

The 14th Trans-European School of High Energy Physics

University Gliding Centre, Bezmiechowa Górna

Laboratoire de Physique des 2 Infinis

Alex Fomin

the PERLE project

indico.cern.ch/event/1308137/

July 14 – 22, 2023

Accelerators evolution

Alex Fomin

Lorentz equation:

$$\overrightarrow{F} = q\overrightarrow{E} + q\overrightarrow{v} \times \overrightarrow{B} = \overrightarrow{F_E}$$

 $\overrightarrow{F_R} \perp \overrightarrow{v} \rightarrow \overrightarrow{F_R}$ does no work on the particle

20/07/2023

Alex Fomin

the PERLE project

20th century first 25 years: fundamental discoveries made with "beams" from radioactive source trigger the demand for higher energies

1928-32 Cockcroft&Walton develop a 700kV electrostatic accelerator based on a voltage multiplier

- First Linac by Rolf Widerøe based on resonant acceleration 1928
- Ernest O. Lawrence invents the cyclotron 1929
- MacMillan, Oliphant & Veksler develop the synchrotron 1944
- 1946 Luis Alvarez built a proton linac with Alvarez structures (2 mode)
- 1950 Christofilos patents the concept of strong focusing
- 1951 Luis Alvarez conceives the tandem
- Donald W. Kerst stresses in a paper the concept of a collider 1956

Diagram of a Proton Synchrotron

the PERLE project

20th century first 25 years: fundamental discoveries made with "beams" from radioactive source trigger the demand for higher energies

1928-32 Cockcroft&Walton develop a 700kV electrostatic accelerator based on a voltage multiplier

- 1928 First Linac by Rolf Widerøe based on resonant acceleration
- 1929 Ernest O. Lawrence invents the cyclotron
- MacMillan, Oliphant & Veksler develop the synchrotron 1944
- Luis Alvarez built a proton linac with Alvarez structures (2 mode) 1946
- 1950 Christofilos patents the concept of strong focusing
- 1951 Luis Alvarez conceives the tandem
- 1956 Donald W. Kerst stresses in a paper the concept of a collider

Around 1950, Stanley Livingston made a quite remarkable observation:

Plotting the energy of an accelerator as a function of its year of construction, on a semi-log scale, the energy gain has a linear dependence.

Alex Fomin

TESHEP 2023

the PERLE project

The Livingston chart shows, in a very striking way, how the succession of new ideas and new technologies has relentlessly pushed up accelerator beam energies over five decades at the rate of over one and a half orders of magnitude per decade.

Accelerators are the biggest scientific instruments human mankind has built

- Large size (~ 30 km footprint) •
- High cost (~ billion Euro) •
- Needs lots of electricity •
- Technology pushed to its limits •
- ~ 20-30 years to make one •
- **Global co-ordination** •

The future holds many challenges for the accelerator engineers.

All this effort justified by the chance to discover new particles, forces, properties of matter !!!

Alex Fomin

the PERLE project

Accelerators evolution: the Livingston chart

accelerator or collider.

20/07/2023

Alex Fomin

the PERLE project

TESHEP 2023

Energy

artic

Accelerating two beams, colliding them, and then dumping them is extremely inefficient.

In 1965 Maury Tigner proposed idea of an energy-recovery linac

- to enhance the current in a collider for high-energy physics
- recover the energy of the beams in the same cavities in which they • were accelerated, then the machine efficiency could be greatly increased
- the design of the final dump also becomes much simpler

The implementation of an efficient solution relied on the development of reliable superconducting radio frequency (SRF) accelerating cavities. These were developed over the next decade.

"There will be no future large-scale science project without an energy management component, an incentive for energy efficiency and energy recovery among the major objectives"

Frédérick Bordry, Director for Accelerators and Technology at CERN (2019)

20/07/2023

Alex Fomin

Maury Tigner, A Possible Apparatus for Electron Clashing-Beam Experiments, N.Cim 10(1965)1228

the PERLE project

What is superconductivity?

A superconductor (SC) material has the property to transport a DC electric current without any loss.

Its resistivity is exactly zero!!!

