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Photon exchange Feynman diagram

four-momentum transfer q = p1 − p3 = p4 − p2. The four-momentum transfer squared is
negative: q2 = −Q2. In the LAB frame, where the proton target is initially at rest, we have :

Q2 = 4EE ′ sin2
θ

2
here θ= scattering angle of electron, and E ,E ′ energies of the electron before and after
scattering.
The Feynman amplitude for single-photon exchange takes the following form:

iM = 4παem 〈e−, p3|jµ|e−, p1〉
−gµν

q2 〈p, p4|jν |p, p2〉 .

Recall, that the probability amplitude for photon emission/absorption for a particle a is
proportional to

〈a, p′|jµ|a, p〉εµ∗(λ) .



Electron-nucleon (proton/neutron) scattering

To calculate the electron-scattering cross section, we need to know the electromagnetic
current for the target.
for example for a scalar particle of charge Ze, the current has the simple form:

〈p′|jµ|p〉 = Ze(p + p′)µ F (Q2) , q = p′ − p , Q2 = −q2 .

For the proton, the current also depends on its polarization states. There are two
independent form factors:

〈p′, s′|jµ|p, s〉 = e ū(p′, s′)
(
γµ F1(Q2) +

i
2m

σµνqν F2(Q2)
)

u(p, s) , σµν =
i
2

(γµγν − γµγν) .

Dirac form factors F1(Q2),F2(Q2) are related to the more easily interpreted Sachs-form
factors (or electric and magnetic formfactors). They read

GE (Q2) = F1(Q2)− τF2(Q2) , τ =
Q2

4m2
p

GM(Q2) = F1(Q2) + F2(Q2) .

at Q2 = 0, for the proton and neutron:

Gp
E (0) = F p

1 (0) = 1 , Gn
E (0) = F n

1 (0) = 0 .

the magnetic form factors are normalized to the relevant magnetic moment:

Gp
M(0) = 1 + F p

2 (0) = +2.79 , Gn
M(0) = F n

2 (0) = −1.91 .



Differential cross section, measuring the two form factors

Elastic ep → ep cross section depends on the charge and magnetic moment distributions. The
Rosenbluth formula for the differential cross section reads:

dσ
dΩ

=
dσ
dΩ

∣∣∣
Mott

(G2
E (Q2) + τG2

M(Q2)
1 + τ

+ 2τG2
M(Q2) tan2

θ

2

)
, τ =

Q2

4m2
p
.

Mott cross section is a reference cross section for a pointlike proton, neglecting proton spin.
In the LAB frame:

Q2 = 4EE ′ sin2
θ

2

here θ= scattering angle of electron, and E ,E ′ energies of the electron before and after
scattering.
In order to determine the formfactors at fixed values of Q2, we must measure the differential
cross section for various angles, i.e for different beam energies.
In the Breit-Frame the Sachs form factors become related to Fourier transforms of charge- and
magnetization densities:

GE (Q2)→ GE (~q2) =
∫

d3~rei~q~r ρ(~r)

GM(Q2)→ GM(~q2) =
∫

d3~rei~q~r µ(~r) .



The charge radius

an effective size, the charge radius can be related to the slope of the charge formfactor at
small momentum transfers.
recall the definition in terms of the charge distribution

GE (~q2) =
∫

d3~rρ(~r)ei~q·~r =
∫

d3~rρ(~r)
(
1 +

∞∑
n=1

in (~q ·~r)n

n!

)
= 1−

1
6
~q2 4π

∫ ∞
0

r2dr r2ρ(~r) ≡ 1−
1
6
~q2〈r2〉+ . . .

Here we define the charge radius as rch =
√
〈r2〉, with

〈r2〉 =
∫

d3~r r2ρ(r) (1)

or, starting from the directly measured formfactor

〈r2〉 = −6
dGE (~q2)

d~q2

∣∣∣
~q2=0

.

if the charge is concentrated in the origin ρ(~r) = δ3(~r) (“pointlike particle"), the form factor is
just constant: GE (~q2) = 1!



Dipole parametrization

Traditionally proton electric and magnetic and neutron magnetic form factors have been fitted
by a so-called “dipole” functional shape. Older data at small and intermediate Q2 suggest,
that they are all proportional to the same function

Gp
E (Q2) = Gp

M(Q2)/µp = Gn
M(Q2)/µn = GD(Q2) =

1
(1 + Q2

Λ2 )2
, Λ2 = 0.71GeV2

after Fourier transform it corresponds to an charge distribution with an exponential tail and
rms-radius rch ∼ 0.8 fm.



Deviation from the dipole parametrization

Data from Jefferson lab show a
clear deviation from the dipole
parametrization. Above
Q2
∼> 1GeV2 the electric FF falls

off substantially faster.



