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Disclaimer for this lecture. 

• I’m serving here as a substitute. Please consult the reference 
statistics lecture in TESHEP by Jonas Rademacker.  This 
introduction is too rapid.  

• Materials borrowed from Clermont’s colleagues (E. Busato,               
O. Deschamps, R. Madar, L. Serlet).  © Statistics@Clermont 

• Get to HEP-oriented fundamental books (everything useful is in 
there): 

• Frederick James 
• Roger Barlow 
• Glen Cowan
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Bibliography advises 
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Outline of the lecture
a brief motivation and then 
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0) The shortest History of Probability and Statistics ever

• The calculus of probabilities might be born in the 17th century in the 
european salons where gambling games were played and then studied. 

• One of the first reference (french-centered) is the address of Chevalier 
de Méré [1610-1685] to Blaise Pascal (1623-1662): is it more probable 
to obtain (at least) a 6 in four dice throws or a double 6 in 24  two-dices 
throws? [Get your exercise done and sit on the shoulders of the giants]   

• The 18th century provided the limit theorems with noticeably Bernouilli 
and De Moivre. 

• The 19th century witnessed further progresses and the establishment of 
the fundamental probability laws we‘re using on an everyday basis 
(Gauss, Laplace, Poisson …)     
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• But the modern theory is born in the 20th century thanks to Kolmogorov 
and the foundations of the theory of the measurement by Borel and 
Lebesgues. 

• The theory of randomness is continuously developing since then as an 
intense field of research, which applications are everywhere in our  
everyday life. This lecture might well be written by a conversational 
assistant …

• It happens it is not (it would be much better if it were). 

0) The shortest History of Probability and Statistics ever
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0) and motivations: why do you care about randomness?   

• A la Cyrano de Bergerac 

• Greedy: because gambling, sportive bets and games of chances are 
making people rich, though not those who are playing … 

• Cautious:  because we want to evaluate risks: climate, weather, seismic 
activities.    

• Cautious and greedy:  covering the risks is a natural human 
characteristics. Those actually covering the risk, insurance companies 
and finance investors are using financial mathematics to maximise their 
profits.  

• Curious:  the fundamental properties of Nature are definite numbers 
(think of the mass or the charge of the electron).  Measurements of 
nature are on the contrary coming with biases, estimated with 
uncertainties. This is why mastering randomness is important! 
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0) and motivations: why do you care about randomness?   

• Final disclaimer of this introduction: 

• We are usually taught in HEP-oriented lectures that statistics is 
somehow an art; there are several methods at hand; nothing is 
forbidden if you state what you’ve done;  etc…  

• All that is probably true … but one should not forget the following

• Statistics is a branch of mathematics:  

• It is axiomatic ! 

• Most of the methods are proven ! 

• Asymptotic limits are known !  

• In the following all approximations are mine.



S. Monteil Statistics 9

Chapter I: Elements of probability theory 
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• Let’s make some warm-up probability gymnastics:  and come back to 
Blaise Pascal (I’m contractually obliged to cite him repeatedly)  

• Let’s denote \Omega the universe of the possibles containing all 
possible finite outcomes \omega_i 

• In the finite probabilistic model, each sub-set of \Omega will be called an 
event (and can be written literally or mathematically)  

• The sum of all probabilities \omega_i must obey:

Chapter I: Elements of probability theory 
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• Let’s make some warm-up probability gymnastics:  and come back to 
Blaise Pascal (I’m contractually obliged to cite him repeatedly)  

• Then if we select a sub-set of the outcomes:  

• To calculate any probability, the knowledge of p(wi) is required.In the 
simple case of an identical probability for each outcome, you need to 
know how to count ! 

• The probability of a set of occurrences is the number of those 
occurrences realised divided by all the possibilities.

Chapter I: Elements of probability theory 
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Chapter I: Elements of probability theory 

• Probability modelling in simple cases: a random experiment in which 
there are a finite number of outcomes. 

• Few counting highlights: 

• n persons in this lecture room, k chairs, permutation of k among n   

• If you don’t care who is seated where, combination:    

Ak
n =

n!

(n� k)!

Ck
n =

✓
n
k

◆
=

n!

(n� k)!k!
=

Ak
n

k!
.
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• Back to Blaise Pascal (I’m contractually obliged to cite him repeatedly)  

• Is it more probable to obtain (at least) a 6 in four dice throws or a double 
6 in 24  two-dices throws ?

• First case: 
• the universe is the cartesian product   
• the event “at least one six” has the complementary event “no 6”, 

hence: 

P (”at least a 6”) = 1� P (”no 6”) = 1� 54

64
.

X

Chapter I: Elements of probability theory 
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• Back to Blaise Pascal (I’m contractually obliged to cite him repeatedly)  

• Is it more probable to obtain (at least) a 6 in four dice throws or a double 
6 in 24  two-dices throws ?

