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The theory of QCD

The QCD Lagrangian

LQCD = Lclassical + Lgauge-fixing + Lghost ,

where

Lclassical =
∑

flavours

q̄i
(
i /D −m

)
ij
qj −

1

4
F a
µνF

aµν ,

i , j = 1, . . . ,N and a = 1, . . . ,N2−1 , where N is the number of colors.

Covariant derivative

/D = γµD
µ = γµ (∂µ + igsA

µ) with Aµ = AµaT
a ,

where T as are generators of the SU(N) color algebra

[T a,T b] = if abcT c .

Field-strength tensor

F a
µν = ∂µA

a
ν − ∂νAa

µ − gs f
abcAb

µA
c
ν .
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SU(N) color group

SU(N) is a special unitary Lie group defined by

[T a,T b] = if abcT c

I T as are are the generators of SU(N) color algebra
I f abc are the structure constants of SU(N)
↪→ f abc 6= 0⇒ QCD is a non-abelian theory

I The group elements can be represented by N × N matrices
U = exp(iθaT

a) which are unitary UU† = 1 and with det(U) = 1
↪→ representations of T a operators are hermitian and traceless matrices

For QCD, N = 3
I quarks are in the fundamental, triplet representation(

T a
ij

)
F

=
1

2
λaij where λa are the Gell-Mann matrices

I gluons are in the adjoint, octet representation

(T a
bc)A = −if abc

Sebastian Sapeta (IFJ PAN) QCD and Feynman Diagrams, Lecture 1 3/41



SU(N) color group

SU(N) is a special unitary Lie group defined by

[T a,T b] = if abcT c

I T as are are the generators of SU(N) color algebra

I f abc are the structure constants of SU(N)
↪→ f abc 6= 0⇒ QCD is a non-abelian theory

I The group elements can be represented by N × N matrices
U = exp(iθaT

a) which are unitary UU† = 1 and with det(U) = 1
↪→ representations of T a operators are hermitian and traceless matrices

For QCD, N = 3
I quarks are in the fundamental, triplet representation(

T a
ij

)
F

=
1

2
λaij where λa are the Gell-Mann matrices

I gluons are in the adjoint, octet representation

(T a
bc)A = −if abc

Sebastian Sapeta (IFJ PAN) QCD and Feynman Diagrams, Lecture 1 3/41



SU(N) color group

SU(N) is a special unitary Lie group defined by

[T a,T b] = if abcT c

I T as are are the generators of SU(N) color algebra
I f abc are the structure constants of SU(N)
↪→ f abc 6= 0⇒ QCD is a non-abelian theory

I The group elements can be represented by N × N matrices
U = exp(iθaT

a) which are unitary UU† = 1 and with det(U) = 1
↪→ representations of T a operators are hermitian and traceless matrices

For QCD, N = 3
I quarks are in the fundamental, triplet representation(

T a
ij

)
F

=
1

2
λaij where λa are the Gell-Mann matrices

I gluons are in the adjoint, octet representation

(T a
bc)A = −if abc

Sebastian Sapeta (IFJ PAN) QCD and Feynman Diagrams, Lecture 1 3/41



SU(N) color group

SU(N) is a special unitary Lie group defined by

[T a,T b] = if abcT c

I T as are are the generators of SU(N) color algebra
I f abc are the structure constants of SU(N)
↪→ f abc 6= 0⇒ QCD is a non-abelian theory

I The group elements can be represented by N × N matrices
U = exp(iθaT

a) which are unitary UU† = 1 and with det(U) = 1
↪→ representations of T a operators are hermitian and traceless matrices

For QCD, N = 3
I quarks are in the fundamental, triplet representation(

T a
ij

)
F

=
1

2
λaij where λa are the Gell-Mann matrices

I gluons are in the adjoint, octet representation

(T a
bc)A = −if abc

Sebastian Sapeta (IFJ PAN) QCD and Feynman Diagrams, Lecture 1 3/41



SU(N) color group

SU(N) is a special unitary Lie group defined by

[T a,T b] = if abcT c

I T as are are the generators of SU(N) color algebra
I f abc are the structure constants of SU(N)
↪→ f abc 6= 0⇒ QCD is a non-abelian theory

I The group elements can be represented by N × N matrices
U = exp(iθaT

a) which are unitary UU† = 1 and with det(U) = 1
↪→ representations of T a operators are hermitian and traceless matrices