Neutron electric form factor

Neutron electric form factor exctracted from polarized scattering from light nuclei (D, 3He).
slope at Q2 = 0 has been measured from neutron scattering off atomic electrons. Notice that
〈r2n 〉 < 0.



Electric/magnetic form factor ratios

Ratios

R =
µGE (Q2)
GM(Q2)

.

solid lines are results of a VDM + pQCD model as proposed by Gari and Krümpelmann.
significant difference of GE and GM at large Q2 for the proton. Deviation from the common
dipole form.



Breit frame charge distributions for proton and neutron

charge density of neutron integrates to zero, as it must be. It has a positive charge core, and a
negative tail. The latter may be suggestive of pπ− fluctuations in the neutron wave function.



Kinematics for inclusive electron proton scattering

Inclusive electron scattering: measure only
the scattered electron. From the scattered
electron (lepton) kinematics determine the
four-momentum transfer.
for the elastic e−p → e−p process, we had
only the dependence on the scattering angle.
Now, we sum over all hadronic final states
X . The invariant mass of the recoiling
hadronic system X is not fixed.
Conventionally we denote W 2 ≡ p2

4 = M2
X .

DIS variables

ν =
P · q
mN

=
W 2 + Q2 −m2

N
2mN

x =
Q2

2P · q
=

Q2

2mNν
=

Q2

Q2 + W 2 −m2
N

y =
P · q
P · l

=
W 2 + Q2 −m2

N
s −m2

N
.



DIS kinematic variables

DIS variables

ν =
P · q
mN

=
W 2 + Q2 −m2

N
2mN

x =
Q2

2P · q
=

Q2

2mNν
=

Q2

Q2 + W 2 −m2
N

y =
P · q
P · l

=
W 2 + Q2 −m2

N
s −m2

N
.

any of the pairs (Q2, x), (Q2, y), (x , y), (ν, x), (Q2, ν), or Q2,W 2 can be used to analyze the
cross section.
ν has the meaning of the photon energy in the target rest frame.
y is the fraction of the incoming electrons’s energy carried by the photon, y = ν/E
(sometimes called “inelasticity”). By definition 0 ≤ y ≤ 1.
x is the so-called Bjorken-variable, also by its definition 0 ≤ x ≤ 1.
We conventionally speak of Deep Inelastic Scattering (DIS), when ν � mN , and Q2 � m2

N .
In this regime we can mostly neglect the proton mass compared to the other large scales.
Notice, that for elastic scattering, where X = p, we have W = mN , and therefore x = 1!



Inclusive ep → eX cross section

Let’s rewrite the elastic ep → ep cross section as

dσ
[dx ]dQ2 = [δ(1− x)]

4πα2
em

Q4

{(
1− y −

m2
Ny2

Q2

)G2
E (Q2) + τGM(Q2)

1 + τ
+

1
2

y2G2
M(Q2)

}
The inclusive cross section for ep → eX can be written in an analogous way:

dσ
dxdQ2 =

4πα2
em

Q4

{(
1− y −

m2
Ny2

Q2

)F2(x ,Q2)
x

+ y2F1(x ,Q2)
}

Instead of two form factors which depend only on Q2 we have two structure functions. Our
structure functions depend on two independent variables x ,Q2.
This notation F2,F1 and the fact that one of them comes with a factor 1/x , is purely
historical accident. We shall see later that in fact 2xF1(x ,Q2) and F2(x ,Q2)− 2xF1(x ,Q2)
have a straightforward physical meaning.
for comparison: scattering off pointlike particle:

dσ
[dx ]dQ2 = [δ(1− x)]

4πα2
em

Q4

(
1− y +

1
2

y2
)



Inclusive electron proton scattering

at large Q2 “flat” dependence of the cross
section ratio to the Mott cross section.
the cross section rather resembles the
scattering off an almost pointlike
constituent. That cannot be the proton
itself– we are talking about inelastic
collisions!
Apparently we observe structure probed by a
photon at distance scales ∼ 1/Q2.
⇒ parton model, (Bjorken, Feynman).
SLAC experiments from 1960’s. Nobel prize
1990 (Friedman, Kendall, Taylor).



Inclusive electron proton scattering

the early DIS experiments suggested that the structure function F2 is only a function of
Bjorken-x and does not depend on Q2 (Bjorken scaling).
there was also reasonable support for the identity 2xF1 = F2 (Callan-Gross relation).
these results strongly suggested the existence of “pointlike” charged constituents in the proton
and gave credibility to the parton model.