- has been observed for the first time in 1911 by Kamerlingh Onnes while measuring the resistance of a mercury sample in liquid helium.
- observed in several materials:

20/07/2023

- appears below a critical temperature
- all magnetic fields are totally expeled from its volume "Meissner effect" (1933)
- is destroyed by a too strong magnetic field (or by a too strong current), i.e. when B > Bc
- (of type II) is not destroyed abruptly at B > Bc they experience an intermediate « mixed state »

In recent years, R&D on Type 2 superconductors in SRF cavities

Matériau	Ti	Al	Sn
T _c [K]	0,4	1,14	3,72

B_c[mT] à 0 K

the PERLE project

From the superconductivity discovering in 1911 to the use in accelerator cavities and magnets, a long time of R&D has been needed.

- 1977 : first superconducting LINAC at Stanford : 1.3GHz, 50MeV, 27m
- 1986 1992 : machine commissioning using superconducting cavities around 5MV/m (like CEBAF, LEP, HERA)
- Today, almost all machines are using superconducting cavities : SOLEIL, LHC, SNS, J-PARC ... •

The use of superconductivity in proton machines has made the very highest energies possible.

We have access now to high intensity and high duty cycle machines.

In short:

- NC linac: lower capital cost, but high operational cost
- SC linac: slightly higher capital cost, but low operational cost

early 80's superconducting magnets for cyclotrons and synchrotrons considerably boost the performance (energy for size) the last years the development of superconducting accelerating cavities provides very high power conversion efficiency

20/07/2023

Alex Fomin

the PERLE project

TESHEP 2023

2	•	_
ΡE	RL	E

Proven accelerator technology, pushing for higher energy and beam current reaching in view of collider applications above 1GW.

PERLE demonstrator facility for the LHeC at Orsay with 3-turn, 20mA, 802 MHz SRF cavities

The future of hadron colliders, such as FCC-hh or HE-LHC, relies on a considerable extrapolation of superconducting, high-field dipole magnet technology.

The new ERL proposals are close to becoming the base of future energy frontier electron-hadron and e+e- colliders

the PERLE project

		LH	eC
Parameter	Unit	Electron	Proton
Beam energy	${\rm GeV}$	50.0	7000.0
Beam current	mA	20.0	1400
Bunches per beam		1188	2808
Bunch population	10^{10}	0.3	22.0
Bunch charge	nC	0.50	35.24
Normalised emittance at IP	mm.mrad	30.0	2.5
Betatron function at IP	cm	10.0	10.0
RMS bunch length	cm	0.06	7.55
Installed RF voltage	GV	17.2^{*}	0.016
Beam-beam disruption		14.3	$1 imes 10^{-5}$
Luminosity	${\rm cm}^{-2}.{\rm s}^{-1}$	$6.5 \times$	10^{33}

High power electron beam based on three-turn ERL racetrack utilising 100 MW electrical power consumption as a result of the high energy recovery efficiency. ERL circumference equivalent to one-third of the LHC. The ERL could be realised in staged phases.

Alex Fomin

the PERLE project

The 14th Trans-European School of High Energy Physics

PERLE Project

Alex Fomin

PELRE: first multi-turn ERL, based on SRF technology, designed to operate at 10MW (20 mA, 500 MeV) power regime

A hub to explore a broad range of accelerator phenomena and to validate technical choices improving accelerators efficiency in an unexplored operational power regime on the pathway of the ERL technology development for future energy and intensity frontier machines.

Target Parameter	Unit	Value
Injection energy	MeV	7
Electron beam energy	MeV	500
Normalised Emittance	mm mrad	6
Average beam current	mA	20
Bunch charge	рС	500
Bunch length	mm	3
Bunch spacing	ns	25
RF frequency	MHz	801.58
Duty factor		CW

20/07/2023

Alex Fomin

PERLE demonstrator facility for the LHeC a with 3-turn, 20mA, 802 MHz SRF cavit

the PERLE project

TESHEP 2023

20/07/2023

Alex Fomin

the PERLE project

the PERLE project

PERLE Footprint: Site studies

PERLE feature a total footprint of:

30 meters long, 15 meters wide and 3.4 meters high.

