Electromagnetic effects on charged particles

Antoni Marcinek and Andrzej Rybicki H. Niewodniczański Institute of Nuclear Physics Polish Academy of Sciences

- 1) Prologue;
- 2) Do never agree with your boss ;
- 3) EM effects on charged particles ;
- 4) Space-time evolution of the system ;
- 5) EM effects in small systems ;
- 6) UPC's ?
- 7) <u>No</u> epilogue.

F

by I. Sputowska

Collision energy in the c.m.s. (centerof-mass system), per one pair of colliding nucleons.

1) Prologue

• Charged spectators generate electromagnetic fields.

- These modify charged pion spectra in the final state.
- We use this effect as a new source of information on the space-time evolution of the system.

Please note: advantages of fixed-target w.r.t. collider experiments:

- typically better coverage of kinematically available phase-space (p_x,p_y,p_z) : "forward" hemisphere of the collision.
- Full coverage of low transverse momentum starting from p_T=0 ;

 $(p_T = \sqrt{p_x^2 + p_y^2})$ er to develop

- Easier to develop (add new subdetectors);
- Cheaper (?)

A historical (?) question:

- what is a heavy-ion collision?

A simple consequence of nucleonnucleon processes? "New" physics? Both?

A. Marcinek and A. Rybicki, EM effects on charged particles, 14th Trans-European School of High Energy Physics, Bieszczady, Poland, 20.07.2023

 p_L X_{E} beam (c.m.s.)

unless present Ы this room

A. Marcinek and A. Rybicki, EM effects on charged particles, 14th Trans-European School of High Energy Physics, Bieszczady, Poland, 20.07.2023

π^+/π^- ratios in Pb+Pb @ \sqrt{s}_{NN} = 17.3 GeV

- simple superposition of proton and neutron collisions?

π^+/π^- ratios in Pb+Pb @ \sqrt{s}_{NN} = 17.3 GeV

- simple superposition of proton and neutron collisions?

 π^+/π^-

A.Trzcińska et al., PRL87, 2001 R.Schmidt et al., PRC67, 2003 S.Mizutori et al., PRC61, 2000

Hypothesis no. 1: the "neutron halo" ?

P.Pawłowski, A.Szczurek, PRC70, 2004

- Analysis of collision geometry: b = 10.9 ± 0.5 fm
- Not possible to obtain 75% n, 25 % p

A. Marcinek and A. Rybicki, EM effects on charged particles, 14th Trans-European School of High Energy Physics, Bieszczady, Poland, 20.07.2023

XF

A. Marcinek and A. Rybicki, EM effects on charged particles, 14th Trans-European School of High Energy Physics, Bieszczady, Poland, 20.07.2023

 X_F

¹⁴th Trans-European School of High Energy Physics, Bieszczady, Poland, 20.07.2023

¹⁴th Trans-European School of High Energy Physics, Bieszczady, Poland, 20.07.2023

WA98: NPA 663 (2000) 725

16

4) **Space-time evolution of** forward pion production

4

Plan:

- Formulation of a simple model;
- Validation with exp. data on rapidity distributions;
- Application to EM effects. PRC102 (2020) 014901

PRC 95 (2017) 024908 PRC 99 (2019) 024908 (*)

(*) Yes, both papers have page no. 024908

l_E [fm] σ 3 2 1 0 1.5 0.5 \cap beam

20

π

A. Marcinek and A. Rybicki, EM effects on charged particles, 14th Trans-European School of High Energy Physics, Bieszczady, Poland, 20.07.2023

 The pion rapidity distribution from one fire streak in Pb+Pb collisions is similar to the pion rapidity distribution in **p+p** reactions :

Ap/up

20 È

15 F

(a)

NA49,

⁶⁰ 50 40

30

(b)

Model, b = 9.72 f

NA49, C4

π, Pb+Pb, √s__{NN}= 17.3 GeV

(c)

NA49, C2

vp/up

40 Ē

NA 49, C3

 The pion rapidity distribution from one fire streak in Pb+Pb collisions is similar to the pion rapidity distribution in p+p reactions ;

Ap/up

20

15 F

(a)

NA49,

30

(b)

Model, b = 9.72 f

NA49, C4

π̄, Pb+Pb, √s̄_{NN}= 17.3 GeV

(c)

NA49, C2

NA 49, C3

Application to EM effects

Longitudinal evolution of the system → from our model ;

- <u>Fragmentation</u> (expansion) of the spectator charge \rightarrow included ;
- Isospin (p/n) effects between π^+ and $\pi^- \rightarrow$ included \rightarrow PRC 99 (2019) 024908 ;
- <u>Azimuthal anisotropies</u> (flow), <u>vorticity</u>, <u>transverse expansion</u> \rightarrow included optionally ;
- The pion creation time τ (taken in the fire streak c.m.s.) \rightarrow taken as free parameter.