For QCD, N = 3
I quarks are in the fundamental, triplet representation(

T a
ij

)
F

=
1

2
λaij where λa are the Gell-Mann matrices

I gluons are in the adjoint, octet representation

(T a
bc)A = −if abc

Sebastian Sapeta (IFJ PAN) QCD and Feynman Diagrams, Lecture 1 3/41



SU(N) color group

SU(N) is a special unitary Lie group defined by

[T a,T b] = if abcT c

I T as are are the generators of SU(N) color algebra
I f abc are the structure constants of SU(N)
↪→ f abc 6= 0⇒ QCD is a non-abelian theory

I The group elements can be represented by N × N matrices
U = exp(iθaT

a) which are unitary UU† = 1 and with det(U) = 1
↪→ representations of T a operators are hermitian and traceless matrices

For QCD, N = 3
I quarks are in the fundamental, triplet representation(

T a
ij

)
F

=
1

2
λaij where λa are the Gell-Mann matrices

I gluons are in the adjoint, octet representation

(T a
bc)A = −if abc

Sebastian Sapeta (IFJ PAN) QCD and Feynman Diagrams, Lecture 1 3/41



SU(N) color group

Useful relations:

Tr (T a)F
(
T b
)
F

= TRδ
ab , TR =

1

2
(by convention)∑

a

(
T a
ij

)
F

(
T a
jk

)
F

= CF δik , CF =
N2 − 1

2N
,

Tr
[
(T a)A(T b)A

]
= CAδ

ab , CA = N ,

where CF and CA are the Casimirs of the fundamental and the adjoint
representation, respectively (T aT a is an invariant of the algebra).

For QCD we have

CF =
4

3
, CA = 3

And also(
T a
ij

)
F

(T a
kl)F =

1

2

[
δjkδil −

1

2N
δijδkl

]
(Fierz identity)
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Fierz identity and the large Nc limit

(
T a
ij

)
F

(T a
kl)F =

1

2

[
δjkδil −

1

2Nc
δijδkl

]

= 1
2

− 1
2Nc

If Nc � 1, we can replace a gluon with the qq̄ pair:
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QCD Lagrangian: local gauge symmetry

Lclassical =
∑

flavours

q̄i
(
i /D −m

)
ij
qj −

1

4
F a
µνF

aµν

The above Lagrangian is invariant under the local gauge symmetry.

Redefinition of the quark fields by the SU(3) group element

U(x) = exp (iθa(x)T a) ,

independently at each phase space point, does not change the physical
content of the theory.

SU(3) transformation:

qi (x) 7→ q′i (x) = U(x)ijqj(x)

Dµq(x) 7→ D ′µ(x) = U(x)ijDµqj(x)

Aµ 7→ U(x)AµU(x)−1 +
i

gs
[∂µU(x)]U(x)−1

Fµν 7→ U(x)FµνU(x)−1
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QCD Lagrangian: the interactions

Lclassical =
∑

flavours

q̄i
(
iγµ (∂µ + igsA

µ)−m
)
ij
qj

−1

4

(
∂µA

a
ν − ∂νAa

µ − gs f
abcAb

µA
c
ν

)(
∂µAνa − ∂νAµa − gs f

adeAµdA
ν
e

)

-gs q̄iγµA
µ
ij qj

gs
4
f abcAb

µA
c
ν (∂µAνa − ∂νAµa )

−gsgs
4

f abc f adeAb
µA

c
ν A

d µAe ν
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Gauge-fixing and ghost terms

The QCD Lagrangian

LQCD = Lclassical + Lgauge-fixing + Lghost

The gauge-fixing and ghost part:

Lgauge-fixing = − 1

2ξ
(∂µA

aµ) (∂νA
aν)

Lghost = ∂µη
a† (∂µδab + gs fabcA

cµ
)
ηb

I The gauge-fixing term is needed because of a degeneracy of sets of
gluon field configurations that enter the path-integral formulation of
QCD and which are equivalent under gauge transformation.

↪→ This degeneracy makes it impossible to write a gluon propagator.
Adding gauge-fixing term to the Lagrangian solves the problem.

↪→ Choice of the parameter ξ fixes the gauge.

I On top of that, non-abelian gauge theory needs unphysical degrees
of freedom, called ghosts, η, which are complex scalar fields obeying
Fermi statistics.
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Ways to solve QCD

When coupling is small gs � 1:

I Perturbative expansion

σ = σ(1)g2
s︸ ︷︷ ︸

leading order (LO)

+ σ(2)g4
s︸ ︷︷ ︸

next-to-leading order (NLO)

+ σ(3)g6
s︸ ︷︷ ︸

NNLO

+ . . .

