APPENDIXI

The Standard Model

in the
 fermion sector

CKM matrix and CP Violation.
The Unitarity Triangle

10 free parameters

4 CKM parameters

In the Standard Model, charged weak interactions among quarks are codified in a 3×3 unitarity matrix : the CKM Matrix.

The existence of this matrix conveys the fact that the quarks which participate to weak processes are a linear combination of mass eigenstates

The fermion sector is poorly constrained by SM + Higgs Mechanism

The Standard Model is based on the following gauge symmetry

$$
S U(2)_{\mathrm{L}} \times \mathrm{U}(1)_{\mathrm{Y}}
$$

Weak Isospin (symbol L because only the LEFT states are involved)

Weak Hypercharge :
(LEFT and RIGHT states)

			\mathbf{I}	\mathbf{I}_{3}	\mathbf{Q}	\mathbf{Y}
Leptons	doublet L	v_{e}	$1 / 2$	$1 / 2$	0	-1
		$\mathrm{e}_{\mathrm{L}}-{ }^{-}$	$1 / 2$	$-1 / 2$	-1	-1
	singlet R	$\mathrm{e}_{\mathrm{R}}{ }^{-}$	0	0	-1	-2
other families						

Short digression on the mass

$$
\begin{aligned}
& E^{2}=\vec{p}^{2}+m^{2} \rightarrow \partial^{\mu} \partial_{\mu}+m^{2} \phi=0 \leftrightarrow L=\partial^{\mu} \phi \partial_{\mu} \phi-\frac{1}{2} m^{2} \phi^{2}=0 \\
&\left(i \gamma^{\mu} \partial_{\mu}-m\right)=0 \leftrightarrow L=i \bar{\psi} \gamma_{\mu} \partial^{\mu} \psi-m \bar{\psi} \psi \\
& m \bar{\psi} \psi=m \bar{\psi}\left(P_{L}+P_{R}\right) \psi=m \bar{\psi}\left(P_{L} P_{L}+P_{R} P_{R}\right) \psi= \\
&=m\left[\left(\bar{\psi} P_{L}\right)\left(P_{L} \psi\right)+\left(\bar{\psi} P_{R}\right)\left(P_{R} \psi\right)\right] \psi \quad=m\left(\bar{\psi}_{R} \psi_{L}+\bar{\psi}_{L} \psi_{R}\right)
\end{aligned}
$$

The mass should appear in a LEFT-RIGHT coupling

$$
\begin{aligned}
& \psi_{\mathrm{R}}: \mathrm{SU}(2) \text { singlet } \\
& \psi_{\mathrm{L}}: \mathrm{SU}(2) \text { doublet }
\end{aligned}
$$

Adding a doublet

$$
\phi=\binom{\phi^{+}}{\phi^{0}} \quad \mathrm{I}=\frac{1}{2} \quad \mathrm{Y}=1
$$

The mass terms are not gauge invariant under

$$
\mathrm{SU}(2)_{\mathrm{L}} \times \mathrm{U}(1)_{\mathrm{Y}}
$$

$$
\begin{aligned}
\psi_{R} & (\mathrm{I}=0, \mathrm{Y}=-2) \text { leptoni } \mathrm{i}_{\mathrm{R}} \\
& (\mathrm{I}=0, \mathrm{Y}=-2 / 3) \text { quark } \mathrm{d}_{\mathrm{R}} \\
& (\mathrm{I}=0, \mathrm{Y}=4 / 3) \text { quark } \mathrm{u}_{\mathrm{R}} \\
\psi_{\mathrm{L}} & (\mathrm{I}=1, \mathrm{Y}=-1) \text { leptoni } \\
& (\mathrm{I}=1, \mathrm{Y}=1 / 3) \text { quark } \mathrm{d}_{\mathrm{L}} \\
& (\mathrm{I}=1, \mathrm{Y}=1 / 3) \text { quark } \mathrm{u}_{\mathrm{L}}
\end{aligned}
$$

Yukawa interaction: $\psi_{L} \phi \psi_{R}$

$$
\begin{gathered}
\phi=\frac{1}{\sqrt{2}}\binom{0}{v+H} \\
g_{e}\left(\bar{\psi}_{L} \phi \psi_{R}+\phi^{+} \bar{\psi}_{R} \psi_{L}\right)
\end{gathered}
$$

(le deuxieme terme est l'hermitien conjuge du premier)

After SSB

$$
\frac{g_{e} v}{\sqrt{2}}\left(\bar{\psi}_{L} \psi_{R}+\bar{\psi}_{R} \psi_{L}\right)+\frac{g_{e}}{\sqrt{2}}\left(\bar{\psi}_{L} \psi_{R}+\bar{\psi}_{R} \psi_{L}\right) H
$$

$$
\begin{aligned}
& m_{e}=\frac{g_{e} v}{\sqrt{2}} \quad \text { v/sqrt(2) } \sim \text { natural mass }\left(g^{\sim} 1\right) \\
& g_{e}=\frac{\sqrt{2} m_{e}}{v}
\end{aligned}
$$

$$
m_{e} \bar{e} e+\frac{m_{e}}{v} \bar{e} e H
$$

$$
\frac{g_{e}}{\sqrt{2}}=\frac{m_{e}}{v} \quad \text { couplage Hee }
$$

$L_{W}=\frac{g}{2} \bar{Q}_{L_{t}}^{\text {Int. }} \gamma^{\mu} \sigma^{a} Q_{L_{t}}^{\text {Int. }} W_{\mu}^{a} \quad a=1,2,3 \quad Q_{L_{t}}^{\text {Int. }}=\binom{u_{L_{i}}}{d_{L_{i}}} \quad L_{L_{i}}^{\text {Int. }}=\binom{v_{L_{i}}}{l_{L_{i}}}$
$\bar{Q}_{L_{i}}^{\text {Int. }} Q_{L_{i}}^{\text {Int. }}=\bar{Q}_{L_{i}}^{\text {Int. }} 1_{i j} Q_{L_{j}}^{\text {Int. }}$ universality of gauge interactions

In this basis the Yukawa interactions has the following form:

$$
\begin{aligned}
& L_{Y}=Y_{i j}^{d} \bar{Q}_{L_{i}}^{\text {mnt. }} \phi d_{R_{j}}^{\text {mut. }}+Y_{i j}^{u} \bar{Q}_{L_{i}}^{\text {Int. }} \phi u_{R_{j}}^{\text {Int. }}+Y_{i j}^{l} \bar{L}_{L_{i}}^{\text {It. }} \phi l_{R_{j}}^{\text {mut. }} \\
& S S B^{*} \rightarrow\left\langle\phi^{0}>=v / \sqrt{2} ; \operatorname{Re}\left(\phi^{0}\right) \rightarrow\left(v+H^{0}\right) / \sqrt{2}\right.
\end{aligned}
$$

$$
\text { With: } \quad \tilde{\phi}=i \sigma_{2} \phi^{*}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) \phi^{*}
$$

$$
L_{M}=M_{i j}^{d} \bar{d}_{L_{j}}^{\text {Int. }} d_{R_{j}}^{\text {Int. }}+M_{i j}^{\overleftarrow{u} u_{L_{j}} \text { Int. } u_{R_{j}}^{\text {Int. }}}+M_{i j}^{l} \bar{l}_{L_{j}}^{\text {Int. }} l_{R_{R_{j}}}^{\text {Int. }}
$$

We made the choice of having the Mass Interaction diagonal
where $M^{f}=(v / \sqrt{2}) Y^{f}$

[^0]

To have mass matrices diagonal and real, we have defined:
The mass eigenstates are:

$$
\begin{array}{lc}
d_{L_{i}}=\left(V_{L}^{d}\right)_{i j} d_{L_{j}}^{\text {Int. }} \quad ; \quad d_{R_{i}}=\left(V_{R}^{d}\right)_{i j} d_{R_{j}}^{\text {Int. }} \\
u_{L_{i}}=\left(V_{L}^{u}\right)_{i j} u_{L_{j}}^{\text {Int. }} ; & u_{R_{i}}=\left(V_{R}^{u}\right)_{i j} u_{R_{j}}^{\text {Int. }} \\
l_{L_{i}}=\left(V_{L}^{d}\right)_{i j} l_{L_{j}}^{\text {Int. }} ; & l_{R_{i}}=\left(V_{R}^{d}\right)_{i j} l_{R_{j}}^{\text {Int. }} \\
v_{L_{i}}=\left(V_{L}^{l}\right)_{i j} v_{L_{j}}^{\text {Int. }} & v_{L_{i}} \text { arbitrary (assuming } v \text { massless) }
\end{array}
$$

In this basis the Lagrangian for the gauge interaction is:

$$
L_{W}=\frac{g}{2} \bar{u}_{L_{h}} \gamma^{\mu}\left(V_{L}^{u} V_{L}^{d \dagger}\right) d_{L_{j}} W_{\mu}^{a}+\text { h.c. }
$$

The coupling is not
anymore universal

Two different way of seeing the charged interactions among quarks

In the basis where : the masses are real and diagonal

In the basis where :
charged interactions are just between members of the same family and CKM is diagonal