0.0

0.2

X_E

0.3

0.4

0.5

0.1

0.0

-0.1

First quantitative description of the electromagnetic distortion of π +/ π - ratios in Pb+Pb collisions at 158 GeV/nucleon beam energy ($\sqrt{s_{NN}}$ =17.3 GeV) [PRC102 (2020) 014901].

- → Reasonable agreement with experimental data for $x_F \ge 0.1$;
- ➔ Inclusion of spectator expansion improves the description of exp. data ;
- → Short pion creation times ($0.5 < \tau < 2$ fm/c, to be compared with ~ 5.5 fm/c at y=0).

- EM effects induced by spectators bring new information on the space-time evolution of the process of (fast) pion production;
- We obtained this information and used it ;
- Results look reasonable.
- → Small systems ;
- → UPC (gamma-gamma).

 π^{*} π π 4 d_E I 3 2 1 0 1.5 0.5 \mathbf{O} oeam

[fm]

NA61/SHINE experiment

SHINE = SPS Heavy Ion and Neutrino Experiment

 $\sqrt{s_{NN}}$ = 5.1–17.3(27.4) GeV

Strong interactions

- study the onset of deconfinement
- search for the critical point

Adapted from Antoni Marcinek, QM22

5) Small systems

Cosmic rays and neutrinos

 $\sqrt{s_{_{NN}}}$ = 8.8 GeV

NA61/SHINE collaboration, MESON2021, 18 May 2021

See also e.g.: A. Marcinek for NA61/SHINE, QM22

31

Modelling EM effects in new Ar+Sc data

A. Rybicki, A. Szczurek, Phys. Rev. C 75, 054903 (2007)

 Non-expanding spectator system cannot describe data (contrary to Pb+Pb, see A. Rybicki et al., APPB 46,737 (2015))

need significant expansion velocity β of the charge cloud

 Optimal description: charge cloud moves slower than spectator system → presence of participant charge?

Antoni Marcinek (IFJ PAN)

APPB 50 (2019), 1127

Modelling EM effects in new Ar+Sc data

A. Rybicki, A. Szczurek, Phys. Rev. C 75, 054903 (2007)

Antoni Marcinek (IFJ PAN)

APPB 50 (2019), 1127

33

Modelling EM effects in new Ar+Sc data

A. Rybicki, A. Szczurek, Phys. Rev. C 75, 054903 (2007)

needed.

Xe+La?

A. Marcinek and A. Rybicki, EM effects on charged particles, 14th Trans-European School of High Energy Physics, Bieszczady, Poland, 20.07.2023

colliding nuclei

6) Comment: how about gamma-gamma processes in ultra-peripheral collisions?

- Think about **Pb+Pb** $(\gamma \ \gamma) \rightarrow e^+e^-$;
- What happens to leptons once created ?
- Subject of long discussions (here in Kraków);
- Conceptual difficulties ;
- Never measured.

 R_1

h

6) No epilogue

The electromagnetic (EM) fields resulting from the presence of charged spectators induce distortions in

spectra of charged particles, and result in charge splitting of directed flow.

These spectator-induced EM effects can be used to study the space-time evolution of particle production.

Such studies have shown that in high energy heavy-ion collisions, faster pions are produced closer to the spectator system. They also provided an independent estimate for the time of pion creation, at y=0.

A first quantitative description of the EM distortion of charge ratios (π +/ π -) of fast pions produced in Pb+Pb collisions at $\sqrt{s_{NN}}$ =17.3 GeV has been obtained. This gives an indication of significantly shorter pion production time scales (shorter proper times τ) w.r.t. what was obtained at central rapidity.

First ever measurements of these effects in **small systems** at the CERN SPS are now available from NA61/SHINE.

Thank you !

36

Extra slides

√s_{NN}= 17.3 GeV

 p+A collisions with our model from Sec. 4.

A. Marcinek and A. Rybicki, EM effects on charged particles, 14th Trans-European School of High Energy Physics, Bieszczady, Poland, 20.07.2023 38

√s_{мм}= 17.3 GeV

 p+A collisions with our model from Sec. 4.

A. Marcinek and A. Rybicki, EM effects on charged particles, 14th Trans-European School of High Energy Physics, Bieszczady, Poland, 20.07.2023 • More on directed flow.