+ provides very precise results at high energies
– relies on σ(i) being all of the same order: not always true!
– unable to study QCD in the range of the proton mass ∼ 1 GeV

In principle, for any value of gs :

I Lattice QCD
Put quarks and gluons on 4D-lattice and compute which
configurations are most likely.

+ excellent at calculating static properties like hadron masses
– only limited lattice sizes (hence large spacings) can be used in

practice because of very high computational costs
– unable to address questions in collider physics because of missing

analytic continuation from the imaginary to the real time
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Feynman rules

= δab
[
−gµν + (1− ξ)

pµpν

p2 + iε

]
i

p2 + iε

= δij
i(/p + m)µν

p2 −m2 + iε
= δab

i

p2 + iε

=−igs(T a
ji )Fγ

µ
σρ =

−gs f abc
[
(p − q)σgµν

+ (q − r)µgνσ

+ (r − p)νgσµ
]

= gs f
aijqµ =

−ig2
s f

xac f xbd
[
gµνgρσ + gµσgνγ

]
−ig2

s f
xad f xbc

[
gµνgρσ + gµρgνσ

]
−ig2

s f
xabf xcd

[
gµρgνσ + gµσgµρ

]
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Types of gauges

Covariant gauges: depend on a parameter ξ

= δab
[
−gµν + (1− ξ)

pµpν

p2 + iε

]
i

p2 + iε

Choices of ξ correspond to various gauges in this class:

I ξ = 0: Landau gauge

I ξ = 1: Feynman gauge

Axial gauges: depend on an arbitrary vector nµ

= δab
[
−gµν +

kµnν + kνnµ
k · n

− n2

(k · n)2
kµkν

]
i

p2 + iε
I big advantage: ghost contributions disappear
↪→ Faddeev-Popov determinant is Aa

µ-independent

I Light-cone gauge: a special case of axial-gauge with n2 = 0
↪→ subtleties related to k · n singularities
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Meaning of interactions

I Quarks carry colour and anti-colour, gluons carry colour-anti-colour

I Gluon repaints the quark as well as the gluon

−igs(T a
ji )F γ

µ
σρ = −igs(T antigreen-red

redgreen )F γ
µ
σρ

−gs f abc
[
(p − q)νgλµ + (p − q)νgλµ + (p − q)νgλµ

]
= −gs f (green-antiblue) (antigreen-red) (antiblue-red)

×
[
(p − q)νgλµ + (p − q)νgλµ + (p − q)νgλµ

]
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Renormalization

Let’s calculate the quark self-energy graph in 4 dimensions∫
d4k ∼

∫ kcut dk

k
∼ ln kcut

Divergent as kcut →∞: ultraviolet (UV) divergence.

The same in D = 4− 2ε dimensions (D < 4, i.e. ε > 0)∫
dDk = i

αs

4π
CF

(
1

ε
+ ln(4π)− γE

)(
−3m + ξ(/p −m)

)
+ finite part

UV divergence is a property of QCD (and many other QFTs):

I it arises because we extend our theory up to infinite energies, but
each theory is valid only up to a certain scale Λ.

Sebastian Sapeta (IFJ PAN) QCD and Feynman Diagrams, Lecture 1 13/41



Renormalization

Let’s calculate the quark self-energy graph in 4 dimensions∫
d4k ∼

∫ kcut dk

k
∼ ln kcut

Divergent as kcut →∞: ultraviolet (UV) divergence.

The same in D = 4− 2ε dimensions (D < 4, i.e. ε > 0)∫
dDk = i

αs

4π
CF

(
1

ε
+ ln(4π)− γE

)(
−3m + ξ(/p −m)

)
+ finite part

UV divergence is a property of QCD (and many other QFTs):

I it arises because we extend our theory up to infinite energies, but
each theory is valid only up to a certain scale Λ.

Sebastian Sapeta (IFJ PAN) QCD and Feynman Diagrams, Lecture 1 13/41



Renormalization

Let’s calculate the quark self-energy graph in 4 dimensions∫
d4k ∼

∫ kcut dk

k
∼ ln kcut

Divergent as kcut →∞: ultraviolet (UV) divergence.

The same in D = 4− 2ε dimensions (D < 4, i.e. ε > 0)∫
dDk = i

αs

4π
CF

(
1

ε
+ ln(4π)− γE

)(
−3m + ξ(/p −m)

)
+ finite part

UV divergence is a property of QCD (and many other QFTs):

I it arises because we extend our theory up to infinite energies, but
each theory is valid only up to a certain scale Λ.

