2\lambda}$$

• Now we have infinitely many degenerate ground states with $\phi_{\min} = \phi |\phi|_{\min} e^{i\alpha}$.

Spontaneous symmetry breaking for a complex scalar field



- We can parametrize $\phi = (\phi_1 + i\phi_2)/\sqrt{2}$. Let's choose for the ground state the minimum for $\alpha = 0$ (ϕ_1 -direction).
- Now the minimum is at $\phi_1 = \sqrt{-\mu^2/\lambda} = v.$ Then we again shift the fields

$$\phi_1 = \mathbf{v} + \eta(\mathbf{x}), \qquad \phi_2 = \xi(\mathbf{x})$$

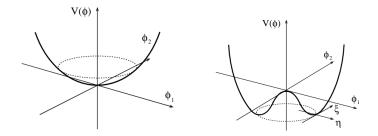
The Lagrangian becomes:

$$\mathcal{L} = \frac{1}{2}\partial_{\mu}\eta\partial^{\mu}\eta + \frac{1}{2}\partial_{\mu}\xi\partial^{\mu}\xi - \frac{1}{2}(-2\mu^{2})\eta^{2} - \frac{\lambda}{4}(\eta^{2} + \xi^{2})^{2} - \lambda v(\eta^{2} + \xi^{2})\eta$$

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つ へ つ ・

- η is a massive particle, $m_{\eta} = -2\mu^2$.
- We have a massless mode. ξ is a Nambu-Goldstone boson.

Spontaneous symmetry breaking for a complex scalar field



• Despite the spontaneous breaking of the symmetry, the Noether current is still conserved.

$$j_{\mu} = -i \left(\phi^* \partial_{\mu} \phi - \partial_{\mu} \phi^* \phi \right) = \mathbf{v} \partial_{\mu} \xi + \eta \partial_{\mu} \xi - \xi \partial_{\mu} \eta$$

• The Noether current has a nonzero matrix element between a 1-Goldstone boson state and the vacuum

$$\langle \xi(p) | j_{\mu} | 0
angle = v \, p_{\mu} \, \exp(-i p \cdot x)$$

• It means that the Noether charge does not annihilate the vacuum. It creates a zero-momentum Goldstone boson.

$$\hat{Q}|0
angle \propto \delta^{(3)}(ec{p})|\xi(p)
angle$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Exponential parametrization

- a subtlety of field theory is that we have a freedom to redefine fields, while maintaining all
 observables (on-shell amplitudes). It is a certain freedom in the choice of "coordinates" in the
 field space.
- For the case at hand, there is a more convenient parametrization of φ(x) which highlights another property of Goldstone boson physics.

$$\phi = rac{1}{\sqrt{2}} \left(m{v} + \eta(m{x})
ight) \exp \left[i rac{ heta}{m{v}}
ight]$$

• Now, the field $\theta(x)$ will be the Goldstone degree of freedom, while $\eta(x)$ still is a massive mode.

$$\mathcal{L}=rac{1}{2}igg(1+rac{\eta}{v}igg)^2\partial_\mu heta\partial^\mu heta+rac{1}{2}\partial_\mu\eta\partial^\mu\eta-rac{1}{2}(-2\mu^2)\eta^2+a\eta^3+b\eta^4$$

- The Goldstone particle does not appear in the potential terms. It only has derivative interactions with the η -field. $\propto \eta \partial_{\mu} \theta \partial^{\mu} \theta$ and $\eta^2 \partial_{\mu} \theta \partial^{\mu} \theta$.
- Goldstone bosons are weakly coupled at low momenta. A new possibility for a perturbative expansion emerges.

Symmetries of massless QCD

Quark part of massless QCD Lagrangian

$$\mathcal{L} = \sum_{f=1}^{n_f} \bar{\psi}_f(x) i \gamma^{\mu} D_{\mu} \psi_f(x) = \sum_{f=1}^{n_f} \left(\bar{\psi}_{R,f}(x) i \gamma^{\mu} D_{\mu} \psi_{R,f}(x) + \bar{\psi}_{L,f}(x) i \gamma^{\mu} D_{\mu} \psi_{L,f}(x) \right)$$

