Selected topics from QCD: Diffractive processes

Wolfgang Schäfer ¹,

¹ Institute of Nuclear Physics, Polish Academy of Sciences, Kraków

Trans-European School of High-Energy Physics 2023 Bezmiechowa Górna, Poland, 14.7.-22.7. 2023

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

Elastic proton-proton scattering

- Elastic hadron-hadron scattering at high energies reminds of Fraunhofer diffraction.
- Scattering amplitude for black disc of size R, $q = \sqrt{-t}$:

$$f(q) = ikR^2 \frac{J_1(qR)}{qR}, \quad k = \frac{1}{2}\sqrt{s - 4m^2},$$

• Optical theorem: $4\pi/k\Im mf(0) = \sigma_{\mathrm{tot}} = 2\pi R^2$

• For the black disc:
$$\sigma_{\rm el} = 0.5 \, \sigma_{\rm tot} = \pi R^2 = \sigma_{\rm inel}.$$

⁸ Mandelstam variables

$$s = (p_{a} + p_{b})^{2} = E_{cm}^{2}, \quad \cos \theta = 1 + \frac{2t}{s - 4m^{2}}$$

 $s + t + u = 4m^{2}.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

• small |t| means scattering under small angles. High energy limit: $-t/s \ll 1$.

Elastic proton-proton scattering

- sharp peak in the forward direction, well described by exponential dσ/dt ∝ exp[−B|t]], B is the elastic slope.
- shrinkage of the diffraction cone: elastic slope rises with energy.
- dip moves to smaller |t|.

Elastic proton-proton scattering

- elastic/total ratio continues to rise.
- Indicative of a "blacker" interaction region. (Recall elastic/total = 0.5 for the black disc).
- elastic scattering is a substantial fraction of the total cross section.
- elastic scattering is a consequence of unitarity. (Optical theorem).

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Particle vs Reggeon exchange

• An amplitude for the exchange of a particle of spin *J* has the high energy limit:

$$A_J(s,t) \propto rac{s^J}{t-m^2} \Rightarrow rac{d\sigma}{dt} \propto s^{2(J-1)}$$

- this amplitude is useful only, if the pole is close to the physical region of the scattering process.
- In the high energy limit (or Regge limit), a coherent exchange of many particles of varying spin contributes (the so-called Regge trajectory). In effect, the spin becomes "running" with t: J → α(t).

Reggeon exchange amplitude

$$A^{\pm}(s,t) = g_{13}(t)g_{24}(t) \left(rac{s}{s_0}
ight)^{lpha(t)} \eta^{\pm}(lpha(t)) \, .$$

• Reggeons have a new quantum number: signature (it tells us about $s \leftrightarrow u$ crossing)

$$\eta^{\pm}(\alpha(t)) = -\frac{e^{-i\pi\alpha(t)} \pm 1}{\sin(\pi\alpha(t))} \Rightarrow \eta^{+} = i - \cot\frac{\pi\alpha(t)}{2}, \ \eta^{-} = i + \tan\frac{\pi\alpha(t)}{2}$$

Reggeon exchange

If we expand $\alpha(t) = \alpha(0) + \alpha' t$, we can write

Reggeon exchange amplitude

$$A^{\pm}(s,t) = g_{13}(t)g_{24}(t) igg(rac{s}{s_0}igg)^{lpha(t)} \eta^{\pm}(lpha(t))\,.$$

Three salient features of Reggeon exchange:

- factorization of the "couplings" (residue function) and "propagator". Typically $g(t) \propto \exp(-B|t|/2)$
- a t-dependent phase encoded in signature factor
- (a) the Regge trajectory $\alpha(t)$ determines energy dependence.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

$$A^{\pm}(s,t) = \left(\frac{s}{s_0}\right)^{\alpha(0)} \eta^{\pm}(\alpha(t)) \exp\left[-\frac{1}{2}\left(B_{13} + B_{24} + 2\alpha'\log(\frac{s}{s_0})\right)|t|\right],$$

- The intercept $\alpha(0)$ controls the energy dependence.
- The Regge slope α' controls the shrinkage of the forward cone, which is a prediction of Regge pole exchange.