Sebastian Sapeta (IFJ PAN) QCD and Feynman Diagrams, Lecture 1 13/41



Renormalization

Let’s calculate the quark self-energy graph in 4 dimensions∫
d4k ∼

∫ kcut dk

k
∼ ln kcut

Divergent as kcut →∞: ultraviolet (UV) divergence.

The same in D = 4− 2ε dimensions (D < 4, i.e. ε > 0)∫
dDk = i

αs

4π
CF

(
1

ε
+ ln(4π)− γE

)(
−3m + ξ(/p −m)

)
+ finite part

UV divergence is a property of QCD (and many other QFTs):

I it arises because we extend our theory up to infinite energies, but
each theory is valid only up to a certain scale Λ.

Sebastian Sapeta (IFJ PAN) QCD and Feynman Diagrams, Lecture 1 13/41



Renormalization

Divergences can be attributed a meaning and removed via the procedure
of renormalization, which amounts to the following redefinitions

Aµ = Z
1/2
3 AµR

q = Z
1/2
2 qR

η = Z̃ 1/2ηR

gs = ZggsRµ
ε

m2 = Zmm
2
R

I objects on the l.h.s. are the bare fields, bare coupling and bare mass,
which we introduced in our original QCD Lagrangian

I on the r.h.s., we have the renormalized, physical fields, coupling and
mass, which are finite and measurable in experiment

The Zi coefficients contain divergences that cancel the divergences of the
bare objects (Aµ, q, η, gs , m2) giving the finite renormalized objects
(AµR , qR , η, gsR , m2

R).
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Renormalization

The QCD Lagrangian (just the classical part for simplicity) takes the
following form in terms of the renormalized fields

Lclassical = Z2q̄R
(
i /∂ − ZmmR

)
qR − Z2Z

1/2
3 ZggsRµ

εq̄R /ARqR

−Z3

4

(
∂µA

a
Rν − ∂νAa

Rµ

)2 −
Z 2

3 Z
2
g g

2
sRµ

2ε

4

(
f abcAb

RµA
c
Rν

)2

+
Z

3/2
3 ZggsRµ

ε

2
f abc (∂µAaν

R − ∂νA
aµ
R )Ab

RµA
c
Rν

This can be rewritten as a sum of the original Lagrangian + counterterms

Lclassical = q̄R
(
i /∂ −mR

)
qR − gsRµ

εq̄R /ARqR + . . .

+ q̄R
(

(Z2 − 1)i /∂ − (Z2Zm − 1)mR

)
qR − (Z2Z

1/2
3 Zg − 1)gsRµ

εq̄R /ARqR + . . .

Hence, when doing computations one proceeds as follows

I use the Feynman rules discussed earlier (1st line above, now with all
objects renormalized)

I supplement that with the set of counterterm vertices (2nd line above)
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Renormalization

How do we get the Zi coefficients?. . . By requiring the counterterm to
cancel the pole part (PP) of Green functions.

For example, the quark self-energy graph gives:

PP

∫
dDk = i

αs

4π
CFSε

(
−3m + ξ(/p −m)

)
,

where Sε = 1
ε + ln(4π)− γE , and the corresponding counterterm:

= i
[
/p(Z2 − 1)− (Z2Zm − 1)m

]
.

Requirement of vanishing of the sum leads to the conditions:

i/p
[αs

4π
CFSεξ + Z2 − 1

]
= 0 ,

im
[αs

4π
CFSε(3m + ξm) + (Z2Zm − 1)

]
= 0 ,

and this fixes Z2 and Zm.
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Renormalization: MS scheme

But wait! If we take e.g. the first condition with explicit Sε

i/p

[
αs

4π
CF

(
1

ε
+ ln(4π)− γE

)
ξ + Z2 − 1

]
= 0 ,

the Z2 coefficient is fixed such that it cancels not only the pole 1
ε but also

the constant piece ln(4π)− γE . Isn’t that arbitrary? It is, and that is OK.

In the renormalization procedure, together with the infinite piece, one can
subtract an arbitrary constant. That defines the renormalization scheme.
↪→ Physical observables turn out not to depend on this arbitrary choice.

I Minimal Subtraction (MS) scheme: cancelling only the pole
1

ε
I Modified Minimal Subtraction (MS) scheme: cancelling the pole

1

ε
,

together with the constant ln(4π)− γE .