Alex Fomin

Two sites are currently considered and will be studied in details for possibly host PERLE at IJCLAB (Orsay, France)

- the Super ACO Hall
- the IGLOO.

the PERLE project

Filling pattern for 250 MeV version

Consecutive injections ($v_{inj} = 40 \text{ MHz}$), RF cavity ($v_{RF} = 801.58 \text{ MHz}$) \rightarrow spacing between injections 20 × λ_{RF}

Distance between the arcs \rightarrow path length of the bunch between consecutive passes \rightarrow form the filling pattern (placement of accelerated bunches between the injected bunches)

To reduce the risk of beam break-ups \rightarrow uniform filling pattern

20/07/2023

Alex Fomin

the PERLE project

Forming the Filling Pattern. Injection and Pass 1

Pass 1

Injection

7 MeV bunches are injected at Linac 1 section

at the rate of $v_{inj} \approx 40 \text{ MHz}$ (every $t_{inj} = 25 \text{ ns}$)

target current is I = 20 mA

 \rightarrow charge of one bunch $Q \approx 500 \text{ pC}$ (3×10⁹ e⁻)

RF Cavity ($v_{RF} = 801.58 \text{ MHz}$)

 \rightarrow spacing between injections $L_{inj} = 20 \lambda_{RF}$ $v_{\text{RF}} / v_{\text{inj}} = 20, \quad \lambda_{\text{RF}} \approx 34.7 \text{ cm}$

Pass 1 Linac 1 \rightarrow Arc 1 \rightarrow Linac 2 \rightarrow Arc 2 7→ 89 MeV 89→171MeV

Pass 1 length (Arc1 + Arc2 + 2 Linac) $L_{Pass 1} = 167 \lambda_{RF}$ \rightarrow the 9th injected bunch is followed by the accelerated bunch shifted by $7 \lambda_{RF}$

the PERLE project

Forming the Filling Pattern. Passes 1 & 2

Passes 1–2

Injection

7 MeV bunches are injected at Linac 1 section

at the rate of $v_{inj} \approx 40 \text{ MHz}$ (every $t_{inj} = 25 \text{ ns}$)

target current is I = 20 mA

→ charge of one bunch $Q \approx 500 \text{ pC}$ (3×10⁹ e⁻)

RF Cavity ($v_{RF} = 801.58 \text{ MHz}$)

 \rightarrow spacing between injections $L_{\text{inj}} = 20 \lambda_{\text{RF}}$ $v_{\text{RF}} / v_{\text{inj}} = 20, \quad \lambda_{\text{RF}} \approx 34.7 \text{ cm}$

Pass 1 Linac 1 \rightarrow Arc 1 \rightarrow Linac 2 \rightarrow Arc 2 7→ 89 MeV 89→171MeV

Pass 1 length (Arc1 + Arc2 + 2 Linac) $L_{Pass 1} = 167 \lambda_{RF}$ \rightarrow the 9th injected bunch is followed by the accelerated bunch shifted by $7 \lambda_{RF}$

Pass 2 Linac 1 \rightarrow Arc 3 \rightarrow Linac 2 \rightarrow Arc 4

> 171→253 MeV 253→336 MeV

the PERLE project

20/07/2023

Alex Fomin

the PERLE project

Passes 1–4

Injection ($v_{inj} \approx 40 \text{ MHz}$) I = 20 mA ($Q \approx 500 \text{ pC}$, $t_{inj} = 25 \text{ ns}$)

RF Cavity ($v_{RF} = 801.58 \text{ MHz}$) $L_{inj} = 20 \lambda_{RF}$ ($\lambda_{RF} \approx 34.7 \text{ cm}$)

Pass Lengths Linac 1 + Arc j + Linac 2 + Arc k

Pass	Arcs	$L_{\text{Arcs}}, \lambda_{\text{RF}}$	$L_{\text{Pass}}, \lambda_{\text{RF}}$	n inj	Δ, λ_{RF}	Δ <i>t</i> , µs
1	1+2	56 + 57	167	8	7	0.209
2	3+4	56 + 56	166	16	13	0.416
3	5+6	56 + 60.5	170.5	25	3.5	0.629
4						

Filling Pattern

20/07/2023

Alex Fomin

the PERLE project

Passes 1–5

Injection ($v_{inj} \approx 40 \text{ MHz}$) I = 20 mA ($Q \approx 500 \text{ pC}$, $t_{inj} = 25 \text{ ns}$)

RF Cavity ($v_{RF} = 801.58 \text{ MHz}$) $L_{inj} = 20 \lambda_{RF}$ ($\lambda_{RF} \approx 34.7 \text{ cm}$)