If a similar procedure is applied to the lepton sector

Now the neutrino have a mass, it exists a similar matrix in the lepton sector with mixing a CP violation
$L_{W}=\frac{g}{2} \bar{Q}_{L_{i}}^{\text {Int. }} \gamma^{\mu} \sigma^{a} Q_{L_{i}}^{\text {Int }} W_{\mu}^{a} \quad a=1,2,3$
$-L_{B}=g^{\prime}\left[\frac{1}{6} \bar{Q}_{L_{i}}^{\text {Int. }} \gamma^{\mu} 1_{i j} Q_{L_{j}}^{\text {Int. }}+\frac{2}{3} \bar{u}_{R_{i}}^{\text {Int. }} \gamma^{\mu} 1_{i j} u_{R_{j}}^{\text {Int. }}-\frac{1}{3} \bar{d}_{R_{i}}^{\text {Int. }} \gamma^{\mu} 1_{i j} d_{R_{j}}^{\text {Int. }}\right] B_{\mu}$
for the $Z^{0} \quad Z^{\mu}=\cos \vartheta_{W} W_{3}^{\mu}-\sin \vartheta_{W} B^{\mu} ; \tan \vartheta_{W}=g^{\prime} / g$
in the mass basis (example for d_{L})

$$
-L_{Z}=\frac{g}{\cos \vartheta_{W}}\left(-\frac{1}{2}+\frac{1}{3} \sin ^{2} \vartheta_{W}\right) \bar{d}_{L_{i}} \gamma^{\mu}\left(V_{d L}^{\dagger} V_{d L}\right) d_{L_{i}} Z_{\mu}=\frac{g}{\cos \vartheta_{W}}\left(-\frac{1}{2}+\frac{1}{3} \sin ^{2} \vartheta_{W}\right) \bar{d}_{L_{i}} \gamma^{\mu} d_{L_{i}} Z_{\mu}
$$

The neutral currents stay universal, in the mass basis : we do not need extra parameters for their complete description

The mass is a LEFT-RIGHT coupling and has to respect the gauge invariance $\mathrm{SU}(2)_{\mathrm{L}} \times \mathrm{U}(1)_{\mathrm{Y}}$

$$
M^{D}=\left(\begin{array}{llll}
D_{11} & D_{12} & D_{13} \\
D_{21} & D_{22} & D_{23} \\
D_{31} & D_{32} & D_{33}
\end{array}\right) \quad M^{U}=\left(\begin{array}{llll}
U_{11} & U_{12} & U_{13} \\
U_{21} & U_{22} & U_{23} \\
U_{31} & U_{32} & U_{33}
\end{array}\right)
$$

$$
9+9 \text { Complex parameters }
$$

$$
M_{\text {DAAG }}^{D}=\left(\begin{array}{lll}
m_{d} & & \\
& & \\
& m_{s} & \\
& & m_{b}
\end{array}\right) \quad M_{\text {DAAG }}^{U}=\left(\begin{array}{lll}
m_{u} & & \\
& & \\
& m_{c} & \\
& & m_{t}
\end{array}\right)
$$

$$
V(C K M)=V_{L}^{U}\left(V_{L}^{D}\right)^{+}=\binom{4 \text { parameters }}{\lambda, A, p, \eta}
$$

Pattern	U	D	$\left\|V_{u s}\right\|$ (Exp. 0.22)	$\left\|V_{u b}\right\|$ $(E x p .0 .0036)$	$\left\|V_{c b}\right\|$ $($ Exp. 0.040)	
$\begin{aligned} & 1 \\ & M_{7}, M_{3} \end{aligned}$	$\left(\begin{array}{lll}0 & * & 0 \\ * & * & 0 \\ 0 & 0 & *\end{array}\right)$	$\left(\begin{array}{lll}0 & * & 0 \\ * & * & * \\ 0 & * & *\end{array}\right)$	$\begin{aligned} & \sqrt{\frac{m_{d}}{m_{s}}} \pm \sqrt{\frac{m_{u}}{m_{c}}} \\ & (0.17,0.28) \end{aligned}$	$\begin{aligned} & \sqrt{\frac{m_{d} m_{u}}{m_{b} m_{c}}} \\ & 0.0023 \end{aligned}$	$\begin{aligned} & \sqrt{\frac{m_{d}}{m_{b}}} \\ & 0.040 \end{aligned}$	No ($V_{\text {ub }}$)
$\begin{aligned} & 2 \\ & M_{8}, M_{3} \end{aligned}$	$\left(\begin{array}{lll}0 & * & 0 \\ * & 0 & * \\ 0 & * & *\end{array}\right)$	$\left(\begin{array}{lll}0 & * & 0 \\ * & * & * \\ 0 & * & *\end{array}\right)$	$\begin{array}{r} \sqrt{\frac{m_{d}}{m_{s}}} \pm \sqrt{\frac{m_{u}}{m_{c}}} \\ (0.17,0.28) \end{array}$	$\begin{aligned} & \sqrt{\frac{m_{u}}{m_{c}}}\left[\sqrt{\frac{m_{c}}{m_{t}}} \pm \sqrt{\frac{m_{d}}{m_{b}}}\right] \\ & (0.0011,0.0058) \end{aligned}$	$\begin{aligned} & \sqrt{\frac{m_{c}}{m_{t}}} \pm \sqrt{\frac{m_{d}}{m_{b}}} \\ & (0.022,0.10) \end{aligned}$	No ($V_{u b}, V_{c b}$)
3 M_{6}, M_{3}	$\left(\begin{array}{lll}0 & 0 & * \\ 0 & * & 0 \\ * & 0 & *\end{array}\right)$	$\left(\begin{array}{lll}0 & * & 0 \\ * & * & * \\ 0 & * & *\end{array}\right)$	$\begin{aligned} & \sqrt{\frac{m_{d}}{m_{s}}} \\ & 0.22 \end{aligned}$	$\begin{array}{r} \sqrt{\frac{m_{u}}{m_{t}}} \\ 0.0036 \end{array}$	$\begin{gathered} \sqrt{\frac{m_{d}}{m_{b}}} \\ 0.040 \end{gathered}$	OK
4 M_{3}, M_{7}	$\left(\begin{array}{lll}0 & * & 0 \\ * & * & * \\ 0 & * & *\end{array}\right)$	$\left(\begin{array}{lll}0 & * & 0 \\ * & * & 0 \\ 0 & 0 & *\end{array}\right)$	$\begin{array}{r} \sqrt{\frac{m_{d}}{m_{s}}} \pm \sqrt{\frac{m_{u}}{m_{c}}} \\ (0.17,0.28) \end{array}$	$\begin{aligned} & \sqrt{\frac{m_{u}^{2}}{m_{c} m_{t}}} \\ & 0.00021 \end{aligned}$	$\begin{array}{r} \sqrt{\frac{m_{u}}{m_{t}}} \\ 0.0036 \end{array}$	No ($V_{u b}, V_{c b}$)
5 M_{2}, M_{7}	$\left(\begin{array}{lll}0 & 0 & * \\ 0 & * & * \\ * & * & *\end{array}\right)$	$\left(\begin{array}{lll}0 & * & 0 \\ * & * & 0 \\ 0 & 0 & *\end{array}\right)$	$\begin{aligned} & \sqrt{\frac{m_{d}}{m_{s}}} \pm \frac{m_{u}}{m_{c}} \\ & (0.22,0.23) \end{aligned}$	$\begin{gathered} \sqrt{\frac{m_{u}}{m_{t}}} \\ 0.0036 \end{gathered}$	$\begin{aligned} & \sqrt{\frac{m_{u}}{m_{t}}} \\ & 0.0036 \end{aligned}$	No ($V_{c b}$)