Zi coefficients of the MS and the MS schemes are m
µ independent

I Zi s, by construction, cancel only the part singular at high
momentum. But in this limit all masses are negligible and cannot
appear in residues of the pole.
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Renormalization

Applying similar procedure to other Green functions gives us the full set,
of Z s, which, in MS, to the first order in αs , read

Z2 = 1− αs Sε
4πε

ξCF +O
(
α2
s

)
Z3 = 1− αs Sε

4πε

[(
ξ

2
− 13

6

)
CA +

4

3
TRnf

]
+O

(
α2
s

)
Z̃ = 1− αs Sε

4πε
CA

(
3

4
− ξ

4

)
+O

(
α2
s

)
Zm = 1− αs Sε

4πε
3CF +O

(
α2
s

)
Zg = 1− αs Sε

4πε

(
11

6
CA −

2

3
TRnf

)
+O

(
α2
s

)
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Renormalization group

[To simplify notation, from now on, gs → g0 (bare) and gsR → g (renormalized)]

g0 = gµεZg = gµε
[

1− αs Sε
4πε

(
11

6
CA −

2

3
TRnf

)]

The bare coupling cannot depend on µ, hence

0 =
d

d lnµ
g0(µ, g(µ), ε) = εg0 +

dg

d lnµ

∂g0

∂g
⇒ dg

d lnµ
= − εg0

∂g0

∂g

In terms of
αs ≡

g2

4π

we get

β(αs) ≡ dαs

d lnµ2
=

g

4π

dg

d lnµ
= −α2

s

[
11CA − 4TRnf

12π
+O (αs)

]
I coupling runs with the scale µ2

I 11CA − 4TRnf = 21 > 0, hence β(αs) < 0 in QCD
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Running coupling

As β(αs) is negative, αs becomes small at high scales:
↪→ asymptotic freedom [Gross, Wilczek, Politzer ’73]

The renormalization group equation (here at lowest order):

Q2 ∂αs

∂Q2
= −b0α

2
s where b0 =

11CA − 4TRnf
12π

allows one to relate couplings at two
different scales Q0 and Q

αs(Q2) =
αs(Q2

0 )

1 + b0αs(Q2
0 ) ln Q2

Q2
0

I at proton mass αs(1 GeV) ∼ O (1)

I at the scale of the Z boson mass
αs(91 GeV) ∼ 0.1

Sebastian Sapeta (IFJ PAN) QCD and Feynman Diagrams, Lecture 1 20/41



Running coupling

As β(αs) is negative, αs becomes small at high scales:
↪→ asymptotic freedom [Gross, Wilczek, Politzer ’73]

The renormalization group equation (here at lowest order):

Q2 ∂αs

∂Q2
= −b0α

2
s where b0 =

11CA − 4TRnf
12π

allows one to relate couplings at two
different scales Q0 and Q

αs(Q2) =
αs(Q2

0 )

1 + b0αs(Q2
0 ) ln Q2

Q2
0

I at proton mass αs(1 GeV) ∼ O (1)

I at the scale of the Z boson mass
αs(91 GeV) ∼ 0.1

Sebastian Sapeta (IFJ PAN) QCD and Feynman Diagrams, Lecture 1 20/41



Running coupling

As β(αs) is negative, αs becomes small at high scales:
↪→ asymptotic freedom [Gross, Wilczek, Politzer ’73]

The renormalization group equation (here at lowest order):

Q2 ∂αs

∂Q2
= −b0α

2
s where b0 =

11CA − 4TRnf
12π

allows one to relate couplings at two
different scales Q0 and Q

αs(Q2) =
αs(Q2

0 )

1 + b0αs(Q2
0 ) ln Q2

Q2
0

I at proton mass αs(1 GeV) ∼ O (1)

I at the scale of the Z boson mass
αs(91 GeV) ∼ 0.1

Sebastian Sapeta (IFJ PAN) QCD and Feynman Diagrams, Lecture 1 20/41



Running coupling

As β(αs) is negative, αs becomes small at high scales:
↪→ asymptotic freedom [Gross, Wilczek, Politzer ’73]

The renormalization group equation (here at lowest order):

Q2 ∂αs

∂Q2
= −b0α

2
s where b0 =

11CA − 4TRnf
12π

allows one to relate couplings at two
different scales Q0 and Q

αs(Q2) =
αs(Q2

0 )

1 + b0αs(Q2
0 ) ln Q2

Q2
0

I at proton mass αs(1 GeV) ∼ O (1)

I at the scale of the Z boson mass
αs(91 GeV) ∼ 0.1

Sebastian Sapeta (IFJ PAN) QCD and Feynman Diagrams, Lecture 1 20/41



The Λ parameter

The one-loop running coupling diverges at low scales

αs(µ2) =
αs(Q2)

1 + b0αs(Q2) ln µ2

Q2

→∞ as 1 + b0αs(Q2) ln
µ2

Q2
= 0

Let us denote the scale at which this happens as µ2 = Λ2. Solving the
equation on r.h.s. above gives

αs(Q2) =
1

b0 ln Q2

Λ2

We’ve introduced the parameter Λ defined as the scale at which αs =∞.