Pass Lengths Linac 1 + Arc j + Linac 2 + Arc k

Pass	Arcs	$L_{\text{Arcs}}, \lambda_{\text{RF}}$	L Pass, λ_{RF}	n _{inj}	$\Delta, \lambda_{\rm RF}$	Δ <i>t</i> , µs
1	1+2	56 + 57	167	8	7	0.209
2	3+4	56 + 56	166	16	13	0.416
3	5+6	56 + 60.5	170.5	25	3.5	0.629
4	5+4	56 + 56	166	33	9.5	0.837
5						

Filling Pattern

20/07/2023

Alex Fomin

the PERLE project

Forming the Filling Pattern. Continues cycle

Passes 1–6

Injection ($v_{inj} \approx 40 \text{ MHz}$) I = 20 mA ($Q \approx 500 \text{ pC}$, $t_{inj} = 25 \text{ ns}$)

RF Cavity ($v_{RF} = 801.58 \text{ MHz}$) $L_{inj} = 20 \lambda_{RF}$ ($\lambda_{RF} \approx 34.7 \text{ cm}$)

Pass Lengths Linac 1 + Arc j + Linac 2 + Arc k

Pass	Arcs	$L_{\text{Arcs}}, \lambda_{\text{RF}}$	L Pass, λ_{RF}	n _{inj}	$\Delta, \lambda_{\rm RF}$	Δ <i>t</i> , µs
1	1+2	56 + 57	167	8	7	0.209
2	3+4	56 + 56	166	16	13	0.416
3	5+6	56 + 60.5	170.5	25	3.5	0.629
4	5+4	56 + 56	166	33	9.5	0.837
5	3+2	56 + 57	167	41	16.5	1.046
6	1	56	_	_	_	-

Filling Pattern

20/07/2023

Alex Fomin

the PERLE project

Pros:

- → reduction of immediate expenses & first results time (second cryo-module, 18 dipoles and 21 quads can be purchased later) → demonstration of ERL with 6 paths at high current (same as in 500 MeV version, but with half of the power)
- \rightarrow more space for experimental areas

Cons:

- → additional expenses / manpower / shutdown time (rebuilding / recommissioning for the full power machine)
- \rightarrow about 30 meters of extra beam pipes (all other main elements are chosen to be compatible with both versions)
- \rightarrow a slightly larger footprint (28.6 m \rightarrow 29.9 m)

20/07/2023

Alex Fomin

the PERLE project

250 MeV version features three Straight Sections replacing Recombiner, Common Section 2, and Spreader

All elements are compatible with both versions !

Alex Fomin

250 MeV version features three Straight Sections replacing Recombiner, Common Section 2, and Spreader

the PERLE project

Filling pattern 500 vs 250 MeV versions

500 MeV

(160 + Δ) λ_{RF} Full length of one turn: $\Delta = 7, 6, 10.5, 6, 7$ chosen shift: \rightarrow 2.7 m at IPs (28.6 m total) studies by A. Bogacz, P. Williams, R.Apsimon, and K. Andre

250 MeV

(180 - Δ) *λ*_{RF} Full length of one turn: optimal shift: $\Delta = 7, 7, 2.5, 7, 7$

- \rightarrow bunches of lowest energies are separated (more important than for 500 MeV version)
- \rightarrow more detailed studies will follow)
- \rightarrow 29.9 m of total length

20/07/2023

 $(177.5 - 170.5) \lambda_{RF} / 2 = 3.5 \lambda_{RF} \approx 1.3 \text{ m} (\lambda_{RF} = 37.4 \text{ cm})$

the PERLE project

PERLE Optics: Common section (250 MeV version)

The optics for one "Turn" (excl. common section) is symmetric → beam parameters are the same at the exit and next entrance of common section

Alex Fomin

the PERLE project

20/07/2023

Alex Fomin

the PERLE project

TESHEP 2023

20/07/2023

Alex Fomin

the PERLE project

~ 335 m

500 MeV (Arc1, 89 MeV)

20/07/2023

Alex Fomin

250 MeV (Arc1+Arc2, 89 MeV)

500 MeV (Arc2, 171 MeV)

the PERLE project

500 MeV (Arc3, 253 MeV)

the PERLE project

20/07/2023

Alex Fomin

250 MeV (Arc3+Arc4, 171 MeV)

500 MeV (Arc4, 336 MeV)

20/07/2023

Alex Fomin

500 MeV (Arc6, 500 MeV)

the PERLE project

Quadrupole Magnet (work by Rasha Abukeshek)

Multi-coil design

Alex Fomin

Parameters	Value
Height	250 mm
Yoke thickness	35 mm
Length	150 mm
Aperture radius	20 mm
Pole width	44 mm
Max. gradient	44.1 T/m
NI per coil	1750.7 A.turn
Pole tip field	0.685 T

✓ 15 cm quadrupole: design is

ready up to the 4th arc.