DIS: electron-quark scattering

Let’s adopt the idea of Bjorken-scaling and
the Callan-Gross relation. Then:

dσ(ep → eX)
dxdQ2 =

4πα2
em

Q4

(
1− y +

1
2

y2
)F2(x)

x

With the ansatz (f = flavor)

F2(x) =
∑

f

e2f x pf (x)

Meaning of Bjorken-x : Let quark before the scattering carry momentum ξP, then from the
on-shell condition of final state quark (ξP + q)2 = m2

q = 0→ ξ = Q2/(2P · q) = x !
we obtain the cross section

dσ(ep → eX)
dxdQ2 =

∑
f

dσ(eqf → eqf )
dQ2 · pf (x)

Here pf (x) is the parton density or parton distribution function (pdf) .
naturally, we should identify pf (x) = qf (x) + q̄f (x).
Here pf (x) dx is the probability to find a parton of flavor x carrying a fraction of the proton’s
momentum in the interval x , x + dx .
the Callan-Gross relation can be directly related to the fact that quarks have spin 1/2.



Parton distributions, flavor decomposition

In the parton model we assume that we can neglect interactions between partons during the
time of the interaction (the ”hard process”). The interactions in the initial state (which “bind”
the proton) and in the final state (which convert the quarks/partons into final state hadrons)
take place at large spacetime distances – of order of the proton mass. These space and time
scales are much larger than the size of the quark or the time of interaction.
Hence, quark distributions (pdf’s) cannot be calculated in perturbation theory. They carry
information on the nonperturbative structure of the proton. Relations to correlation functions
of QCD quark fields on along the light-cone can be derived using a very involved machinery of
so-called “factorization theorems”.
For the proton we expect valence quarks (uud) and in addition qq̄-pairs (the sea quarks). We
expect sea quarks at smaller values of x (recall the Bremsstrahlung spectrum dx/x).
For proton and neutron we would expand

1
x

F p
2 =

4
9

(up(x) + ūp(x)) +
1
9

(dp(x) + d̄p(x)) +
1
9

(sp(x) + s̄p(x)) + . . .

1
x

F n
2 =

4
9

(un(x) + ūn(x)) +
1
9

(dn(x) + d̄n(x)) +
1
9

(sn(x) + s̄n(x)) + . . .



Valence and sea decomposition

Isospin symmetry suggests up(x) = dn(x) ≡ u(x) and dp(x) = un(x) ≡ d(x). Furthermore
sp(x) = sn(x) ≡ s(x).
Motivated by the simple valence quark picture, we decompose quark distributions into their
valence and sea components.
u(x) = uV (x) + uS (x). The antiquark densities have only a sea quark component
ū(x) = uS (x), so that uV (x) = u(x)− ū(x).
Valence distributions are normalized as∫ 1

0
dx uV (x) = 2 ,

∫ 1

0
dx dV (x) = 1 .

at small x we expect sea quarks to dominate.
one often assumes, that the sea quark distribution is flavour symmetric, e.g. ū(x) = d̄(x).
This is not borne out by many fits. In fact a nonperturbative sea from meson-baryon
fluctuations is expected to exist. For simplicity let us though assume, that
ū(x) = d̄(x) = S(x).
Then, for the ratio of neutron to proton structure functions we obtain:

F n
2 (x)

F p
2 (x)

=
4dV (x) + uV (x) + 10S(x)
4uV (x) + dV (x) + 10S(x)

at small x : F n
2 (x)

F p
2 (x) → 1.



Neutron to proton ratio

F n
2 (x)

F p
2 (x)

=
4dV (x) + uV (x) + 10S(x)
4uV (x) + dV (x) + 10S(x)

a naive assumption uV (x) ∼ 2dV (x) would yield F n
2 (x)

F p
2 (x) → 2/3 which appears to be in conflict

with data. The ratio rather approaches → 1/4 which suggests dV (x)� uV (x) at large x



Behaviour of parton distributions and the momentum sum rule

rough x-dependence of quark valence and sea distributions

xqV (x) ∼ (1− x)3 for x → 1
xqV (x) ∼ x0.5 for x → 0
xqS (x) ∼ (1− x)7 for x → 1
xqS (x) ∼ x−0.2 for x → 0

it makes no sense to ask for the total number pf partons in the proton:∫ 1

0
dx q(x)→∞

The integral diverges at the lower boundary! Sea quark distribution is not integrable.
it makes sense to ask for the momentum fraction carried by a parton:∫ 1

0
dx x q(x) ≡ 〈x〉q = finite < 1

one finds roughly

〈x〉uV ∼ 0.27 , 〈x〉dV ∼ 0.11, 〈x〉sea ∼ 0.17

quarks and antiquarks carry only about ∼ 55% of the proton’s momentum.
to save the momentum sum, the proton must contain neutral partons - gluon distribution.