I Λ ' 200 MeV is measurable but it is not an observable as its value
depends on: perturbative order, renorm. scheme, number of flavours.

I The order of magnitude of Λ indicates a scale at which αs becomes
large and perturbative theory is not applicable any longer.

I Notice that for massless QCD there is no mass scale in the theory as
gs is dimensionless. Mass scale however emerges via renormalization
group and the appearance of Λ parameter (dimensional transmutation).
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Exact symmetries of QCD

I Local gauge invariance.

I Baryon number conservation B = 1
3 (nq − nq̄) = const.

I Discrete symmetries: charge conjugation (C), parity (P) and time
reversal (T) invariance.

I There is one additional gauge invariant operator of mass dimension
four that can be added to the Lagrangian

Lθ =
θg2

32π2
F a
µν F̃

µν
a where F̃µνa =

1

2
εµνσρFa σρ

and this term violates CP symmetry.

I This term is a total divergence so it does not contribute to
perturbation theory (that is why it is absent in Feynman rules).

I It turns out that due to non-trivial topological structure of the QCD
vacuum it can however contribute via non-perturbative effects.

I Experimental limit θ < 10−9. This raises the question: what makes
it so small? - the so called strong CP problem. One popular solution
is introduction of Axion particle.
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Approximate symmetries of QCD

Isospin SU(2) symmetry
I mu ' 2.3 MeV,md ' 4.8 MeV� mp hence u and d quarks have

approx. equal masses and form a doublet of the SU(2) isospin group

Flavour SU(3) symmetry
I adding the s quark, with ms ' 95 MeV extends it to somewhat less

accurate SU(3) flavour symmetry; representations of this group
correspond to mesons and baryons and correctly predict the spectra

Chiral SU(2)L⊗ SU(2)R symmetry

I For massless quarks, the left- and the right-handed fields decouple
completely in the Lagrangian, which exhibits new chiral symmetry.

I Masses of u and d quarks are very small so the QCD Lagrangian
shows approximate chiral symmetry.

I This symmetry is spontaneously broken at the level of the vacuum
(which is non-trivial in QCD and connects left- and right-handed fields).

I This results in the appearance of three (number of broken
generators) pseudo-Goldstone bosons: π0, π+ and π−, which are
indeed very light with m ' 140 MeV (they are not exactly massless
as the chiral symmetry is not exact).
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Infrared and collinear safety

Let’s take the process e+e− → hadrons. At LO (i.e. Born level) we have

σBorn =
1

flux

∫ ∑
|Me+e−→qq̄|2dΦ2 =

4πα2
em

3s
e2
q Nc

where s is the center-of-mass energy of the incoming e+e− pair and eq is
a quark charge.

I Factor Nc comes from sum over colours.

Sebastian Sapeta (IFJ PAN) QCD and Feynman Diagrams, Lecture 1 24/41



Infrared and collinear safety

Let’s take the process e+e− → hadrons. At LO (i.e. Born level) we have

σBorn =
1

flux

∫ ∑
|Me+e−→qq̄|2dΦ2 =

4πα2
em

3s
e2
q Nc

where s is the center-of-mass energy of the incoming e+e− pair and eq is
a quark charge.

I Factor Nc comes from sum over colours.

Sebastian Sapeta (IFJ PAN) QCD and Feynman Diagrams, Lecture 1 24/41



Infrared and collinear safety

NLO real correction to the e+e− → hadrons annihilation

|Mγ→qq̄g |2 ∝
q · q̄

(q · g)(q̄ · g)
∼ 1

E 2
g

1

(1− cos θqg )

1

(1− cos θq̄g )

Hence

|Mγ→qq̄g |2 →∞ if


E 2
g → 0 soft limit

θqg → 0 collinear limit

θq̄g → 0 collinear limit

I real correction to e+e− annihilation has soft and collinear
divergences
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Infrared and collinear safety

The integral
∫
|Mγ→qq̄g |2dΩ can be performed in D = 4− 2ε > 4

dimensions and yields

σe+e−→qq̄g
R = σBorn

{
αs

2π
CF

(
2

ε2
+

3

ε
+

19

2

)
+O (ε)