• Second case: 
• the universe is  
• the event “at least (6,6)” has the complementary event “no (6,6)”, 

which is the 24-uplets not having (6,6) hence: 

P (”at least a (6, 6”) = 1� P (”no (6, 6”) = 1� 3524

3624
.

Chapter I: Elements of probability theory 
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• Exercise:  what is the probability that the event “A: at least two of us in 
this room do share the same anniversary date” is realised? 

• Guess?  

• It is the complement of the event “ Abar: noone in the room are sharing 
the same anniversary date” 

• The latter event is the permutation of the n persons among the m days 
of the year (say 365 to make it simple): 

• The universe of possibilities has a cardinal: mn.

Chapter I: Elements of probability theory 
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• Exercise:  what is the probability that the event “A: at least two of us in 
this room do share the same anniversary date” is realised? 

• Guess?  

• It is the complement of the event “ Abar: noone in the room are sharing 
the same anniversary date” 

• The latter event is the permutation of the n persons among the m days 
of the year (say 365 to make it simple): 

• The universe of possibilities has a cardinal: mn.

If we are 40 in the room, the probability is ~90%!  

Chapter I: Elements of probability theory 
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Outline of the lecture
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Chapter II: Random var. as elements of the data sample 

• A sample is chosen to represent the population one wants to study  

• A sample is a set of measured random variables. But what is a random 
(aleatory) variable ? 

• It is a quantity which is not certain (owns an intrinsic randomness)

• Could be misleading since it is neither random nor variable ! 

• It is rather a function from possible outcomes in a sample space to a 
measurable space. 

• e.g.

• the result of heads or tails of several coin flips 

• the value of an observable (to which an uncertainty is attached)
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Chapter II: Random var. as elements of the data sample 

• The random variables can be either discrete or with density

Continuous random variable

Characterized by pdf: fX (x ;q)

P(x X  x +dx) = fX (x ;q)dx

E [X ] =
Z

xfX (x ;q)dx

Discrete random variable

Characterized by pmf: pX (x ;q)

pX (x ;q) = prob. that X = x

E [X ] = Â
i

xipX (xi ;q)

Other important relations:
! var [X ] = E

h
(X �E [X ])2

i

! cdf: F (t;q) = P(X  t;q)
22 / 206
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Chapter II: Random var. as elements of the data sample 

• The properties of the sample (representing the population)
©

 Statistics@
C
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Chapter II: Random var. as elements of the data sample 

• If you know the probability law that governs the random variables of 
interest, you know the exact properties of the population

Population parameters (not subject to fluctuations) : expected value, (co)variance, moments, …

• !"#$%&$' ()*+$ ∶ - . = 0 123456278
- . + : = - . + - :
- 5. = 5 - .
- . + 5 = - . +a

;<3 −>?@72A@2B572C278 5 A62<62 ∶ - .: ≠ - . - :

• V)EF)G%$ ∶ C56 . = H[.] = K! = - (. − 0)! N<432O − P?8O43Q R<6>?@5 ∶ H . = K! = - .! − 0!

• Cov)EF)G%$ ∶ B<C(., :) = K"# = - (. − 0")(: − 0#) H . = cov(X,X)
If cov(X,Y)=0 then H . + : = H . + H : (Bienaymé form.)

• TE'$E G UTU$G&V ∶ - .$ = >$ >% = 1
>& = - . = 0
>! = - .!

H . = K! = >! − 0!

• %$G&E)* UTU$G&V ∶ - (. − 0)$ = 0$ 0% = 1 ; 0& = 0
H . = 0! = K!

• V&)G')E'FZ$'UTU$G&V ∶ - (
"'(
) )$ = [0$ [0% = 1 ; [0& = 0 ; [0! = 1

[0* = \& (skewness) ; [0+ = ]! = \! + 3 (Kurtosis)
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Chapter II: Random var. as elements of the data sample 

• A word about independence

• A useful estimator is the linear(!) correlation 
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⇢xy =
Cov(x, y)

�x�y
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Chapter II: Random var. as elements of the data sample 

• Exercise: how much correlated?  
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Chapter II: Random var. as elements of the data sample 

• The standard comment in all statistics lectures: Correlation is not 
Causation! And statistical properties would never capture the causality.  
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• Some examples of canonical probability law or density:  Binomial.  
• Two (binomial) or many (multinomial) discrete outcomes (success/

failure); (-1,1).    
Binomial and multinomial distributions

⇤ Binomial: P(k;n,p) =

✓
n

k

◆
p

k (1�p)n�k

Properties:
! E [k] = np

! var [k] = np(1�p)

⇤ Multinomial: P(n1, · · · ,nm;n,p1, · · · ,pm) =
n!

n1! · · ·nm!
p

n1

1
· · ·pnmm

where
m: number of possible results in a trial
ni : number of results of type i (i 2 [1;m]), Âni = n

pi : probability that result in a trial is of type i

Properties:
! E [n1] = npi
! var [ni ] = npi (1�pi )
! cov(ni ,nj) =�npipj

35 / 206
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Chapter II: some useful p.m.f.  
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• Binomial: Head / Tail; Success / Failure; Triggered event / rejected event
The adequate probability law to deal with the uncertainties of an efficiency 
determination. Check the variance.     