Pattem	U	D	$\left\|V_{w s}\right\|$ (Exp 0. 22)	$\left\|V_{\text {wit }}\right\|$ (Exp, 0.0036)	$\left\|V_{s t}\right\|$ (Exp, 0.040)	
M_{1}, M_{7}	$\left(\begin{array}{lll}0 & * & * \\ * & * & * \\ * & * & *\end{array}\right)$	$\left(\begin{array}{lll}0 & * & 0 \\ * & * & 0 \\ 0 & 0 & *\end{array}\right)$	$\begin{aligned} & \sqrt{\frac{m_{e}}{m_{s}}} \pm \sqrt{\frac{m_{u}}{m_{e}}} \\ & (0.17,0.28) \end{aligned}$	$\begin{aligned} & \sqrt{\frac{m_{u}}{m_{t}}} \\ & 0.0036 \end{aligned}$	$\begin{aligned} & \sqrt{\frac{m_{\mathrm{e}}}{m_{t}}} \\ & 0.0036 \end{aligned}$	No ($V_{\text {cb }}$)
M_{2}, M_{3}	$\left(\begin{array}{lll}0 & 0 & * \\ 0 & * & * \\ * & * & *\end{array}\right)$	$\left(\begin{array}{lll}0 & * & 0 \\ * & * & * \\ 0 & * & *\end{array}\right)$	$\begin{gathered} \sqrt{\frac{m_{d}}{m_{s}}} \\ 0.22 \end{gathered}$	$\begin{aligned} & \sqrt{\frac{m_{u}}{m_{t}}} \\ & 0.0036 \end{aligned}$	$\sqrt{\frac{m_{d}}{m_{s}}} \pm \sqrt{\frac{m_{u}}{m_{t}}}$ (0.036,0.043)	OX
$\begin{aligned} & 3 \\ & M_{2}, M_{4} \end{aligned}$	$\left(\begin{array}{lll}0 & 0 & * \\ 0 & * & * \\ * & * & *\end{array}\right)$	$\left(\begin{array}{lll}0 & * & * \\ * & * & 0 \\ * & 0 & *\end{array}\right)$	$\begin{aligned} & \sqrt{\frac{m_{d}}{m_{s}}} \\ & 0.22 \end{aligned}$	$\sqrt{\frac{m_{s} m_{s}}{2 m_{s}^{2}}} \pm \sqrt{\frac{m_{u}}{m_{e}}}$ (0.0013,0.0085)	$\begin{aligned} & \sqrt{\frac{m_{z}}{m_{z}}} \\ & 0.0036 \end{aligned}$	No ($V_{\text {cb }}$)
M_{3}, M_{4}	$\left(\begin{array}{lll}0 & * & 0 \\ * & * & * \\ 0 & * & *\end{array}\right)$	$\left(\begin{array}{lll}0 & * & * \\ * & * & 0 \\ * & 0 & *\end{array}\right)$	$\begin{aligned} & \sqrt{\frac{m_{d}}{m_{s}}} \pm \sqrt{\frac{m_{e}}{m_{e}}} \\ & (0.17,0.28) \end{aligned}$	$\sqrt{\frac{m_{d} m_{s}}{2 m_{s}^{2}}} \pm \sqrt{\frac{m_{s}^{2}}{m_{\varepsilon} m_{e}}}$ (0.0047, 0.0051)	$\begin{aligned} & \sqrt{\frac{m_{z}}{m_{t}}} \\ & 0.0036 \end{aligned}$	$\mathrm{No}\left(V_{\text {ut }}, V_{\text {ct }}\right)$
$\begin{aligned} & 5 \\ & M_{4}, M_{3} \end{aligned}$	$\left(\begin{array}{lll}0 & * & * \\ * & * & 0 \\ * & 0 & *\end{array}\right)$	$\left(\begin{array}{lll}0 & * & 0 \\ * & * & * \\ 0 & * & *\end{array}\right)$	$\sqrt{\frac{m_{d}}{m_{s}}} \pm \sqrt{\frac{m_{z}}{m_{s}}}$ (0.22,0.23)	$\begin{aligned} & \sqrt{\frac{m_{u}}{m_{i}}} \\ & 0.0036 \end{aligned}$	$\begin{aligned} & \sqrt{\frac{m_{d}}{m_{e}}} \\ & 0.040 \end{aligned}$	OK
${ }^{6} M_{5}, M_{3}$	$\left(\begin{array}{lll}0 & * & * \\ * & 0 & * \\ * & * & *\end{array}\right)$	$\left(\begin{array}{lll}0 & * & 0 \\ * & * & * \\ 0 & * & *\end{array}\right)$	$\sqrt{\frac{m_{s}}{m_{s}}} \pm \sqrt{\frac{2 m_{u}}{m_{t}}}$ (0.22,0.23)	$\begin{aligned} & \sqrt{\frac{m_{u}}{m_{i}}} \\ & 0.0036 \end{aligned}$	$\sqrt{\frac{m_{\varepsilon}}{m_{t}}} \pm \sqrt{\frac{m_{d}}{m_{s}}}$ (0.022,0.10)	$?\left(V_{c b}\right)$
M_{6}, M_{1}	$\left(\begin{array}{lll}0 & 0 & * \\ 0 & * & 0 \\ * & 0 & *\end{array}\right)$	$\left(\begin{array}{lll}0 & * & * \\ * & * & * \\ * & * & *\end{array}\right)$	$\begin{aligned} & \sqrt{\frac{m_{d}}{m_{s}}} \\ & 0.22 \end{aligned}$	$\sqrt{\frac{m_{u}}{m_{t}}} \pm 2 \sqrt{\frac{m_{d}{ }^{2}}{m_{s} m_{\mathrm{e}}}}$ (0.014,0.021)	$\begin{aligned} & \sqrt{\frac{m_{d}}{m_{\mathrm{s}}}} \\ & 0.040 \end{aligned}$	No ($V_{\text {wb }}$)
M_{7}, M_{1}	$\left(\begin{array}{lll}0 & * & 0 \\ * & * & 0 \\ 0 & 0 & *\end{array}\right)$	$\left(\begin{array}{lll}0 & * & * \\ * & * & * \\ * & * & *\end{array}\right)$	$\begin{aligned} & \sqrt{\frac{m_{d}}{m_{s}}} \pm \sqrt{\frac{m_{u}}{m_{e}}} \\ & \\ & (0.17,0.28) \end{aligned}$	$2 \sqrt{\frac{m_{d}{ }^{2}}{m_{z} m_{e}}} \pm \sqrt{\frac{m_{d} m_{e}}{m_{e} m_{e}}}$ (0.015,0.020)	$\begin{aligned} & \sqrt{\frac{m_{d}}{m_{e}}} \\ & 0.040 \end{aligned}$	No ($V_{\text {wb }}$)
${ }^{9} M_{8}, M_{1}$	$\left(\begin{array}{lll}0 & * & 0 \\ * & 0 & * \\ 0 & * & *\end{array}\right)$	$\left(\begin{array}{lll}0 & * & * \\ * & * & * \\ * & * & *\end{array}\right)$	$\sqrt{\frac{m_{s}}{m_{s}}} \pm \sqrt{\frac{m_{u}}{m_{t}}}$ (0.17,0.28)	$2 \sqrt{\frac{m_{d}{ }^{2}}{m_{z} m_{s}}} \pm \sqrt{\frac{m_{d} m_{e}}{m_{e} m_{e}}}$ (0.015,0.020)	$\sqrt{\frac{m_{e}}{m_{t}}} \pm \sqrt{\frac{m_{d}}{m_{s}}}$ (0.022,0.10)	

The matrix $\left(V_{u L} V_{d L}^{\dagger}\right)$ is the mixing matrix for 2 quark generations. It is a 2×2 unitary matrix. As such, it generally contains 4 parameters, of which one can be chosen as a real angle, θ_{C}, and 3 are phases:

$$
\left(V_{u L} V_{d L}^{\dagger}\right)=\left(\begin{array}{cc}
\cos \theta_{C} e^{i \alpha} & \sin \theta_{C} e^{i \beta} \tag{4.11}\\
-\sin \theta_{C} e^{i \gamma} & \cos \theta_{C} e^{i(-\alpha+\beta+\gamma)}
\end{array}\right) .
$$

By the transformation

$$
\begin{equation*}
\left(V_{u L} V_{d L}^{\dagger}\right) \rightarrow V=P_{u}\left(V_{u L} V_{d L}^{\dagger}\right) P_{d}^{*} \tag{4.12}
\end{equation*}
$$

with

$$
P_{u}=\left(\begin{array}{cc}
e^{-i \alpha} & \tag{4.13}\\
& e^{-i \gamma}
\end{array}\right), \quad P_{d}=\left(\begin{array}{ll}
1 & \\
& e^{i(-\alpha+\beta)}
\end{array}\right),
$$

we eliminate the three phases from the mixing matrix. (We redefine the mass eigenstates $u_{L, R} \rightarrow P_{u} u_{L, R}$ and $d_{L, R} \rightarrow P_{d} d_{L, R}$, so that the mass matrices remain unchanged. In particular, they remain real.) Notice that there are three independent phase differences between the elements of P_{u} and those of P_{d}, and three phases in $\left(V_{u L} V_{d L}^{\dagger}\right)$. Consequently, there are no physically meaningful phases in V, and hence no $C P$ violation:*

$$
V=\left(\begin{array}{cc}
\cos \theta_{C} & \sin \theta_{C} \tag{4.14}\\
-\sin \theta_{C} & \cos \theta_{C}
\end{array}\right) .
$$

For two generations, V is called the Cabibbo matrix [1]. If $\sin \theta_{C}$ of (4.14) is different from zero, then the $W^{ \pm}$interactions mediate generation-changing currents.

$$
L_{S M}=L_{\text {Kinetic }}+L_{\text {Gigs }}+L_{\text {Yukewa }}
$$

Recap

$$
\begin{aligned}
& \left.-L_{\text {Yuk }}=Y_{i j}^{d} \overline{\left(u_{L}^{I}\right.}, \overline{d_{L}^{I}}\right)_{i}\binom{\varphi^{+}}{\varphi^{0}} d_{R j}^{I}+\ldots \\
& L_{\text {Kinetic }}=\frac{g}{\sqrt{2}} \overline{u_{L i}^{I}} \gamma^{\mu} W_{\mu}^{-} d_{L i}^{I}+\frac{g}{\sqrt{2}} \overline{d_{L i}^{I}} \gamma^{\mu} W_{\mu}^{+} u_{L i}^{I}+\ldots
\end{aligned}
$$