}

I
1

ε2
term corresponds to the soft + collinear divergence

I
1

ε
term corresponds to the collinear divergence

I
19

2
is a finite term

I O (ε) are terms vanishing in the limit D → 4
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Infrared and collinear safety: virtual correction

σe+e−→qq̄
V = M

(Born)
qq̄ M

(virt) †
qq̄ = σBorn

{
αs

2π
CF

(
− 2

ε2
− 3

ε
− 8

)
+O (ε)

}
I The same structure as in the case of real cross section: double and

single poles in ε + regular term.
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e+e− → hadrons: combined result

σe+e−→hadrons = σBorn + σe+e−→qq̄g
R + σe+e−→qq̄

V

= σBorn

{
1 +

αs

2π
CF

(
2

ε2
+

3

ε
+

19

2

)
+
αs

2π
CF

(
− 2

ε2
− 3

ε
− 8

)
+O (ε)

}
ε→ 0

= σBorn

{
1 +

αs

2π

3

4
CF +O

(
α2
s

)}

I Collinear and soft divergences cancelled between real and virtual
diagram emissions. We could safely take the ε→ 0 limit.

Total cross section for e+e− annihilation to hadrons
is a collinear and infrared safe observable.

I This is a manifestation of a more general theorem by Kinoshita, Lee
and Nauenberg (KLN), which states that the soft and collinear
singularities, present in real and virtual corrections, must cancel each
other in the sum, for sufficiently inclusive observables.
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Infrared and collinear safe observables

dσ

dX
=

1

flux

∑
n

dΦn|M(n)|2δ
(
X − fX (p1, . . . , pn)

)

An observable X is called infrared and collinear safe if

f
(n+1)
X (p1, . . . , pn, pn+1)→

{
f

(n)
X (p1, . . . , pn) if pn+1 → 0

f
(n)
X (p1, . . . , pn + pn+1) if pn ‖ pn+1

Physics behind this requirement:

I one is not able to distinguish between configurations |qq̄〉 and
|qq̄ + ng (soft or collinear)〉

I the results of measurements should not be dependent on detector’s
energy resolution and granularity
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energy resolution and granularity
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Summary of the features of QCD

I Quantum field theory with spin- 1
2 quarks as fundamental degrees of

freedom.

I The theory is asymptotically free: strength of interactions decreases
with energy.

I Quarks carry new degree of freedom called colour.

I Number of colours Nc = 3.

I The theory exhibits local gauge invariance under SU(3) colour
group. This leads to appearance of gauge particles: the gluons.

I Quarks and gluons build bound states that are singlets of SU(3).
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How do we know that QCD is the right theory?

Deep inelastic scattering (DIS) process

Q2 = −q2

x =
Q2

2p · q

y =
p · q
k · p

General form of the cross section

d2σ

dxdQ
=

4πα2
em

Q4

{[
1 + (1− y)2

]
F1(x ,Q2) + 1−y

x

[
F2(x ,Q2)− 2xF1(x ,Q2)

]}
where F1 and F2 are the structure functions.

Hypothesis: proton consists of pointlike, spin- 1
2 , free objects called

partons. γ∗p interaction happens via γ∗ interacting with exactly one
parton.

↪→ That goes under the name of the parton model.
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How do we know that QCD is the right theory?

Parton model hypothesis implies the so called Bjorken scaling

Fi (x ,Q
2)→ Fi (x)

I If γ∗ was scattering off non-pointlike constituents of size Q0, Fi ,
which is dimensionless, would need to depend on the ratio Q/Q0.

More specifically, in the parton model:

F1(x) =
1

2

∑
i

e2
i fi (x) ,

F2(x) =
∑
i

e2
i xfi (x) ,

where fi (x), is a probability of finding a parton with momentum fraction
x inside the proton, the so called parton density function (PDF).

I Seeing Bjorken scaling in the data would provide a strong evidence
in favour of the parton model.
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Bjorken scaling

And what does the data tell us? Back then in 1970. . .

Conclusion: experimental evidence in favour of the parton model proves
that the proton consists of objects that are

I pointlike ⇒ today we identify them with quarks

I free ⇒ that requires that the theory behind is asymptotically free
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Bjorken scaling now

I data from DIS experiments:
fixed target and HERA

I clearly visible region of
Bjorken scaling for x & 0.1

I we will come back to the
region x < 0.1 in a minute
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Callan-Gross relation

In the parton model

F2(x) = 2xF1(x) (Callan-Gross relation)

which follows from spin- 1
2 property of partons.