✓ arcs 5 and 6: design saturation.

Suggested solution: pole tapering

the PERLE project

Longitudinal phase space curvature from the RF field

A hook shape forms and bunch elongation is visible as the initial bunch length increases. A longitudinal matching can mitigate the bunch elongation.

20/07/2023

Alex Fomin

the PERLE project

Multi-bunch tracking (work by Kevin André)

CSR with beam current increase

CSR with initial relative energy spread variation, le=20 mA

Alex Fomin

the PERLE project

TESHEP 2023

The 14th Trans-European School of High Energy Physics

CBETA (some insights for commissioning)

Alex Fomin

the PERLE project

TESHEP 2023

Multi-pass ERL, with single return loop

- 7 beams of 4 energies in 1 pipe: 42, 78, 114, 150 MeV
- Uses the wide energy acceptance of Fixed Field Alternating-gradient (FFA) permanent magnets
- Successful demonstration of first four-pass superconducting ERL and single FFA beam line to transport 7 different accelerated and decelerated beams

Problems in Splitter Line R2

Here are some images taken during a dispersion response measurement,

i.e. all images are related by relatively small R2 quad changes...

20/07/2023

Alex Fomin

the PERLE project

CBETA (Cornell-Brookhaven Energy-Recovery-Linac Test Accelerator)

"Green accelerator"

Links: **CBETA PROJECT REPORT** Experience with CBETA (A.Bartnik)

CBETA Peacock

https://indico.ijclab.in2p3.fr/event/7907/contributions/24623/attachments/18126/23958/Experience%20with%20CBETA.pptx

20/07/2023

Alex Fomin

(from Adam Bartnik presentation)

the PERLE project

TESHEP 2023

CBETA Sideways Bunny

📣 beamview		
Section: S3 ~ Acquire Off Screen: IS3SCR01 ~ fps: 13.6	× 10 ⁴	
Save ASCII Save MAT	2.5	10
Gain: 0 Set Range Exposure (s): 0.08 Reset Cal (mm/pixel): 0.0582	2	5
 ☐ Threshold: 10 % ✓ Median Filter ☐ Frame A Horz: -18.8 Vert: -14.2 ☐ Frame skip thr 	0	
Buffer Size: 20 100% full Max Data : 34.6% X: 1.02 mm (0.94 ± 0.14) Y: 1.75 mm (1.65 ± 0.15) Yidth X: 8.17 mm (8.12 ± 0.06) Width X: 8.17 mm (5.15 ± 0.07) Corr. XY: -1.57 mm^2 (-1.14 ± 0.43) Corr. XY: 0.00	0.5	-10

https://indico.ijclab.in2p3.fr/event/7907/contributions/24623/attachments/18126/23958/Experience%20with%20CBETA.pptx

20/07/2023

Alex Fomin

(from Adam Bartnik presentation)

the PERLE project

TESHEP 2023

CBETA UFO

https://indico.ijclab.in2p3.fr/event/7907/contributions/24623/attachments/18126/23958/Experience%20with%20CBETA.pptx

20/07/2023

Alex Fomin

(from Adam Bartnik presentation)

the PERLE project

TESHEP 2023

CBETA Dali Clock

https://indico.ijclab.in2p3.fr/event/7907/contributions/24623/attachments/18126/23958/Experience%20with%20CBETA.pptx

20/07/2023

Alex Fomin

(from Adam Bartnik presentation)

the PERLE project

TESHEP 2023

250 MeV design of PERLE

Alex Fomin

Future

Electron source

Electrons and positrons are stored and cooled in damping rings located at both ends of the collider.

Bunches of electrons and positrons circulate in damping rings for about two damping times to achieve natural emittances and energy spreads.