- Regge trajectory of the ρ meson from the charge exchange reaction π⁻ p → π⁰n. (Fermilab 1976)
- Beam energy varies from 20 GeV to 200 GeV, the cross section drops over a factor \sim 15 over this energy range.

・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト

э

deviations from linearity at larger -t.

Regge trajectories

 $\rho \ : \ \ P = -1, \; C = -1, \; G = +1, \; I = 1, \; \xi = -1 \; , \;$

$$\omega \ : \ \ P = -1, \ C = -1, \ G = -1, \ I = 0, \ \xi = -1 \ ,$$

$$a_2: \quad P = +1, \ C = +1, \ G = -1, \ I = 1, \ \xi = +1.$$

- As the Reggeon amplitude comes from an analytic continutation of *t*-channel amplitudes it has well defined quantum numbers, except of spin! We can assign Parity *P*, charge parity *C*, Isospin *I*, *I*₃ and *G* parity.
- In the scattering region, t < 0, and the Regge trajectory controls the phase, shrinkage, and energy dependence of the amplitude.
- There is a highly nontrivial link between these properties and the **spectrum** of the strongly interacting theory. Namely at t > 0, where we can interpret $t = M^2$, the Regge trajectories **pass through the spins of resonances with the appropriate quantum numbers**.

$$\alpha(M^2) = J$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

- Regge trajectories with $\alpha(0) = 0.5$ are called **secondary trajectories**. In practice there occurs a degeneracy of the f_2, ρ, ω, a_2 trajectories.
- the pion is a still subleading Regge trajectory with $\alpha(0) = 0$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへ()~

$$I\!P: P = +1, C = +1, G = +1, I = 0, \xi = +1.$$

• By the optical theorem, we have for the total cross section:

$$\sigma_{
m tot} \propto rac{1}{s} \Im m A(s,0) \propto s^{lpha(0)-1}$$

The secondary Regge trajectory would give a total cross section decreasing with energy:

$$\sigma_{
m tot} \propto 1/\sqrt{s}.$$

- Data suggest the presence of another trajectory, introduced by Chew and Frautschi (1961) and Gribov (1961). It was named the **Pomeron** by M. Gell-Mann after I.Ya.Pomeranchuk.
- In 1960's theorists favoured asymptotically constant cross sections, and the original Pomeron trajectory was supposed to have $\alpha(0) = 1$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

• In practice, data are well described by a "supercritical" Pomeron with

$$\alpha(t) = 1.08 + 0.25 \,\mathrm{GeV}^{-2} t$$

• The Pomeron exchange amplitude is predominantly imaginary!.

Pomeron trajectory

- In QCD, spin-1 gluon exchange naturally induces flat cross sections. As the Pomeron has to be color singlet, it is often modelled as a two-gluon exchange.
- Somewhat speculatively, the phenomenological Pomeron trajectory appears to include a J = 2 tensor glueball candidate. Some class of models treat the Pomeron as the Regge trajectory of such spin-2.4 etc[□] exchanges.

Limitations of the Regge pole picture

- Elastic slope dependence on energy deviates from the log(s) behaviour predicted for the Regge pole.
- The simple pole picture must be replaced by a Reggeon Field Theory. It takes into account the unitarity effect of diffractive channels on the total cross section/elastic amplitude.
- unfortunately there is no clearcut systematic expansion i.e. on the order of multipomeron vertices, but generally succesful phenomenological models include multipomeron effects in one way or another.

・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト

э

 $ho(s) = \Re eA(s,0) / \Im mA(s,0)$

- direct measurement of Odderon would require comparison of pp and pp̄ at the same energy.
- Tevatron: *pp* at 1.96 TeV. LHC: pp at 2.76 TeV.
- a nonvanishing difference between proton and antiproton scatering at high energies requires a new Regge trajectory - the Odderon.
- the Odderon has C = -1, odd signature, and the amplitude is predominantly real.
- in QCD can be thought of as three gluon exchange in totaly symmetric color singlet d_{abc}.

Topologies of inelastic interactions

- inelastic processes on the "cylinder phase space" of azimuthal angle ϕ and (pseudo-)rapidity.
- The typical **inelastic event** populates the cylinder phase space rather uniformly.
- Events with large rapidity gaps share many features with elastic scattering. In particular they also feature the forward cone. We call these events **diffractive** or diffractive dissociation of the beam particle(s).
- Notice, that the dominant diffractive channel is single diffraction, where only one of the colliding particles dissociate.