• Multinomial: not two possibilities but a finite number >  2.  e.g. you make 
a selection of a decay mode and you classify them in intervals of their 
invariant mass: that’s an histogram !   

Binomial and multinomial distributions

⇤ Binomial: P(k;n,p) =

✓
n

k

◆
p

k (1�p)n�k

Properties:
! E [k] = np

! var [k] = np(1�p)

⇤ Multinomial: P(n1, · · · ,nm;n,p1, · · · ,pm) =
n!

n1! · · ·nm!
p

n1

1
· · ·pnmm

where
m: number of possible results in a trial
ni : number of results of type i (i 2 [1;m]), Âni = n

pi : probability that result in a trial is of type i

Properties:
! E [n1] = npi
! var [ni ] = npi (1�pi )
! cov(ni ,nj) =�npipj
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• Some examples of canonical probability law or density:  Poisson 
• Deals w/ rare numbers.   

Poisson distribution

P(n;n) = nn

n!
e
�n

Properties:
• E [n] = n
• var [n] = n

⇤ Poisson = limit of binomial when n ! • and p ! 0
✓

n

k

◆
p

k (1�p)n�k �����!n!•
p!0

nn

n!
e
�n with n = np

⇤ Poisson aka the "law of rare events"

38 / 206
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Chapter II: some useful p.m.f.  
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• Some examples of canonical probability law or density:  Poisson  

• Exercise: 
• the SM predicts that in your experiment (that you designed carefully 

such that there is no background), you shall see 5 neutrinos.  

• You observe 2. 

• How likely is it?  
• Poisson law of parameter 5      

P (X = k, ⌫) =
k⌫e�⌫

k!

P (X = 2) =
25e�5

2!
⇠ 10.8%

Chapter II: some useful p.m.f.  
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• The most important probability density function of all: Gaussian law

Mean

Variance

f(x;µ;�) =
1p
2⇡�

exp(�1

2

(xi � µ)2

�2
)

Chapter II: some useful p.d.f.  
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Chapter I: Random variables and probability laws 

• Central limit theorem: pseudo-experiment proof. 
• We consider a vector of variables xi uniformly distributed in [0,1]
• We build the distribution of the N repetition of the xi 

SOS 2016 

CLT at work 

6 

Simple illustration of CLT  
� let¶s consider x: a random variable uniformly distributed in [0,1]  

𝑧 ൌ෍ 𝑥௜
ே

௜=1
 � and the distribution of N sums of x: 

N=1 N=3 

N=10 N=50 

Uniform (N=1) 

Irwin-Hall 
(see here) 

Gauss  
(N>40) 

z =
i=NX

i=1

xi
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Chapter I: Random variables and probability laws 

• This is true for almost all distributions ! Here the Poisson’s law captured 
from Jonas pseudo-exepriments. 
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Chapter I: Random variables and probability laws 

• Central limit theorem: if you prefer a hardware proof: 
• https://en.wikipedia.org/wiki/Galton_board 

https://en.wikipedia.org/wiki/Galton_board
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Chapter I: Random variables and probability laws 

Jonas Rademacker                                                                                Statistics                                                                           TESHEP 2018

Trinity

�75

Binomial Poisson

Gaussian

lim N→∞, p→0, N⋅p=λ

P(r; N,p) P(r; λ)

P(x; μ,σ)

N⋅p→λ

lim N→∞ lim λ→∞
λ→μ,  
√λ→σ

N · p ⇤ µ�
Np(1� p) ⇤ ⇥

P (r;N, p) = pr (1� p)N�r
�

N
r

⇥

g(x;µ,� =
1p
2⇡�

e�
1
2 (

x�µ
� )2

P (r;�) = e���
r

r!

©
Jonas R

adem
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Chapter II: Covariance and error matrices

• What happens if we are dealing with multidimensional samples, e.g. with 
N measurements of M variables?  The (likely) gaussian blur of the 
measurements becomes encoded into covariance (error) matrices, the 
diagonal elements of them dealing with the actual variances of the 
observables and the off-diagonal terms.     
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Chapter III: Statistical model   

Data sample Statistical model

Statistical method

Result

Chapter 2 Chapter 3

Chapter 4



• What are we speaking of? 