One can construct the longitudinal structure function, corresponding to
the absorption of the longitudinally polarized photons

FL(x) = F2(x)− 2xF1(x) .

Callan-Gross relation means that FL = 0 in the parton model.

I Follows from the fact that spin- 1
2 parton cannot absorb a

longitudinally polarized photon.

I In the experiment, we indeed see that FL is very small. That
confirms that partons are spin- 1

2 particles.
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Colour

Spin-statistics

The wave function of particles like like ∆++:

|∆++; + 3
2 〉 = |u ↑〉|u ↑〉|u ↑〉

is totally symmetric in spin and flavour. That violates Pauli-principle
unless there is an addition degree of freedom, in which the wave function
is fully anti-symmetric. This is colour.

SU(3) color group leads to “white” baryons, i.e. hadrons and mesons are
singlets of SU(3). Coloured particles are never observed: confinement.

I All that is consistent with experiment!

But how many colours?
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Nc = 3

I π0 → γγ decay rate

Γ(π0 → γγ) = 7.63 eV

(
Nc

3

)2

Experimental value: Γ(π0 → γγ) = 7.84± 0.56eV.

I e+e− decay ratio

R =
σ(e+e− → hadrons)

σ(e+e− → µ+µ−)
= Nc Σqe

2
q = Nc

11

9

Experimental value: Nc ' 3.2.

Sebastian Sapeta (IFJ PAN) QCD and Feynman Diagrams, Lecture 1 37/41



What about gluons?

I Electron-nucleus DIS allows us to measure the momentum weighted
probability density of quarks and anti-quarks in the nucleon

18

5

∫ 1

0

dx F eN
2 (x) =

∫ 1

0

dx x [u(x) + d(x) + ū(x) + d̄(x)] ' 0.5

Charged particles carry only half of proton’s momentum!

I Bjorken scaling holds only approximately and F2 starts to depend on
Q2 as we go to lower values of x

I this happens because of gluons which are produced in abundance at
low-x

I gluons go beyond the simple picture of the naive parton model

Violation of Bjorken scaling is indeed seen in the data at low-x!
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Scaling violation seen in the data!

λ(x ,Q2) = −∂F2(x ,Q2)

∂ ln x

∣∣∣∣∣
Q2

F2(x ,Q2) ' c(Q2) x−λ(Q2)

From HERA data:

λ ' 0.2 − 0.4 for the range
x < 0.01 and Q2 > 10 GeV2

I large x : proton consists
mostly of valence quarks
and looks like in the
naive parton model

I small x : proton consist
mostly of gluons and the
parton model needs to
be improved with QCD
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It all fits!

I Quantum field theory with spin- 1
2 quarks as fundamental degrees of

freedom : Callan-Gross relation, parton model X

I The theory is asymptotically free: strength of interactions decreases
with energy: Bjorken scaling X

I Quarks carry new degree of freedom called colour: ∆++ & others X

I Number of colours Nc = 3: e+e− decay ratio & others X

I The theory exhibits local gauge invariance under SU(3) colour
group. This leads to appearance of gauge particles: the gluons:
scaling violation of F2 X

I Quarks and gluons build bound states that are singlets of SU(3):
coloured particles never observed X

+ Countless tests from several generations of experiments!
(some of them covered in lectures 2 and 3 )
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Summary of lecture 1

I QCD is an extremely successful theory of strong interactions.

I It is based on SU(3) local color symmetry.

I It is a non-abelian theory which results in gluon self-interactions.

I In this lecture, we have concentrated on perturbative methods,
which are applicable in the limit of small coupling.

I QCD exhibits UV divergence. It is removed by renormalization.

I Renormalization of QCD leads to running of the coupling αs and the
β function turns out to be negative, hence the strength of the
interaction decreases with scale: asymptotic freedom.

I QCD exhibits also soft (infrared) and collinear divergencies.

I For correctly defined observables, soft and collinear divergences
cancel between real and virtual contributions.

I In certain limit, QCD predicts Bjorken scaling of the DIS F2 function
and the violation of Bjorken scaling in another limit.

I QCD has withstood an enormous number of experimental tests.
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β function turns out to be negative, hence the strength of the
interaction decreases with scale: asymptotic freedom.

I QCD exhibits also soft (infrared) and collinear divergencies.

I For correctly defined observables, soft and collinear divergences
cancel between real and virtual contributions.

I In certain limit, QCD predicts Bjorken scaling of the DIS F2 function
and the violation of Bjorken scaling in another limit.

I QCD has withstood an enormous number of experimental tests.
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