Short trains of bunches – typically from one to three bunches are periodically ejected from damping rings and accelerated to the collision energy in SRF linacs.

ReLiC design practically evades synchrotron radiation losses, which limit average beam currents in circular e+e- colliders

20/07/2023

Alex Fomin

https://arxiv.org/ftp/arxiv/papers/2203/2203.06476.pdf $E_{cm} = 3 \text{ TeV}$ Decompre Compres Detectors

e+e- colliders

√s [GeV]	Science Drivers
90-200	EW precision physics, Z, W
250	Single Higgs physics (HZ),
365	tt
500-600	HHZ, ttH direct access to H self-couplings, top Yukawa couplings
1000-3000	$HH\nu\nu$ Higgs self-couplings

Precision measurement and search for new physics studying deviations from the SM \rightarrow Need high luminosity (and energy) **ENERGY**

the PERLE project

Design concept by Vladimir N Litvinenko, et al.)

Proposal	CE	РС	FCC	C-ee	CE	RC	C ³	HELEN	CLIC	ILC [‡]	R
Beam energy [GeV]	120	180	120	182.5	120	182.5	125	125	190	125	120
Average beam current [mA]	16.7	5.5	26.7	5	2.47	0.9	0.016	0.021	0.015	0.04	38
Total SR power [MW]	60	100	100	100	30	30	0	3.6	2.87	7.1	0
Collider cryo [MW]	12.74	20.5	17	50	18.8	28.8	60	14.43	_	18.7	28
Collider RF [MW]	103.8	173.0	146	146	57.8	61.8	20	24.80	26.2	42.8	57.8
Collider magnets [MW]	52.58	119.1	39	89	13.9	32	20	10.40	19.5	9.5	2
Cooling & ventil. [MW]	39.13	60.3	36	40	NE	NE	15	10.50	18.5	15.7	NE
General services [MW]	19.84	19.8	36	36	NE	NE	20	6.00	5.3	8.6	NE
Injector cryo [MW]	0.64	0.6	1	1	NE	NE	6	1.96	0	2.8	NE
Injector RF [MW]	1.44	1.4	2	2	NE	NE	5	0^*	14.5	17.1	192
Injector magnets [MW]	7.45	16.8	2	4	NE	NE	4	13.07*	6.2	10.1	0^{\dagger}
Pre-injector [MW]	17.685	17.7	10	10	NE	NE	_	13.37	_	_	NE
Detector [MW]	4	4.0	8	8	NE	NE	NE	15.97^{*}	2	5.7	NE
Data center [MW]	NI	NI	4	4	NE	NE	NE	NI	NI	2.7	NE
Total power [MW]	259.3	433.3	301	390	89	122	150	110.5	107	138	315
Lum./IP $[10^{34} \text{ cm}^{-2} \text{s}^{-1}]$	5.0	0.8	7.7	1.3	78	28	1.3	1.35	2.3	2.7	200
Number of IPs	2	2	4 (2)	4 (2)	1	1	1	1	1	1	2
Tot. integr. lum./yr [1/fb/yr]	1300	217.1	4000	670	10000	3600	210	390.7	276	430	79600
			(2300)	(340)							
Eff. physics time / vr $[10^7 s]$	1.3	1.3	1.24	1.24	1.3	1.3	1.6	2.89	1.2	1.6	2
Energy cons./yr [TWh]	0.9	1.6	1.51	1.95	0.34	0.47	0.67	0.89	0.6	0.82	2

https://arxiv.org/ftp/arxiv/papers/2203/2203.06476.pdf

the PERLE project

,000
288
250
21
1.0
25.2
40
4.0
1.0
100
9.7
17
0.002
15
47
94

ERL (Energy Recovery Linac)

is a proven accelerator technology, pushing for higher energy and higher beam current, reaching in view of collider applications above 1GW.

Features:

minimising the power consumption by recycling the kinetic energy of a used beam for accelerating a newly injected beam avoiding the emittance growth of storage rings dumping at injection energy

PERLE at IJCLab (Orsay)

demonstrator facility for the LHeC 3 accelerating + 3 decelerating passes 20mA, 40 MHz injection (same as LHeC) 802 MHz SRF cavities with IRs top energy 500 MeV (10 MW power)

Thank you

Alex Fomin