Diagonalize Yukawa matrix Y_{ij}

- Mass terms
- Quarks rotate
- Off diagonal terms in charged current couplings

$$
\left(\begin{array}{c}
d^{I} \\
s^{I} \\
b^{I}
\end{array}\right) \rightarrow V_{\text {СКМ }}\left(\begin{array}{c}
d \\
s \\
b
\end{array}\right)
$$

$$
L_{S M}=L_{\text {CKM }}+L_{\text {figs }}+L_{\text {Mass }}^{14}
$$

$$
\begin{aligned}
& L_{\text {СКМ }}=\frac{g}{\sqrt{2}} \bar{u}_{i} \gamma^{\mu} W_{\mu}^{-} V_{i j}\left(1-\gamma^{5}\right) d_{j}+\frac{g}{\sqrt{2}} \bar{d}_{j} \gamma^{\mu} W_{\mu}^{+} V_{i j}^{*}\left(1-\gamma^{5}\right) u_{i}+\ldots
\end{aligned}
$$

$\mathrm{M}($ diag $)$ is unchanged if $\quad V_{L}^{\prime f}=P^{f} V_{L}^{f} \quad ; \quad V_{R}^{\prime f}=P^{f} V_{R}^{f} \quad V(C K M)=P^{u} V\left(C K M^{\prime}\right) P^{* d}$
$\mathrm{Pf}^{\mathrm{f}}=$ phase matrix

$$
\begin{aligned}
& V=\left(\begin{array}{ll}
V_{11} & V_{12} \\
V_{21} & V_{22}
\end{array}\right)=\left(\begin{array}{cc}
e^{-i \varphi_{1}} & 0 \\
0 & e^{-i \varphi_{2}}
\end{array}\right)\left(\begin{array}{ll}
V_{11}^{\prime} & V_{12}^{\prime} \\
V_{21}^{\prime} & V_{22}^{\prime}
\end{array}\right)\left(\begin{array}{cc}
e^{-i x_{1}} & 0 \\
0 & e^{-i \chi_{2}}
\end{array}\right)=\left(\begin{array}{l}
V_{11}^{\prime} e^{-i\left(\varphi_{1}-x_{1}\right)} \\
V_{12}^{\prime} e^{-i\left(\varphi_{1}-x_{2}\right)} \\
V_{21}^{\prime} e^{-i\left(\varphi_{2}-x_{1}\right)} \\
V_{22}^{\prime} e^{-i\left(\varphi_{2}-x_{2}\right)}
\end{array}\right) \\
& \underset{\substack{\text { Redifine the euarkfield }}}{u \rightarrow i \phi_{1}} \quad V_{11} e^{i \phi_{1}} e^{-i\left(\varphi_{1}-\chi_{1}\right)} \quad \text { I choose } \varphi_{1}-\chi_{1} \text { such than } V_{11} \text { real } \\
& \text { Redifine the quark field } \\
& \text { I choose } \varphi_{1}-\chi_{2} \text { such than } V_{12} \text { real } \\
& \text { I choose } \varphi_{2}-\chi_{1} \text { such than } V_{21} \text { real } \\
& \text { BUT: } \quad\left(\varphi_{2}-\chi_{2}\right)=\left(\varphi_{2}-\chi_{1}\right)+\left(\varphi_{1}-\chi_{2}\right)-\left(\varphi_{1}-\chi_{1}\right)
\end{aligned}
$$

I cannot play the same game with all four fields but only with 3 over 4

(2n-1) irreducible phases

APPENDIX III

JARSLOG DISCRIMINANT

UT area and condition for CP violation (formal)

The standard representation of the CKM matrix is:

$$
V=\left(\begin{array}{lll}
V_{u d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right)=\left(\begin{array}{ccc}
c_{12} c_{13} & s_{12} c_{13} & s_{13} e^{-i \delta} \\
-s_{12} c_{23}-c_{12} s_{23} s_{13} e^{i \delta} & c_{12} c_{23}-s_{12} c_{23} s_{13} e^{i \delta} & s_{23} c_{13} \\
s_{12} s_{23}-c_{12} c_{23} s_{13} e^{i \delta} & -c_{12} s_{23}-s_{12} c_{23} s_{13} e^{i \delta} & c_{23} c_{13}
\end{array}\right) \quad \begin{gathered}
c_{i j} \equiv \cos \theta_{i j} \\
s_{i j} \equiv \sin \theta_{i j}
\end{gathered}
$$

However, many representations are possible. What are the invariants under re-phasing?

- Simplest: $U_{\alpha i}=\left|V_{\alpha i}\right|^{2}$ is independent of quark re-phasing
- Next simplest: Quartets: $Q_{\alpha i \beta j}=V_{\alpha i} V_{\beta j} V_{\alpha j}{ }^{*} V_{\beta i}{ }^{*}$ with $\alpha \neq \beta$ and $i \neq j$
-"Each quark phase appears with and without *"
- $V^{+} V=1$: Unitarity triangle: $V_{u d} V_{c d}{ }^{*}+V_{u s} V_{c s}{ }^{*}+V_{u b} V_{c b}{ }^{*}=0$
-Multiply the equation by $V_{u s}{ }^{*} V_{c s}$ and take the imaginary part:
$-\operatorname{Im}\left(V_{u s}{ }^{*} V_{c s} V_{u d} V_{c d}{ }^{*}\right)=-\operatorname{Im}\left(V_{u s}{ }^{*} V_{c s} V_{u b} V_{c b}{ }^{*}\right)$
$-J=\operatorname{Im} Q_{u d c s}=-\operatorname{Im} Q_{u b c s}$
-The imaginary part of each Quartet combination is the same (up to a sign)
-In fact it is equal to $2 x$ the surface of the unitarity triangle

$$
\begin{aligned}
\text { Area } & =1 / 2\left|\mathrm{~V}_{\mathrm{cd}}\right|\left|\mathrm{V}_{\mathrm{cb}}\right| \mathrm{h} ; \mathrm{h}=\left|\mathrm{V}_{\mathrm{ud}}\right|\left|\mathrm{V}_{\mathrm{ub}}\right| \sin \arg \left(-\mathrm{V}_{\mathrm{ud}} \mathrm{~V}_{\mathrm{cb}} \mathrm{~V}_{\mathrm{ub}}{ }^{*} \mathrm{~V}_{\mathrm{cb}}^{*}\right) \mid \\
& \left.=1 / 2\left|I \mathrm{~m}\left(\mathrm{~V}_{\mathrm{ud}} \mathrm{~V}_{\mathrm{cb}} \mathrm{~V}_{\mathrm{ub}}{ }^{*} \mathrm{~V}_{\mathrm{cb}}^{*}\right)\right|\right) \mid
\end{aligned}
$$

$\bullet \operatorname{lm}\left[V_{\alpha i} V_{\beta j} V_{\alpha j}{ }^{*} V_{\beta i}{ }^{*}\right]=J \sum \varepsilon_{\alpha \beta \gamma} \varepsilon_{i j k}$ where J is the universal Jarlskog invariant
-Amount of CP Violation is proportional to J

Using Standard Parametrization of CKM:

$$
\begin{aligned}
& V=\left(\begin{array}{ccc}
c_{12} c_{13} & s_{12} c_{13} & s_{13} e^{-i \delta} \\
-s_{12} c_{23}-c_{12} s_{23} s_{13} e^{i \delta} & c_{12} c_{23}-s_{12} c_{23} s_{13} e^{i \delta} & s_{23} c_{13} \\
s_{12} s_{23}-c_{12} c_{23} s_{13} e^{i \delta} & -c_{12} s_{23}-s_{12} c_{23} s_{13} e^{i \delta} & c_{23} c_{13}
\end{array}\right) \quad \begin{array}{c}
c_{i j} \equiv \cos \theta_{i j} \\
s_{i j} \equiv \sin \theta_{i j} \\
\left.J \equiv c_{12} c_{23} c_{13}^{2} s_{12} s_{23} s_{13} \sin \delta=(3.0 \pm 0.3) \times 10^{-5}=\lambda^{6} A^{2} \eta \quad \text { (eg.: } J=\operatorname{lm}\left(V_{u s} V_{c b} v_{u b} *^{*} V_{c s}^{*}\right)\right)
\end{array} .
\end{aligned}
$$

(The maximal value J might have $=1 /(6 \sqrt{ } 3) \sim 0.1)$

$$
\begin{aligned}
& L_{W}=\frac{g}{2} \bar{Q}_{L_{i}}^{\text {Int. }} \gamma^{\mu} \sigma^{a} Q_{L_{i}}^{\text {Int }} W_{\mu}^{a} \quad a=1,2,3 \quad Q_{L_{i}}^{\text {Int. }}=\binom{u_{L_{i}}}{d_{L_{i}}} L_{L_{i}}^{\text {Int. }}=\binom{v_{L_{i}}}{l_{L_{i}}} \\
& L_{M}=M_{i j}^{d} \bar{d}_{L_{j}}^{\text {Int. }} d_{R_{j}}^{\text {nnt. }}+M_{i j}^{u}-u_{L_{j}}^{\text {Int. }} u_{R_{j}}^{\text {Int. }}+M_{i j}^{l} \bar{l}_{L_{j}}^{\text {Int. }} l_{R_{j}}^{\text {Int. }} \quad \text { where } \quad M^{f}=(v / \sqrt{2}) Y^{f}
\end{aligned}
$$