- We can perform **independent** $SU(n_f)$ flavor rotations on R and L fields! Huge $SU(n_f) \times SU(n_f)$ symmetry.
- a global symmetry comes with conserved Noether currents and charges. They are:

$$\begin{split} V^{a}_{\mu} &= \bar{\psi}\gamma_{\mu}\frac{\lambda^{a}}{2}\psi = \bar{\psi}_{R}\gamma_{\mu}\frac{\lambda^{a}}{2}\psi_{R} + \bar{\psi}_{L}\gamma_{\mu}\frac{\lambda^{a}}{2}\psi_{L} \\ A^{a}_{\mu} &= \bar{\psi}\gamma_{\mu}\gamma_{5}\frac{\lambda^{a}}{2}\psi = \bar{\psi}_{R}\gamma_{\mu}\frac{\lambda^{a}}{2}\psi_{R} - \bar{\psi}_{L}\gamma_{\mu}\frac{\lambda^{a}}{2}\psi_{L} \end{split}$$

• Here $\lambda^a/2$ are the $n_f^2 - 1$ generators of the $SU(n_f)$ flavor group. In practice $n_f = 2$ or $n_f = 3$.

- The vector charges generate the isospin symmetry for $n_f = 2$ and the SU(3) flavor symmetry for $n_f = 3$, which we studied in the quark model.
- The axial charges are spontaneously broken! Each broken charge gives rise to a Goldstone boson. These are 3 GBs for n_f = 2 massless flavors π⁺, π⁻, π⁰, and 8 GBs for 3 massless flavours (3 pions, 4 Kaons and the η (stricly speaking the η₈)).

- Could it be that the chiral symmetry is realized in the Wigner-Weyl mode?
- Then we should see the $SU_L(2) \times SU_R(2)$ symmetry in the spectrum.
- in WW-mode, the axial charges have to annihilate the vacuum $\hat{Q}_5^a|0\rangle = 0$. We could use the standard argument from QM, that the charge has to commute with the Hamiltonian. Say, we have an eigenstate $\hat{H}|P\rangle = E_P|P\rangle$. Then

$$\hat{H}\hat{Q}_5^a|P\rangle = \hat{Q}_5^a\hat{H}|P\rangle = E_P\hat{Q}_5^a|P\rangle ...$$

- The state $\hat{Q}_5^a | P \rangle$ is degenerate with $| P \rangle$, but has **opposite parity**. "Parity doubling".
- There is no indication of parity doubling in the meson or baryon spectrum of QCD. E.g. The Nucleon, with $J^{\pi} = \frac{1}{2}^+$ has $M \sim 1$ GeV, but the closest $J^{\pi} = \frac{1}{2}^-$ resonance is at about $M \sim 1.6$ GeV. Similarly, there is a large splitting between the octet of pseudoscalar 0⁻ mesons and scalar 0⁺ mesons.

- Could it be that the chiral symmetry is realized in the Wigner-Weyl mode?
- Then we should see the $SU_L(2) \times SU_R(2)$ symmetry in the spectrum.
- in WW-mode, the axial charges have to annihilate the vacuum $\hat{Q}_5^a|0\rangle = 0$. We could use the standard argument from QM, that the charge has to commute with the Hamiltonian. Say, we have an eigenstate $\hat{H}|P\rangle = E_P|P\rangle$. Then

$$\hat{H}\hat{Q}_5^a|P
angle=\hat{Q}_5^a\hat{H}|P
angle=E_P\hat{Q}_5^a|P
angle$$
..

- The state $\hat{Q}_5^a | P \rangle$ is degenerate with $| P \rangle$, but has **opposite parity**. "Parity doubling".
- There is no indication of parity doubling in the meson or baryon spectrum of QCD. E.g. The Nucleon, with $J^{\pi} = \frac{1}{2}^+$ has $M \sim 1$ GeV, but the closest $J^{\pi} = \frac{1}{2}^-$ resonance is at about $M \sim 1.6$ GeV. Similarly, there is a large splitting between the octet of pseudoscalar 0⁻ mesons and scalar 0⁺ mesons.

• Note that in QCD, the chiral symmetry is broken explicitly by the quark mass terms.

Constructing a Lagrangian for the Goldstone bosons

- We have learned, that spontaneous symmetry breaking is associated with a vacuum expectation value (VEV) for some field. What is the VEV in QCD?
- Chiral condensate:

$$\hat{\Sigma}^{ij} = \langle 0 | q_L^i \bar{q}_R^j | 0
angle = \delta^{ij} v.$$

• It transforms under the chiral group $SU_L(n_f) \times SU_R(n_f)$

$$\hat{\Sigma}
ightarrow g_L \hat{\Sigma} g_R^{\dagger}$$
 .