Rapidity y, pseudorapidity η

$$y = \frac{1}{2} \log\left(\frac{E+p_z}{E-p_z}\right), \quad \eta = \frac{1}{2} \log\left(\frac{|\vec{p}|+p_z}{|\vec{p}|-p_z}\right) = -\log\tan(\theta/2),$$
$$(E, p_x, p_y, p_z) = (\sqrt{p_\perp^2 + m^2}\cosh y, p_\perp \cos \phi, p_\perp \sin \phi, \sqrt{p_\perp^2 + m^2}\sinh y)$$

Diffractive event topologies

• This is a simplified picture. In fact also here we expect multipomeron effects which are related to so-called gap survival probabilities.

Diffractive dissociation

- Above $p_{\rm lab} \gtrsim 5 \, GeV$ diffractive transitions become important. Proton loses small fraction $\xi = M_X^2/s$ of its momentum, **large rapidity gap** between outgoing proton & diffractive system.
- Shares many properties with elastic scattering: sharp forward peak, dominance of vacuum quantum number exchange, imaginary amplitude ...
- Another optical analogy: different absorption strength for different components of the beam's wavefunction imply the presence of diffraction dissociation (Glauber, Akhiezer & Sitenko, Landau & Pomeranchuk)

・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト

э

Inelastic diffraction: kinematics & t-channel exchanges

$$A(s_1, M_X^2, t) \propto \left(\frac{s_1}{m_p^2}\right)^{\alpha(t)} = \left(\frac{s}{M_X^2}\right)^{\alpha(t)} = \left(\frac{1}{\xi}\right)^{\alpha(t)} \Rightarrow \sigma \propto \exp[2(\alpha(0) - 1) \cdot \Delta y]$$

- To bridge a large gap, say $\Delta y \gtrsim 3$, we need $\alpha(0) \ge 1$. Pomeron (C=+1), Odderon (?) (C = -1).
- Exchange of secondary Reggeons α(0) ~ 0.5 for ρ, ω, f₂a₁, α(0) = 0 for pions, dies out exponentially at large gap size!.
- NB: Photons (J = 1, C = −1) also qualify! In elastic scattering, the interference between Coulomb and strong amplitude gives access to the phase of the strong amplitude. The interference is concentrated at very small |t|.

Diffractive dissociation

ALICE & CMS: "rap gap + diffractive system"

- Note: $M_X^2 < 0.05 \cdot s \Rightarrow$ gap size $\Delta y > 3$.
- Single diffractive cross section is an important observable for Regge models of soft inelastic interactions.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Vector meson photoproduction, soft to hard diffraction

• Process dependent Pomeron!? Steep energy dependence for for heavy quark mesons. Some authors postulate separate soft and hard Pomerons.

Color dipoles as diffraction scattering eigenstates

- An approach that allows the simultaneous inclusion of inelastic and diffractive channels is the **color dipole approach**. In the limit of large photon energy ω , a coherence length $I_c = 2\omega/M_{q\bar{q}}$ becomes much larger then the size of the target.
- We describe the photoabsorption process photon splits into a $q\bar{q}$ pair a long distance upstream the target.

$$\sigma(\gamma^* \mathbf{p}) = \int dz d^2 \mathbf{r} |\psi_{q\bar{q}}(z, \mathbf{r})|^2 \sigma(x, \mathbf{r}) = \langle \hat{\sigma} \rangle$$

- na c

Color dipoles as diffraction scattering eigenstates

On one footing, one can access total cross section, inclusive diffraction, as well as exclusive diffraction.