Accept that (or verify) the most general CP transformation which leave the lagrangian invariant is

$$
\begin{array}{lcc}
d_{L}^{\text {Int. }}->W_{L} C d_{L}^{\text {Int.* }} ; & ; & d_{R}^{\text {Int. }}->W_{R}^{d} C d_{R}^{\text {Int.* }} \\
u_{L}^{\text {Int. }}->W_{L} C u_{L}^{\text {Int.* }} ; & u_{R}^{\text {Int. }}->W_{R}^{u} C u_{R}^{\text {Int.*}} \\
\left(C=i \gamma^{2} \gamma^{0} \quad W_{L}, W_{R}^{u}, W_{R}^{d}\right. & \text { unitarity matrices })
\end{array}
$$

In order to have L_{M} to be invariant under $C P$, the M matrices should satisfy the following relations :

$$
\begin{array}{lll}
W_{L}^{\dagger} M_{u} W_{R}^{u}=M_{u}^{*} & W_{L}^{\dagger} H_{u} W_{L}=H_{u}^{*} & \text { where } H_{u}=M_{u} M_{u}^{\dagger} \text { and } W_{R}^{u}=M_{u}^{\dagger} W_{L} \\
W_{L}^{\dagger} M_{d} W_{R}^{d}=M_{d}^{*} & W_{L}^{\dagger} H_{d} W_{L}=H_{d}^{*} & \text { where } H_{d}=M_{d} M_{d}^{\dagger} \text { and } W_{R}^{d}=M_{d}^{\dagger} W_{L}
\end{array}
$$

in this form, these conditions are of little use. A way of doing is :

$$
\begin{aligned}
W_{L}^{\dagger} H_{u} H_{d} W_{L} & =H_{u}^{T} H_{d}^{T} \\
W_{L}^{\dagger} H_{d} H_{u} W_{L} & =H_{d}^{T} H_{u}^{T}
\end{aligned}
$$

-The existence of charged current contrains u_{L}, d_{L} to trasform in the same way under $C P$ while the absence of right charged current allow u_{R}, d_{R} to tranform differentely under CP

Substracting these two equations

$$
W_{L}^{\dagger}\left[H_{u} H_{d}\right] W_{L}=-\left[H_{u} H_{d}\right]^{T}
$$

If one evaluates the traces of both sides, they vanish identically and no constraints is obtained. In order to obtain no trivial contrain, we have to multiply the previous equation a odd number of times :

$$
W_{L}^{\dagger}\left[H_{u} H_{d}\right]^{r} W_{L}=-\left\{\left[H_{u} H_{d}\right]^{r}\right\}^{T} \quad(r \text { odd })
$$

Taking the traces one obtain :

$$
\operatorname{Tr}\left[H_{u} H_{d}\right]^{r}=0
$$

For $n=1$, and $n=2$ the previous equations are automatically satified for harbitrary hermitian H matrices (it is the same as the counting of the physical phase of the CKM matrix). For $n=3$ or larger the previous eq. provides non trivial contraints on the H matrix. It can be shown that for $\mathrm{n}=3$ it implies

$$
\begin{aligned}
& \operatorname{Tr}\left[H_{u} H_{d}\right]^{3}=6 \Delta_{21} \Delta_{31} \Delta_{32} \operatorname{Im} Q \\
& \Delta_{21}=\left(m_{s}^{2}-m_{d}^{2}\right) \times\left(m_{c}^{2}-m_{u}^{2}\right) \\
& \Delta_{31}=\left(m_{b}^{2}-m_{d}^{2}\right) \times\left(m_{t}^{2}-m_{u}^{2}\right) \\
& \Delta_{32}=\left(m_{b}^{2}-m_{s}^{2}\right) \times\left(m_{t}^{2}-m_{c}^{2}\right)
\end{aligned}
$$

CP violation vanish in the limit where any two quarks of the same charge become degenerate. But it does not necessarily vanish in the limit where one quark is massless $\left(m_{u}=0\right)$ or even in the chiral limit $\left(m_{u}=m_{d}=0\right)$

CP violation vanish if the triangle has area equal to 0

CP Violation in the Standard Model

Requirements for CP violation

$$
\begin{array}{|c|}
\left(m_{t}^{2}-m_{c}^{2}\right)\left(m_{t}^{2}-m_{u}^{2}\right)\left(m_{c}^{2}-m_{u}^{2}\right) \\
\times\left(m_{b}^{2}-m_{s}^{2}\right)\left(m_{b}^{2}-m_{d}^{2}\right)\left(m_{s}^{2}-m_{d}^{2}\right) \times J_{C P} \neq 0
\end{array}
$$

where

$$
J_{C P}=\left|\operatorname{lm}\left\{V_{i \alpha} V_{j \beta} V_{i \beta}^{*} V_{j \alpha}^{*}\right\}\right|(i \neq j, \alpha \neq \beta)
$$

Jarlskog determinant

Using above parameterizations

$$
J_{C P}=s_{12} s_{13} s_{23} c_{12} c_{23} c_{13} \sin \delta=\lambda^{6} A^{2} \eta=O\left(10^{-5}\right)
$$

CP violation is small in the Standard Model

APPENDIX III

Experimental techniques

for B Physics

Introduction to mixing and CP phenomena

Pairs of self-conjugate mesons that can be transformed to each other via flavour changing weak interaction transitions are:

$$
\left|K^{0}\right\rangle=|\bar{s} d\rangle \quad\left|D^{0}\right\rangle=|c \bar{u}\rangle \quad\left|B_{d}^{0}\right\rangle=|\bar{b} d\rangle \quad\left|B_{s}^{0}\right\rangle=|\bar{b} s\rangle
$$

They are flavour eigenstates with definite quark content

- useful to understand particle production and decay

$$
\left|B^{0}\right\rangle,\left|\bar{B}^{0}\right\rangle
$$

Apart from the flavour eigenstates there are mass eigenstates:

- eigenstates of the Hamiltonian
- states of definite mass and lifetime

$$
\left|B_{L}\right\rangle,\left|B_{H}\right\rangle
$$

$$
\begin{array}{ll}
\left|B_{L}\right\rangle=p\left|B^{0}\right\rangle+q\left|\bar{B}^{0}\right\rangle & \left|B_{L}\right\rangle,\left|B_{H}\right\rangle: \text { mass eigenstates } \\
\left|B_{H}\right\rangle=p\left|B^{0}\right\rangle-q\left|\bar{B}^{0}\right\rangle & \left|B^{0}\right\rangle,\left|\bar{B}^{0}\right\rangle: \text { flavour eigenstates }
\end{array}
$$

Since flavour eigenstates are not mass eigenstates, the flavour eigenstates are mixed with one another as they propagate through space and time
$\left|B^{0}(t)\right\rangle\left(\left|\bar{B}^{0}(t)\right\rangle\right) \quad$: the flavour state of a B meson that was a $B^{0}\left(\bar{B}^{0}\right)$ at $t=0$.
Schrödinger equation governs time evolution of the $B^{0}-\bar{B}^{0}$ System:

$$
i \frac{d}{d t}\binom{\left|B^{0}(t)\right\rangle}{\left|\bar{B}^{0}(t)\right\rangle}=\underbrace{\left(M-\frac{i}{2} \Gamma\right)}\binom{\left|B^{0}(t)\right\rangle}{\left|\bar{B}^{0}(t)\right\rangle} \quad \begin{array}{lll}
T \text { conservation } & \Rightarrow\left|H_{21}\right|=\left|H_{12}\right| \\
C P \text { conservation } & \Rightarrow\left|H_{21}\right|=\left|H_{12}\right|, H_{11}=H_{22} \\
C P T \text { conservation } & \Rightarrow & H_{11}=H_{22}
\end{array}
$$

=> \boldsymbol{H} (effective Hamiltonian)
$H\left|B_{L}^{0}\right\rangle=\left(M_{L}-i / 2 \Gamma_{L}\right)\left|B_{L}^{0}\right\rangle$
$H\left|B_{H}^{0}\right\rangle=\left(M_{H}-i / 2 \Gamma_{H}\right)\left|B_{H}^{0}\right\rangle$
eigenvalues

Mass states are eigenvectors of \boldsymbol{H}

$$
\begin{aligned}
\Delta m_{B} & \equiv M_{H}-M_{l} \approx 2\left|M_{12}\right| \\
\Delta \Gamma_{B} & \equiv \Gamma_{H}-\Gamma_{L}=2 \operatorname{Re}\left(M_{12} \Gamma_{12}^{*}\right) /\left|M_{12}\right| \\
m_{B} & \equiv \frac{M_{H}+M_{L}}{2} \\
\Gamma_{B} & \equiv \frac{\Gamma_{H}+\Gamma_{L}}{2} \quad \frac{q}{p} \equiv-\sqrt{\frac{H_{21}}{H_{12}}}=\frac{\Delta m_{B}+i \Delta \Gamma_{B} / 2}{2 M_{12}-i \Gamma_{12}}
\end{aligned}
$$

The time evolution of the mass eigenstates is governed by their eigenvalues :

$$
\begin{aligned}
&\left|B_{H, L}(t)\right\rangle=e^{-i\left(M_{H, L}-i \frac{\Gamma_{H, L}}{2}\right) t}\left|B_{H, L}(t=0)\right\rangle+\quad\left|B_{L}\right\rangle=p\left|B^{0}\right\rangle+q\left|\bar{B}^{0}\right\rangle \\
&\left|B_{H}\right\rangle=p\left|B^{0}\right\rangle-q\left|\bar{B}^{0}\right\rangle
\end{aligned}
$$