- It is invariant under a "diagonal subgroup is we rotate by $g_L = g_R = g$: $\hat{\Sigma} = g\hat{\Sigma}g^{\dagger}$.
- We can easily construct a model("Sigma-model") with the same symmetry breaking pattern $SU_L(n_f) \times SU_R(n_f) \rightarrow SU(n_f)$.

$$\mathcal{L} = \frac{1}{4} Tr \left[\partial_{\mu} \hat{\Sigma}^{\dagger}(x) \partial^{\mu} \hat{\Sigma}(x) \right] - \frac{\lambda}{4} \left(\frac{1}{2} Tr \left[\hat{\Sigma}^{\dagger}(x) \hat{\Sigma}(x) \right] - v^{2} \right)^{2}.$$

We can parametrize

$$\hat{\Sigma}(x) = (v + s(x))U(x)$$
, with $U^{\dagger}U = 1$.

• The Lagrangian becomes

$$\mathcal{L} = \frac{v^2}{4} (1 + \frac{s}{v})^2 Tr \left[\partial_\mu U^{\dagger} \partial^\mu U \right] + \frac{1}{2} \partial_\mu s \partial^\mu s - \frac{1}{2} M^2 s^2 + \dots$$

Effective Lagrangian for pions

• The lowest order Lagrangian for Goldstone bosons is universal, and will look the same for every theory with the same breaking pattern. Let us concentrate on the case $SU_L(2) \times SU_R(2) \rightarrow SU_{\rm Isospin}(2)$ in massless QCD:

$$\mathcal{L}^{(2)} = \frac{F^2}{4} Tr\left[\partial_{\mu} U^{\dagger} \partial^{\mu} U\right], \ U(x) = \exp\left[\frac{i\vec{\pi}(x) \cdot \vec{\tau}}{F}\right]$$

- F is a constant of dimension Mass, called the pion decay constant.
- explicit chiral symmetry breaking from quark masses:

$$\delta \mathcal{L} = m_u \bar{u}_R u_L + m_d \bar{d}_R d_L + h.c.$$

it can be included into the effective Lagrangian as

$$\delta \mathcal{L}^{(2)} = \frac{1}{4} F^2 B Tr \left[\hat{M} \left(U + U^{\dagger} \right) \right], \ \hat{M} = \begin{pmatrix} m_u & 0 \\ 0 & m_d \end{pmatrix}.$$

• We can expand to second order in the pion fields:

$$\mathcal{L}^{(2)}
ightarrow (m_u + m_d) F^2 B + rac{1}{2} \partial_\mu ec{\pi} \cdot \partial^\mu ec{\pi} - rac{1}{2} (m_u + m_d) B ec{\pi} \cdot ec{\pi}$$

• pion mass term: $m_{\pi}^2 = (m_u + m_d)B$.

constant term shifts the vacuum energy by

 $\Delta E_{vac} = -(m_u + m_d)F^2B \times \text{Volume} = \langle 0|\hat{H}_0|0\rangle = \langle 0|m_u\bar{u}u + m_d\bar{d}d|0\rangle \times \text{Volume}$

(日)((1))

• Therefore: $\langle 0|m_u\bar{u}u+m_d\bar{d}d|0
angle=-(m_u+m_d)F^2B$

Chiral perturbation theory

• Gell-Mann–Oakes–Renner relation: (in the limit $\langle 0|\bar{u}u|0\rangle = \langle 0|\bar{d}d|0\rangle$.)

$$m_{\pi}^2 = rac{1}{F^2} \left(m_u + m_d
ight) \left| \langle 0 | ar{u} u | 0
angle
ight|.$$

- pions indeed are massless in the limit $m_u, m_d \rightarrow 0$.
- The chiral condensate can be determined e.g. form Lattice QCD $\langle 0|\bar{u}u|0\rangle \sim -(245\,{
 m MeV})^3$
- to second order in derivatives, we also have interactions between pions. Let us extract the four-point vertices:

$$\mathcal{L}^{(2)}
ightarrow rac{1}{6F^2} ec{\pi}^2 ec{\pi} \partial_\mu \partial^\mu \cdot ec{\pi} + rac{1}{2F^2} (ec{\pi} \cdot \partial_\mu ec{\pi})^2 + rac{m_\pi^2}{24F^2} (ec{\pi} \cdot ec{\pi})^2 \,.$$