Color dipoles as diffraction scattering eigenstates

Besides the dipole cross section also the cross section for the qq
 qg state is important (a = g, b = q, c = q
):

$$\sigma_{q\bar{q}g}(\boldsymbol{r},\boldsymbol{\rho}) = \frac{N_c^2}{N_c^2-1}[\sigma(\boldsymbol{\rho})+\sigma(\boldsymbol{\rho}+\boldsymbol{r})] - \frac{1}{N_c^2-1}\sigma(\boldsymbol{r}).$$

Cross sections in the color dipole approach:

$$\begin{aligned} \sigma_{\text{tot}}(\gamma^* p) &= \int_0^1 dz \int d^2 r |\psi_{q\bar{q}}(z,r)|^2 \sigma(x,r) \\ \frac{d\sigma(\gamma^* p \to q\bar{q}p)}{dt} \Big|_{t=0} &= \frac{1}{16\pi} \int_0^1 dz \int d^2 r |\psi_{q\bar{q}}(z,r)|^2 \sigma^2(x,r) \\ \frac{d\sigma(\gamma^* p \to q\bar{q}gp)}{dt} \Big|_{t=0} &= \frac{1}{16\pi} \int_0^1 dz \frac{dz_g}{z_g} d^2 r d^2 \rho z_g |\psi_{q\bar{q}g}(z,z_g,r,\rho)|^2 [\sigma_{q\bar{q}g}^2(r,\rho) - \sigma^2(x,r)] \\ \frac{d\sigma(\gamma^* p \to Vp)}{dt} \Big|_{t=0} &= \frac{1}{16\pi} \left| \int_0^1 dz d^2 r \psi_V^*(z,r) \psi_{q\bar{q}}(z,r) \sigma(x,r) \right|^2 \end{aligned}$$

Dipole cross section

- We use dipole cross sections that have been fitted to precise HERA data on the proton structure function $F_2(x, Q^2)$. See for example the fit by Łuszczak and Kowalski.
- the dipole approach relates the **rise of** F₂ **at small** *x* with the **energy dependence of the VM photoproduction**.
- a good agreement with *J*/ψ diffractive data up to γ*p*-cm energies of a few hundred *GeV* is obtained.

200

Diffractive photoproduction on nuclei

• rescattering of the $c\bar{c}$ dipole only can be obtained by a simple Glauber exponential

$$\Gamma_A(x, \boldsymbol{b}, \boldsymbol{r}) = 1 - S_A(x, \boldsymbol{b}, \boldsymbol{r}), \text{ with } S_A(x, \boldsymbol{b}, \boldsymbol{r}) = \exp\left[-\frac{1}{2}\sigma(x, \boldsymbol{r})T_A(\boldsymbol{b})\right].$$

• the rescattering of the $c\bar{c}$ pair corresponds to a resummation of higher-twist terms, **not** to a nuclear modification of the nuclear glue! The $c\bar{c}g$ yields a correction:

$$\Gamma_A(x, \boldsymbol{r}, \boldsymbol{b}) = \Gamma_A(x_A, \boldsymbol{r}, \boldsymbol{b}) + \log\left(\frac{x_A}{x}\right) \Delta \Gamma_A(x_A, \boldsymbol{r}, \boldsymbol{b})$$

• the **nuclear glue** appears only, once the rescattering of $c\bar{c}g$ states are taken into account. But here the splitting amplitude $q \rightarrow qg$ in impact parameter space needs an infrared regularization (**gluon propagation radius** R_c). $x_A \sim 0.01$ also is a parameter of the model.

- Heavy ions are accompanied by the large Weizsäcker-Williams flux of photons, which is enhanced by the charge squared of the ion Z².
- Each of the ions can be an emitter, so that there can appear subtle interference effects at very small *P*_T of the vector meson.
- At midrapidity both processes contribute with the same photon energy. In other cases there is a low-energy and high-energy contribution. The rather soft photon fluxes prefer the lower energy.

イロト 不得 トイヨト イヨト

-

Ultraperipheral nuclear collisions

- Glauber-Gribov theory including only rescattering of the $c\bar{c}$ dipole works well in the forward region(large rapidities).
- In the central rapidity region inclusion of the $c\bar{c}g$ state introduces additional shadowing which is needed to describe the data. Strong dependence on R_c , a rather small $R_c \sim 0.21$ fm is preferred.
- Shadowing due to the $c\bar{c}g$ state can be (roughly) identified with gluon shadowing of the nuclear pdf. It depends on the infrared regulator. For J/ψ gluon shadowing is not a prediction of perturbation theory (hard scale $Q^2 \sim 2.25 \text{ GeV}^2$). Moderate gluon shadowing.

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ・ つくぐ