Time evolution of the physical states $\left.\left|B^{0}(t)\right\rangle\right\rangle\left(\left|B^{0}(t)\right\rangle\right)$

$$
\begin{aligned}
&\left|B^{0}(t)\right\rangle=g_{+}(t)\left|B^{0}\right\rangle+\frac{q}{p} g_{-}(t)\left|\bar{B}^{0}\right\rangle g_{+}(t)=e^{-\left\{\left(m_{B}-\frac{\Gamma_{H}}{2}\right) t\right.}\left[\cosh \frac{\Delta \Gamma t}{4} \cos \frac{\Delta m t}{2}-i \sinh \frac{\Delta \Gamma t}{4} \sin \frac{\Delta m t}{2}\right] \\
&\left|\bar{B}^{0}(t)\right\rangle=\frac{p}{q} g_{-}(t)\left|B^{0}\right\rangle+g_{+}(t)\left|\bar{B}^{0}\right\rangle g_{-}(t)=e^{-\left\{\left(m_{B}-\frac{\Gamma_{H}}{2}\right) t\right.}\left[-\sinh \frac{\Delta \Gamma t}{4} \sin \frac{\Delta m t}{2}+i \cosh \frac{\Delta \Gamma t}{4} \cos \frac{\Delta m t}{2}\right] \\
& \text { More general formulae }
\end{aligned}
$$

When $\Delta \Gamma$ is small they simplify to :

$$
\begin{aligned}
& \left|B^{0}(t)\right\rangle=e^{-i m_{B} t} e^{-\Gamma_{g} t / 2}\left(\cos \frac{\Delta m_{B} t}{2}\left|B^{0}\right\rangle+i \frac{q}{p} \sin \frac{\Delta m_{B} t}{2}\left|\bar{B}^{0}\right\rangle\right) \\
& \left|\bar{B}^{0}(t)\right\rangle=e^{-i m_{s} t} e^{-\Gamma_{B} t / 2}\left(\cos \frac{\Delta m_{B} t}{2}\left|\bar{B}^{0}\right\rangle+i \frac{p}{q} \sin \frac{\Delta m_{B} t}{2}\left|B^{0}\right\rangle\right)
\end{aligned}
$$

$$
\begin{aligned}
\Delta m_{B} & \equiv M_{H}-M_{L} \\
\Delta \Gamma_{B} & \equiv \Gamma_{H}-\Gamma_{L} \\
m_{B} & \equiv \frac{M_{H}+M_{L}}{2} \\
\Gamma_{B} & \equiv \frac{\Gamma_{H}+\Gamma_{L}}{2} \\
\frac{q}{p}= & \frac{\Delta m+i \Delta \Gamma / 2}{2 M_{12}-i \Gamma_{12}}
\end{aligned}
$$

Probability to observe in the state $f \mathrm{a}^{0}$ produced at time $\mathrm{t}=0$:
$\left.P\left(B^{0}(0) \rightarrow f\right)=|\langle f| H| B^{0}(t)\right\rangle\left.\right|^{2}$
Probability to observe in the state \bar{f} a B^{0} produced at time $\mathrm{t}=0$:
$\left.P\left(\bar{B}^{0}(0) \rightarrow f\right)=|\langle f| H| \bar{B}^{0}(t)\right\rangle\left.\right|^{2}$

The two master formulae (having however neglected $\Delta \Gamma$:
$\left.P\left(B^{0}(0) \rightarrow f\right)=\left.\frac{e^{-\Gamma t}}{2}\left\{(1+\cos \Delta m t)|\langle f| H| B^{0}\right\rangle\right|^{2}+(1-\cos \Delta m t)\left|\frac{q}{p}\right|^{2}|\langle f| H| \bar{B}^{0}\right\rangle\left.\right|^{2}$
$\left.-2 \sin \Delta m t \times \operatorname{Im}\left(\frac{q}{p}\langle f| H\left|\bar{B}^{0}\right\rangle\langle f| H\left|B^{0}\right\rangle^{*}\right)\right\}$
$\left.P\left(\bar{B}^{0}(0) \rightarrow f\right)=\left.\frac{e^{-\Gamma t}}{2}\left\{(1+\cos \Delta m t)|\langle f| H| \bar{B}^{0}\right\rangle\right|^{2}+(1-\cos \Delta m t)\left|\frac{p}{q}\right|^{2}|\langle f| H| B^{0}\right\rangle\left.\right|^{2}$
$\left.-2 \sin \Delta m t \times \operatorname{Im}\left(\frac{p}{q} \times\langle f| H\left|B^{0}\right\rangle\langle f| H\left|\bar{B}^{0}\right\rangle^{*}\right)\right\}$

Considering only the mixing :
Starting from a B ${ }^{0}$

$$
\left.\left|\left\langle B^{0}\right| H\right| B^{0}(t)\right\rangle\left.\right|^{2}=\frac{e^{-\Gamma t}}{2}(1+\cos \Delta m t)
$$

CP violation is neglected: $q / p=1$

Starting from a B^{0}

$$
\left.\left|\left\langle\bar{B}^{0}\right| H\right| B^{0}(t)\right\rangle\left.\right|^{2}=\frac{e^{-\Gamma t}}{2}(1-\cos \Delta m t)
$$

If one does not neglect $\Delta \wp\left(\right.$ useful for charm or $\left.\mathrm{B}_{\mathrm{s}}\right)$ the previous formulae become

$$
\frac{e^{-\Gamma t}}{4}(\underbrace{e^{\frac{\Delta \Gamma}{2} t}+e^{-\frac{\Delta \Gamma}{2} t}}_{\cosh \left(\frac{\Delta \Gamma}{2} t\right)} \pm 2 \cos \Delta m t)
$$

So that one finds for the time dependent mixing asymmetry:

$$
A_{\text {mix }}(t) \equiv \frac{N(\text { unmixed })-N(\text { mixed })}{N(\text { unmixed })+N(\text { mixed })}(t)=\frac{\cos (\Delta m t)}{\cosh (\Delta \Gamma t / 2)}
$$

Mixed: $\bar{B}^{0} \rightarrow \mathrm{~B}^{0}$ or $\mathrm{B}^{0} \rightarrow \mathrm{~B}^{0}$ $\cosh (\Delta \Gamma t / 2) \rightarrow 1$ when $\Delta \Gamma \rightarrow 0$

UnMixed : $\mathrm{B}^{0} \rightarrow \mathrm{~B}^{0}$ or $\mathrm{B}^{0} \rightarrow \mathrm{~B}^{0}$
$\cos \Delta m t=\cos \left(\frac{\Delta m}{\Gamma}\right)\left(\frac{t}{\tau}\right) \quad ; \quad x \equiv\left(\frac{\Delta m}{\Gamma}\right) \quad y \equiv\left(\frac{\Delta \Gamma}{2 \Gamma}\right)$
x : the mixing frequency in unit of lifetime $x \gg 1$ rapid oscillation $x \ll 1$ slow oscillation

Different behaviors for the neutral mesons:

	$x=\Delta m / \Gamma$	$y=\Delta \Gamma / \Gamma$
K^{0}	~ 1	~ 1
D^{0}	$10^{-3}-10^{-5}$	$10^{-3}-10^{-5}$
$B_{d}{ }^{0}$	~ 0.75	\sim few $\%$
$B_{s}{ }^{0}$	~ 25	$(10-15) \%$

$$
\cos \Delta m t=\cos \left(\frac{\Delta m}{\Gamma}\right)\left(\frac{t}{\tau}\right) \quad ; \quad x \equiv\left(\frac{\Delta m}{\Gamma}\right)
$$

$x \gg 1$ rapid oscillation x is a number the mixing frequency in unit of lifetime ${ }_{x \ll 1}$ slow oscillation We also define $\quad y \equiv\left(\frac{\Delta \Gamma}{2 \Gamma}\right)$
B_{d}

$$
\left[V_{u d}^{*} V_{c b}\right]^{2} \sim \lambda^{4}
$$

$$
f\left(m_{t}\right)\left[V_{c d}^{*} V_{c b}\right]^{2} \sim m_{c}^{2} \lambda^{6} \text { totally negligible }
$$

$$
\Delta m_{d} / \Gamma_{d} \sim m_{t}^{2} \lambda^{2} \sim \text { large }
$$

$$
\begin{aligned}
& \Delta m_{d} \sim 0.50 \mathrm{ps}^{-1} \\
& 1 / \Gamma_{d} \sim 1.50 \mathrm{ps} \quad \text { Slow oscillations } \\
& x=\Delta m_{d} / \Gamma_{d} \sim 0.75
\end{aligned}
$$

More...