- effective field theory with expansion parameter $\epsilon = p^2/(4\pi F)^2$, $m_\pi^2/(4\pi F)^2$. $F \sim 92.2$ MeV, so that $4\pi F \sim 1$ GeV.
- From here we can obtain $\pi\pi$ scattering amplitudes. The $\pi\pi$ system can have isospin I = 0, 1, 2. By Bose symmetry the permissible angular momenta are for $I = 0, 2 : \ell = 0, 2, ..., I = 1, \ell = 1$.
- scattering amplitudes are expanded in cm-momentum k:

$$T_{\ell}^{\prime} = k^{2\ell} \left(a_{\ell}^{\prime} + 2b_{\ell}^{\prime} \frac{k^2}{m_{\pi}^2} + \dots \right).$$

▲□▶▲□▶▲□▶▲□▶ □ ● ●

• By the Noether method, we can find that the axial current in our effective theory is given by

$$\vec{j}^{A}_{\mu} = -F\partial_{\mu}\vec{\pi}$$

• Then, as we studied in our example, the axial current has a matrix element between the (strong-interaction) vacuum and the Goldstone boson.

$$\langle 0|j^{A,i}_{\mu}|\pi^{j}(p)
angle=\delta_{ij}\,p_{\mu}\,F$$

• We are lucky, that this matrix element is just related to the decay width of the charge pion $\pi^+ \rightarrow \mu^+ \nu_{\mu}$, from where it is determined to be $F \sim 92.4 \text{ MeV}$.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

Chiral perturbation theory

	Experimental	Lowest Order ³	First Two Orders ³
a_0^0	0.220 ± 0.005	0.16	0.20
b_{0}^{0}	0.250 ± 0.030	0.18	0.26
a_0^2	-0.044 ± 0.001	-0.045	-0.041
b_{0}^{2}	-0.082 ± 0.008	-0.089	-0.070
a_1^1	0.038 ± 0.002	0.030	0.036
b_1^1		0	0.043
a_{2}^{0}	$(17\pm3)\times10^{-4}$	0	20×10^{-4}
a_2^2	$(1.3\pm3)\times10^{-4}$	0	$3.5 imes 10^{-4}$

from Donnelly et al. Foundations of Nuclear and Particle Physics, CUP

• Weinberg's famous results:

$$a_0^0 = rac{7m_\pi^2}{32\pi F^2}\,,\ a_0^2 = -rac{m_\pi^2}{16\pi F^2}\,,\ a_1^1 = rac{m_\pi^2}{24\pi F^2}\,,\ b_0^0 = rac{m_\pi^2}{4\pi F^2}\,,\ b_0^2 = -rac{m_\pi^2}{8\pi F^2}$$

- As F is fixed from $\pi \rightarrow \mu \nu$ decays these are absolute predictions!
- experimental information comes e.g. form $K \rightarrow 3\pi$ decays, or the lifetime of $\pi^+\pi^-$ atoms.
- the higher order corrections require the Lagrangian at higher order! A limitation to the formalism are possible resonances.

Relations between quark masses

- Just from symmetry considerations, we cannot say anything about the values of the light quark masses. We can however extract information on their **ratios**.
- Extending to SU(3) flavor symmetry, one can obtain:

$$egin{array}{rcl} & M_{\pi^{\pm}}^2 & = & 2\hat{m}B, & M_{\pi^0}^2 = 2\hat{m}B - arepsilon \ M_{K^{\pm}}^2 & = & (m_u + m_s)B, & M_{K^0}^2 = (m_d + m_s)B \ M_{\eta}^2 & = & rac{2}{3}(\hat{m} + 2m_s)B + arepsilon. \end{array}$$

with

$$\hat{m}=rac{1}{2}(m_u+m_d),\quad arepsilon=rac{B}{4}rac{(m_u-m_d)^2}{m_s-\hat{m}}\,.$$

• Then, we can calculate from the measured meson masses:

$$\begin{aligned} \frac{m_d - m_u}{m_d + m_u} &= \frac{M_{K^0}^2 - M_{\pi^0}^2 + (M_{\pi^{\pm}}^2 - M_{K^{\pm}}^2)}{M_{\pi^0}^2} = 0.29 \,. \\ \frac{m_s - \hat{m}}{2\hat{m}} &= \frac{M_{K^0}^2 - M_{\pi^0}^2}{M_{\pi^0}^2} = 12.6 \end{aligned}$$

- Light quark mass differences are not small! Remeber that in the constituent quark model, we argued that u and d constituent quarks have the same mass ~ 300 MeV.
- PDG: $m_u \sim 2.16 \text{ MeV}$, $m_d \sim 4.67 \text{ MeV}$, $m_s \sim 93.4 \text{ MeV}$. Isospin emerges, because $m_u, m_d \ll \Lambda_{\text{QCD}} \sim 200 \text{ MeV}$.