What is the measurement performed? 

S. Monteil Statistics 35

Chapter III: Statistical model   



• Ingredients and vocabulary.  
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Chapter III: Statistical model   



• Let’s write initial maths

• The statistical model is called the likelihood (identity). There are then 
several convenient ways to express it    
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Chapter III: Statistical model: the likelihood   

��2/2
Oh! 



• Extending the likelihood:  
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Chapter III: Statistical model: the likelihood extended   
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• Extending the likelihood to multiple components:   
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Chapter III: Statistical model: the likelihood extended   
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• Extending the likelihood to multiple components:   
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Chapter III: Statistical model: the likelihood extended   
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• Extending the likelihood to multiple components:   
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Chapter III: Statistical model: the likelihood extended   



• Extending the likelihood to multiple components:   
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Chapter III: Statistical model: the likelihood extended   



• And the parameter estimators (by a slight anticipation) 
• The likelihood has deep, sound, extensive, good mathematical properties. 
• The estimator maximising it owns those as well:  
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Chapter III: Statistical model: the likelihood extended   

Rao-Cramer-Frechet  
Theorem   

(Special dedication  
to Pierre) 



• And the parameter estimators (by a slight anticipation) on the 
practical side: Maximise, scan the different values. 

• Get the central value and the confidence intervals: Jonas illustration    
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Chapter III: Statistical model: the likelihood extended   

Asympotic limit 
(Gaussian) 



• And the parameter estimators (by a slight anticipation) on the 
practical side: Maximise, scan the different values. 

• Get the central value and the confidence intervals: Jonas illustration    
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Chapter III: Statistical model: the likelihood extended   

Asympotic limit 
(e.g. Poisson)  

Just quote asymmetric   
uncertainties



S. Monteil Statistics 45

Chapter IV: Statistical method (Inferences)  



S. Monteil Statistics 46

Chapter IV: Statistical method (Inferences)  

Data sample Statistical model

Statistical method

Result

Chapter 2 Chapter 3

Chapter 4
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Chapter IV: Statistical method (Inferences)  

• Is my model of interest (embodied in the statistical model through the 
likelihood) making sense? Let’s consider Jonas’s example with b-flavoured 
particles proper time fits. Exponential probability density function is your 
model of interest.   

• First, which fit is making sense?    
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Chapter IV: Statistical method (Inferences)  

• It is therefore very useful to have an estimator of the quality of the fit.

• No easy going implementation of a goodness of fit test with unbinned 
(event by event) likelihood fit. Use the associated binned histogram you 
use for visualisation. And compute the chi^2 !  

• What would be its value if the fit is correctly behaving? 

• How to get a universal estimator (adapted to any distribution 
characteristics?) Divide by the number of degrees of freedoms - 1.    



S. Monteil Statistics 49

Chapter IV: Statistical method (Inferences)  
• which fit is making sense?  

• Not a serious quantitative inference yet, just a check to proceed further!    

�2(/n.d.o.f.) ! 1 �2(/n.d.o.f.) ⇠ 1

�2(/n.d.o.f.) ! 1�2(/n.d.o.f.) ⇠ 0
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Chapter IV: Statistical method (Inferences)  
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Chapter IV: Statistical method (Inferences)  
• which fit is making sense?  

• Not a serious quantitative inference yet, just a check to proceed further!    

�2(/n.d.o.f.) ! 1 �2(/n.d.o.f.) ⇠ 1

�2(/n.d.o.f.) ! 1�2(/n.d.o.f.) ⇠ 0

BAD
GOOD

BAD
LIAR! 
or too  

conservative  
uncert.
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Chapter IV: Statistical method (Inferences)  



S. Monteil Statistics 51

Chapter IV: Statistical method (Inferences)  
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Chapter IV: Statistical method: two paradigms 
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Chapter IV: Statistical method: two paradigms 
• Some rapid comments about frequentism / bayesianism 

• Frequentism:  following a fit maximising the likelihood 

This is nothing less than the probability to see the set of data we’ve 
measured, given the theory.   

• Note that one would like to get the probability of the theory given the data, 
the model is the natural one? That would be the Bayesian probability.  

• Yet, the result is plagued by the hypothetisation of the prior distribution for 
the parameter(s) of interest. The good news is that its importance 
decreases when  the precision of the data increases.  

• Frequentism is on the contrary well-motivated.  Very demanding though!       
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Summaries: 

• We touched in this introduction: 

• Some basics of probability law 

• How to address the properties of datasets, be they empirical or 
through probability laws.  

• We examined the central limit theorem consequences . Repeating     
an experiment provides you with the gaussian blur. 

• We discussed how make an inference. 

• Most of your statistical problems have already a well-defined solution. 
We shall always remember that it is mathematics, hence axiomatic!    