The probability that the meson B^{0} produced (by strong interaction) at $t=0$ transforms (weak interaction) into B^{0} (or stays as a B^{0}) at time t is given by :

$$
P_{B_{q}^{0} \rightarrow B_{q}^{0}\left(\overline{\left.B_{q}^{0}\right)}\right.}=\frac{1}{2} e^{-t / \tau_{q}}\left(1 \pm \cos \Delta m_{q} t\right)
$$

$\Delta \mathrm{m}_{\mathrm{q}}$ can be seen as an oscillation frequency : $1 \mathrm{ps}^{-1}=6.5810^{-4} \mathrm{eV}$

Allow to access fundamental parameters of the Standard Model

(Super) B-factories and LHC

(Super) B-factories :
$\mathrm{E}_{\mathrm{CM}}=10.58 \mathrm{GeV}$

$$
\begin{aligned}
& L=310^{33} \mathrm{~cm}^{-2} \mathrm{~s}^{-1} \\
& \ldots 10^{36} \mathrm{~cm}^{-2} \mathrm{~s}^{-1} \text { (Super B) }
\end{aligned}
$$

e+e-

3 km

PEP II Low Energy Ring (LER)

Circ 2.2 km

LHC: $\mathrm{E}_{\mathrm{Cm}}=7,8 \mathrm{TeV}$, (later 14 TeV) $410^{32} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$ (design was 210^{32})
$\ldots 10^{33} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$ (upgrade)

sketch of an event at B-factory and at LHCb

$$
\text { - } e^{-} \quad e^{+} \bigotimes
$$

(Super) B-factories

$r(1 S), r(2 S)$ and $r(3 S)$: not enough

 mass to decay into BB pair

Hadronic cross sections at $\sqrt{s}=10.58 \mathrm{GeV}$:

h	$\sigma[\mathrm{nb}]$
b	1.05
c	1.3
$\mathrm{~d}, \mathrm{~s}$	0.3
u	1.4

$$
\begin{aligned}
& r(4 S)->B^{+} B^{-}, B^{0} B^{0} \\
& \text { to approx. } 50 \% \text { each }
\end{aligned}
$$

$\mathrm{e}^{+} \mathrm{e}^{-}->\gamma(4 \mathrm{~S})->B \bar{B}$ at $\sqrt{ }=10.58 \mathrm{GeV}$
Production of coherent $\bar{B} B$ pairs with a cross section of 1.1 nb (over a continuum of $\sim 3 \mathrm{nb}$)

$M(\gamma(4 S))=10.58 \mathrm{Gev}$

$$
B^{0}: B^{+} \approx 1: 1
$$

$M\left(B^{+}, B^{0}\right)=5.28 \mathrm{GeV}$
$M\left(B_{s}\right)=5.37 \mathrm{GeV}>M(\curlyvee(4 \mathrm{~S})) / 2$
($\mathrm{B}^{+}, \mathrm{B}^{0}$) are produced nearly at rest in the $r(4 \mathrm{~S})$
$A B^{0} \overline{B^{0}}$ or $B^{+} B^{-}$coherent pair in the $L=1$ state is produced

$B^{0} \overline{B^{0}}$ or $B^{+} B^{-}$coherent $L=1$ pairs are produced nearly at rest in the $r(4 S)$

$a_{f_{C P}}(t)=\frac{\operatorname{Prob}\left(B^{0}(t) \rightarrow f_{C P}\right)-\operatorname{Prob}\left(\overline{B^{0}}(t) \rightarrow f_{C P}\right)}{\operatorname{Prob}\left(\overline{B^{0}}(t) \rightarrow f_{C P}\right)+\operatorname{Prob}\left(B^{0}(t) \rightarrow f_{C P}\right)}=$
$=C_{f} \cos \Delta m_{d} t+S_{f} \sin \Delta m_{d} t$
$= \pm \sin 2 \beta \sin \Delta m_{d} t \quad$ for $J / \psi, K^{0}$
$t=\dagger\left(B_{1}\right)-\dagger\left(B_{2}\right)$
The decay of the first B starts the clock $\dagger\left(B_{1}\right)$

The decay of the other B stops the clock $\dagger\left(\mathrm{B}_{2}\right)$
tcan be >0 or <0

One should measure t in order to probe CP violation
It was not the case for the observation of B mixing performed at an previous $\gamma(4 \mathrm{~S})$ collider because :
$a_{\text {mixing }}(t)=\cos \Delta m_{d} t$

In the $\gamma(4 \mathrm{~S})$ rest frame $p(B) \sim 300 \mathrm{MeV}: \beta \gamma=.3 / 5.28=0.06$ flight $\sim 30 \mu \mathrm{~m}$ Boost the $\mathrm{r}(4 \mathrm{~S})$!

		$p_{\mathrm{cm}}=p_{\Upsilon(4 S)}$	$=\left(E_{e^{-}}+E_{e^{+}},\left(E_{e^{-}}-E_{e^{+}}\right) \hat{\mathbf{z}}\right)$
KEKB - Belle - Japan.	PEPII - BaBar - US.	$E_{\mathrm{cm}}=\sqrt{4 E_{e^{-}} E_{e^{+}}}$	$=M(\Upsilon(4 S))$

- By measuring Δz, we can follow time dependent effects in B decays.
- distance scale is much smaller than in the kaon decay exp. that first discovered CP

Slightly asymmetric detector

The 2 b -quarks are produced in the same direction along the beam axis

Energy in the CM 8 TeV B energy ~ 100 GeV
$\overline{\mathrm{b}} \quad \overline{\mathrm{b}}$
$q=u, d, s, c$ q_{1}
all types of b-hadrons can be produced:

Incoherent B B production : $\operatorname{B} \mathrm{B}^{0}$ and A B- for example

lifetime of a B : 1500 fs
Drives the detector design :

- ability to reconstruct the B vertex and to measure its decay time
- K/ π discrimination
- μ identification

All this is similar to (super)B-Factories, but with different kinematic ranges ${ }_{1}$

What is not similar to (super)-B-Factories :

$$
\left.\frac{b}{{ }^{\bar{d}} C_{d}} \overline{\boldsymbol{B}}^{o}\left|\frac{b}{\bar{u}} C_{u} B^{-}\right| \frac{b}{{ }^{\bar{s}} C_{s}} \overline{\boldsymbol{B}}_{s}^{o} \right\rvert\, \frac{b}{{ }^{u} \subset_{\frac{u}{d}} \Lambda_{b}^{o}}
$$

All type of b-hadrons are produced at the LHC
Probability that a b quark hadronize a into a $\mathrm{B}_{\mathrm{u}, \mathrm{d}, \mathrm{s}}$ meson or $\mathrm{a} \wedge_{\mathrm{b}}$ baryon.
Important input for BR measurements since most of the measurements are done relative to another well known BR (B-Factories)

Cross sections at 14 TeV :
$\left.\begin{array}{|l|r|}\hline \text { Total } & 100 \mathrm{mb} \\ \text { Inelastic } & 80 \mathrm{mb} \\ c \bar{c} & 3.5 \mathrm{mb} \\ b \bar{b} & 500 \mu \mathrm{~b} \\ \hline\end{array}\right) \times 160$

A trigger is needed to:

- reject the light flavours (u,d,s)
- keep only the interesting events

In 1 every 200 collisions a b-bbar pair is produced
bb production cross section is huge : 290 mb
but the inelastic cross section is about 300 times larger
L limited to $410^{32} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$ to stay with a limited number of primary vertices
LHCb cannot deal with 30-40 interactions as ATLAS/CMS :

collision 2

ATLAS/CMS

Event at LHCb

VELO rz view

In order to record as much data as possible : "Iuminosity leveling"

$$
\begin{aligned}
& \frac{d N}{d t}=L \times \sigma \\
& \rho_{1 / 2}(x, y)=\frac{1}{2 \pi s_{x} s_{y}} e^{-\frac{x^{2}}{2 s_{x}^{2}}} e^{-\frac{y^{2}}{2 s_{y}^{2}}} \\
& \underset{\mathrm{p}}{4 \pi N_{1} N_{2} s_{y}} \\
& \underset{\mathrm{z}}{\mathrm{t}}
\end{aligned}
$$

luminosity decreases as a

except if one moves the particles) : ATLAS CMS beams (LHCb)
bb production cross section is huge : $290 \mu \mathrm{~b}$.... but the inelastic cross section is about 300 times larger Should trigger on interesting events

Max 3 kHz

Physics consequences : signal selection

At the LHC : 'standard procedure' : use the B invariant mass

At B factories : use the additional $Y(4 S)$ constraint. The $\gamma(4 S)$ decays into $2 B$ mesons at rest.

2 variables $\Delta \mathrm{E}$ and m_{ES}
From the lab frame boost all tracks back in the $\mathrm{Y}(4 \mathrm{~S})$ rest frame where :
$\sqrt{s}=2 E_{\text {beam }}^{\star}$
$\Delta E=E_{B}^{\star}-E_{\text {beam }}^{\star}, \quad \sigma_{\Delta}^{2}=\sigma_{E_{B}^{\star}}^{2}+\sigma_{E_{\text {beam }}^{\star}}^{2}$
reconstruction beam energy spread (dominant)

This is similar to what can be obtained from a standard invariant mass plot

However one can also use :

$$
m_{\text {es }}=\sqrt{E_{\text {beam }}^{\star 2}-\boldsymbol{p}_{B}^{\star 2}},
$$

independent of the mass hypothesis of the particles
from detector measurement

$\sigma_{m_{\mathrm{ES}}}^{2} \approx \sigma_{E_{B}^{\star}}^{2}+\left(\frac{p_{B}^{\star}}{m_{B}}\right)^{2} \sigma_{p_{B}^{\star}}^{2} \begin{aligned} & \text { dominated by the } \\ & \text { knowledge } \\ & \text { know energy }\end{aligned}$
 0.06^{2}

Physics consequences : full Breco

At B-Factories all the tracks are from the two B (no hadronization) :
Can reconstruct B then all the rest is from the other one
=> allow to perform very delicate analyses with neutrinos.