Structure functions, hadronic tensor, etc.

The amplitude for the deep inelastic ep scattering has the familiar form

M =
4παem

Q2 jµgµν〈X |Jν |p〉 .

We cannot parametrize the hadronic current 〈X |Jν |p〉 in any convenient way, but after
squaring there appears the so-called hadronic tensor:

Wµν ∝
∑

X

∫
dΦX 〈p|Jµ|X〉〈X |Jν |p〉

one can show the following: firstly the hadronic tensor can be parametrized as

Wµν =
(
− gµν +

qµqν
q2

)
2F1(x ,Q2) +

2
P · q

(Pµ −
P · q
q2 qµ)(Pν −

P · q
q2 qν)F2(x ,Q2)

secondly, Wµν is the imaginary part of a forward Compton amplitude. Introducing virtual
photon polarization vectors we can introduce virtual photoabsorption cross sections:

σγ
∗p
λ
∝ εµ(λ)ε∗ν(λ)Wµν .

structure functions FT = 2xF1, FL = F2 − 2xF1

σγ
∗p

T =
4π2αem

Q2 2xF1(x ,Q2) , σγ
∗p

L =
4π2αem

Q2 (F2(x ,Q2)− 2xF1(x ,Q2))



Structure function F2(x , Q2), violations of Bjorken scaling



QCD improved parton model

in full QCD structure functions and parton densities depend on Q2

longitudinal structure function FL is induced by the photon-gluon fusion and is a measure of
the gluon distribution.
Radiative corrections contain αS log Q2 enhancements from (near-)collinear emission of
partons in the q → qg , g → qq̄ and g → gg transitions.
These “collinear logarithms” can be systematically summed up by an evolution equation. They
explain the scaling violations of F2 in a wide kinematic range.
in the region of small-x , say x � 10−3 summation of collinear logs is not enough and one has
to also address αS log(1/x) corrections (Balitsky-Fadin-Kuraev-Lipatov).
eventually, at very small-x a regime of very large parton (gluon) densities emerges, in which
gluon-fusion corrections (or gluon saturation effects) lead to nonlinear evolution equations.



DGLAP evolution equations

We cannot predict parton distributions in perturbative QCD, but we can predict their
dependence on Q2.
Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) evolution equations:

d
d log Q2 qNS (x ,Q2) =

αS (Q2)
2π

∫ 1

x

dz
z

Pqq(
x
z

)qNS (z,Q2)

d
d log Q2

(
Σ(x ,Q2)
g(x ,Q2)

)
=
αS (Q2)

2π

∫ 1

x

dz
z

(
Pqq( x

z ) 2nf Pqg ( x
z )

Pgq( x
z ) Pgg ( x

z )

)(
Σ(z,Q2)
g(z,Q2)

)
Here

qNS (x ,Q2) = q(x ,Q2)− q̄(x ,Q2) , Σ(x ,Q2) =
∑

f

[qf (x ,Q2) + q̄f (x ,Q2)]

We must specify a boundary condition at some starting scale Q0, typically Q0 ∼ a few GeV.
typical ansatz of the form

xfi (x ,Q2
0) = Ai xAi (1− x)Bi Pi (x), i = u, ū, , d̄ , ss̄, g

This formalism is used to fit parton distributions at Q0 to experimental data. Heavy quarks
are often assumed to be fully generated by gluon splitting. (see however “intrinsic charm”).



Parton distributions

Parton distributions obtained by the Durham group for two scales.
Note the flavour asymmetric sea!
at small x the gluon distribution by far dominates.
modern fits are performed at next-to-next-to leading order.



Applications to hard processes at hadron colliders

ηc,b, χc,b

p

p

factorization theorems ensure, that parton
distributions are universal and can be used
to predict cross sections of hard processes in
hadronic collisions.
examples: Drell-Yan (lepton pairs of large
invariant mass), dijet or multijet production,
quarkonium production, open haevy
flavoured mesons, light mesons/hadrons at
large pT , Higgs bosons...

QCD factorization for hard production of final state f :

dσ(pA, pB ,Q2) =
∑
a,b

∫
dxadxbfa/A(xa, µ

2)fb/B(xb , µ
2) dσab→f (αS (µ2),Q2/µ2)

A useful quantity is the parton-parton luminosity

L(M2) =
∫

dxadxbfa/A(xa, µ
2)fb/B(xb , µ

2) δ(xaxb −M2/s)



Uncertainties in parton distributions 2023

from A. Cooper-Sarkar, 2302.11788 [hep-ph], Proceedings of Cracow Ephipany 2023 Conference.
pdf uncertainties are still an issue.