Physics consequences : tagging

Tagging : determination of the flavour of the $B(B$ or $\bar{B})$ at the production time

The charge of the lepton or of the kaon gives information on the b :
a high $p_{T}{ }^{1}$ or a K^{-}probably come from a b quark (and thus $a \bar{B}$ meson)
a high $\mathrm{p}_{\mathrm{T}}{ }^{+}$or a $\mathrm{K}+$ probably come from a $\overline{\mathrm{b}}$ quark (and thus a B meson)

Two main techniques : Opposite Side Tagging or Same Side Tagging.

This is opposite side tagging. It can be performed both at B-factories and LHC, but fundamental differences due to the production mechanism

The tagging B

- At B-factories : coherent $\mathrm{B}^{0} \overline{\mathrm{~B}}^{0}$ production
- At LHC if $a \bar{B}^{0}$ is produced, at the same time one can have at the same time a Bs, a B+ , a Λ_{b}
The Bs oscillates many time before decaying and does not keep track of its flavour at the production time : information is lost

> In addition at LHC they are all the fragmentation tracks and the tracks from the other interaction

The fragmentation tracks can however helps the tagging : Same Side Tagging

Search for a track attached to the primary vertex (not to the B decay vertex), close to the B and not too slow
cannot be done at B-factories!

Tagging performances :
$Q=\varepsilon(1-2 \omega)^{2}=\varepsilon D^{2}$ tagging efficiency ε
mistag probability w ('wrong')

QxN : equivalent number of events perfectly tagged

B-Factories typical result (here BaBar)

Category	$(\%)$	$\omega(\%)$	$\mathrm{Q}(\%)$
Lepton	8.6 ± 0.1	3.2 ± 0.4	7.5 ± 0.2
Kaon I	10.9 ± 0.1	4.6 ± 0.5	9.0 ± 0.2
Kaon II	17.1 ± 0.1	15.6 ± 0.5	8.1 ± 0.2
K- π	13.7 ± 0.1	23.7 ± 0.6	3.8 ± 0.2
Pion	14.5 ± 0.1	33.9 ± 0.6	1.7 ± 0.1
Other	10.0 ± 0.1	41.1 ± 0.8	0.3 ± 0.1
Total	$\mathbf{7 4 . 9} \mathbf{4} \mathbf{0 . 2}$		$\mathbf{3 0 . 5} \pm \mathbf{0 . 4}$

LHCb (Tevatron similar)

Taggers	$\varepsilon_{\text {tag }}(\%)$	$\omega(\%)$	$\varepsilon_{\text {tag }} \cdot(1-2 \omega)^{2}(\%)$
μ	4.8 ± 0.1	29.9 ± 0.7	0.77 ± 0.07
e	2.2 ± 0.1	33.2 ± 1.1	0.25 ± 0.04
K	11.6 ± 0.1	38.3 ± 0.5	0.63 ± 0.06
$\mathrm{Q}_{\text {tx }}$	15.1 ± 0.1	40.0 ± 0.4	0.60 ± 0.06

Total : 2.3 \%
SSK tagging adds about 1.3 \%

1000 events reconstructed are equivalent to

- 300 perfectly tagged at B-Factories
- 30 perfectly tagged at LHCb/Tevatron colliders

Putting all together : comparison

	$\sigma(b \bar{b})$	$\sigma($ inel $) /$ $\sigma(b b)$	$\int L d t$	Number of B produced in the detector acceptance		
LHCb	LHCb	$\sim 290 \mu \mathrm{~b}$	~ 300	$1 \mathrm{fb}^{-1}(2011)$ $+2 \mathrm{fb}^{-1}(2012)$ +		$15010^{9} \mathrm{~b}$ bbar pairs (2011)
:---						

But for LHCb

- trigger efficiency : from 90-95 \% efficiency to 30% efficient depending on the mode
- acceptance : depends on the decay mode ($40 \%-20 \%$)
- for mode requiring tagging : a factor $1 / 10$ wrt B-factories for LHCb

1) What is the value of the B lifetime?
2) What is the average path in a detector of a B meson with boost of 10 ?
(2) Do you understand why the lifetime of a D meson is smaller than the lifetime of a B meson ?
(3) Why the B-factory have two asymmetric beams?
3) What is the observable of the meson oscillation ?
(5) x defined as $\cos \Delta m t=\cos \left(\frac{\Delta m}{\Gamma}\right)\left(\frac{t}{\tau}\right) \quad ; \quad x \equiv\left(\frac{\Delta m}{\Gamma}\right)$
x is small for K , intermediate for Bd , large for Bs. Which is the most difficult to measure ?

6
$C P$ violation is observed in K and B and « suspected » in D sector.
Does it come from the same CKM matrix element ?

APPENDIX IV

More on CKM

Unitarity Triangle analysis in the SM:

Unitarity Triangle analysis in the SM:

Some interesting configurations

Tree-level processes: Semileptonic and DK B decays
\rightarrow reference for model building

Inclusive vs Exclusive

Details if you want ot see how it works

UT analysis including new physics

fit simultaneously for the CKM and the NP parameters (generalized UT fit)

- add most general loop NP to all sectors
- use all available experimental info
- find out NP contributions to $\Delta F=2$ transitions
B_{d} and B_{s} mixing amplitudes
(2+2 real parameters):

$$
A_{q}=C_{B_{q}} e^{2 i \phi_{B_{q}}} A_{q}^{S M} e^{2 i \phi_{q}^{S M}}=\left(1+\frac{A_{q}^{N P}}{A_{q}^{S M}} e^{2 i\left(\phi_{q}^{N P}-\phi_{q}^{S M}\right)}\right) A_{q}^{S M} e^{2 i \phi_{q}^{S M}}
$$

$$
\begin{gathered}
\Delta m_{q / K}=C_{B_{q} / \Delta m_{K}}\left(\Delta m_{q / K}\right)^{S M} \\
A_{C P}^{B_{d} \rightarrow J / \psi K_{S}}=\sin 2\left(\beta+\phi_{B_{d}}\right) \\
A_{S L}^{q}=\operatorname{lm}\left(\Gamma_{12}^{q} / A_{q}\right)
\end{gathered}
$$

$$
\begin{gathered}
\varepsilon_{K}=C_{\varepsilon} \varepsilon_{K}^{S M} \\
A_{C P}^{B_{s} \rightarrow J / \psi \phi} \sim \sin 2\left(-\beta_{s}+\phi_{B_{s}}\right) \\
\Delta \Gamma^{q} / \Delta m_{q}=\operatorname{Re}\left(\Gamma_{12}^{q} / A_{q}\right)
\end{gathered}
$$

NP parameter results

$$
A_{q}=C_{B_{q}} e^{2 i \phi_{B_{q}}} A_{q}^{S M} e^{2 i \phi_{q}^{S M}}
$$

dark: 68\%
light: 95\%
SM: red cross

K system

$$
\mathrm{C}_{\mathrm{e}_{\mathrm{K}}}=1.12 \pm 0.12
$$

NP parameter results

$$
A_{q}
$$

$$
=\left(1+\frac{A_{q}^{N P}}{A_{q}^{S M}} e^{2 i\left(\phi_{q}^{N P}-\phi_{q}^{S M}\right)}\right) A_{q}^{S M} e^{2 i \phi_{q}^{S M}}
$$

The ratio of NP/SM amplitudes is:
< 25\% @68\% prob. (35\% @95\%) in B_{d} mixing < 25\% @68\% prob. (30\% @95\%) in B_{s} mixing

To evaluate which constraint we can put on contributions from New Physics amplitudes is a delicate problem and often is Model dependent.

Out of these measurement there a general agreement that we have limited the contributions of New Physics amplitudes ($\mathrm{A}_{\text {NP }}$) wrt to SM ones ($\mathrm{A}_{\text {SM }}$) at the the level of

$$
\mathrm{R}=\frac{A_{N P}}{A_{\mathrm{s} M}}<20 \%
$$

What does it imply ?

What happened since....
Many new (or more precise) measurements to constraint UT parameters and test New Physics

β_{s}

the sides...

Rare decays... sensitive to NP

Beyond the Standard Model with flavour physics

The indirect searches look for "New Physics" through virtual effects from new particles in loop corrections
(1) ~1970 charm quark from FCNC and GIM-mechanism $\mathrm{K}^{0} \rightarrow \mu \mu$
(2) ~1973 $3^{\text {rd }}$ generation from CP violation in kaon $\left(\varepsilon_{K}\right)$ KM-mechanism
3) ~1990 heavy top from B oscillations Δm_{B}
(4) >2010 success of the description of FCNC and CPV in SM
""Discoveries" and construction of the SM Lagrangian

SM FCNCs and CP-violating (CPV) processes occur at the loop level
SM quark Flavour Violation (FV) and CPV are governed by weak interactions and are suppressed by mixing angles.

SM quark CPV comes from a single sources (if we neglect $\theta_{\text {QCD }}$)
New Physics does not necessarily share the SM behaviour of FV and CPV ${ }^{73}$

[^0]: * $\mathrm{SSB}=$ Spontaneous Symmetry Breaking

