APPENDIX I

The Standard Model

in the

fermion sector

CKM matrix and CP Violation. The Unitarity Triangle

The fermion sector is poorly constrained by SM + Higgs Mechanism mass hierarchy and CKM parameters The Standard Model is based on the following gauge symmetry

			Ι	I ₃	Q	Y	
	doublet L	ν _e	1/2	1/2	0	-1	
		e _L -	1/2	-1/2	-1	-1	Idom for
Leptons	singlet R	e _R -	0	0	-1	-2	other far
		u _L	1/2	1/2	2/3	1/3	
	doublet L	d _L	1/2	- ¹ / ₂	-1/3	1/3	
	singlet R	u _R	0	0	2/3	4/3	1
quarks	singlet R	d _R	0	0	-1/3	-2/3]

the nilies Short digression on the mass

$$E^{2} = \overrightarrow{p}^{2} + m^{2} \rightarrow \partial^{\mu}\partial_{\mu} + m^{2}\phi = 0 \iff L = \partial^{\mu}\phi\partial_{\mu}\phi - \frac{1}{2}m^{2}\phi^{2} = 0$$

$$(i\gamma^{\mu}\partial_{\mu} - m) = 0 \iff L = i\overline{\psi}\gamma_{\mu}\partial^{\mu}\psi - m\overline{\psi}\psi$$

$$m\overline{\psi}\psi = m\overline{\psi}(P_L + P_R)\psi = m\overline{\psi}(P_L P_L + P_R P_R)\psi =$$
$$= m[(\overline{\psi}P_L)(P_L\psi) + (\overline{\psi}P_R)(P_R\psi)]\psi = m\left(\overline{\psi}R_{\overline{\mu}}\psi + \overline{\psi}R_{\overline{\mu}}\psi + \overline{\psi}R$$

The mass should appear in a LEFT-RIGHT coupling

 $\psi_{R} : SU(2) \text{ singlet}$ $\psi_{L} : SU(2) \text{ doublet}$

Adding a doublet

$$\phi = \begin{pmatrix} \phi^+ \\ \phi^0 \end{pmatrix} \qquad \mathbf{I} = \frac{1}{2} \quad \mathbf{Y} = 1$$

The mass terms are not gauge invariant under

SU(2), × U(1).

$$\psi_{R} (I=0,Y=-2) \text{ leptoni}_{R}$$

$$(I=0,Y=-2/3) \text{ quark } d_{R}$$

$$(I=0,Y=4/3) \text{ quark } u_{R}$$

$$\psi_{L} (I=1,Y=-1) \text{ leptoni}_{L}$$

$$(I=1,Y=1/3) \text{ quark } d_{L}$$

$$(I=1,Y=1/3) \text{ quark } u_{L}$$
Yukawa interaction : $\overline{\Psi}_{L} \phi \Psi_{R}$

$$4$$

$$\phi = \frac{1}{\sqrt{2}} \begin{pmatrix} 0\\ v+H \end{pmatrix}$$

$$g_e(\overline{\psi}_L\phi\psi_R+\phi^+\overline{\psi}_R\psi_L)$$

(le deuxieme terme est l'hermitien conjuge du premier)

$$\frac{g_e v}{\sqrt{2}} (\overline{\psi}_L \psi_R + \overline{\psi}_R \psi_L) + \frac{g_e}{\sqrt{2}} (\overline{\psi}_L \psi_R + \overline{\psi}_R \psi_L) H$$

After SSB

v/sqrt(2) ~natural mass (g~1)

$$L_{W} = \frac{g}{2} \overline{Q}_{L_{i}}^{Int.} \gamma^{\mu} \sigma^{a} Q_{L_{i}}^{Int.} W_{\mu}^{a} \qquad a = 1, 2, 3 \qquad Q_{L_{i}}^{Int.} = \begin{pmatrix} u_{L_{i}} \\ d_{L_{i}} \end{pmatrix} \quad L_{L_{i}}^{Int.} = \begin{pmatrix} v_{L_{i}} \\ l_{L_{i}} \end{pmatrix}$$

$$\overline{Q}_{L_{i}}^{Int.} Q_{L_{i}}^{Int.} = \overline{Q}_{L_{i}}^{Int.} 1_{ij} Q_{L_{j}}^{Int.} \text{ universality of gauge interactions}$$

$$\underbrace{W}_{d} G_{F} \stackrel{u}{d} \stackrel{c}{s} \stackrel{t}{b} \stackrel{e}{v}_{e} \stackrel{\mu}{v}_{\mu} \stackrel{\tau}{v}_{\tau} \stackrel{\text{The SM quantum numbers are } I_{3} \text{ and } Y}{\rightarrow \text{ The gauge interactions are}}$$

In this basis the Yukawa interactions has the following form: $L_{Y} = Y_{ij}^{d} \overline{Q}_{L_{i}}^{Int.} \phi d_{R_{j}}^{Int.} + Y_{ij}^{u} \overline{Q}_{L_{i}}^{Int.} \phi u_{R_{j}}^{Int.} + Y_{ij}^{l} \overline{L}_{L_{i}}^{Int.} \phi l_{R_{j}}^{Int.}$ $SSB^{*} \rightarrow \langle \phi^{0} \rangle = v / \sqrt{2}; \operatorname{Re}(\phi^{0}) \rightarrow (v + H^{0}) / \sqrt{2}$ We made the choice of having the u-type and d-type quarks $L_{M} = M_{ij}^{d} \overline{d}_{L_{j}}^{Int.} d_{R_{j}}^{Int.} + M_{ij}^{u} \overline{u}_{L_{j}}^{Int.} u_{R_{j}}^{Int.} + M_{ij}^{l} \overline{l}_{L_{j}}^{Int.} l_{R_{j}}^{Int.}$ $We made the choice of having the Mass Interaction diagonal where <math>M^{f} = (v / \sqrt{2})Y^{f}$ H $U_{R} d_{R} u_{R} d_{R} u_{R} u_{R} u_{R} d_{R} u_{R} u_{R} u_{R} d_{R} u_{R} u$ To have mass matrices diagonal and real, we have defined:

The mass eigenstates are:

$$d_{L_{i}} = (V_{L}^{d})_{ij} d_{L_{j}}^{Int.} ; \qquad d_{R_{i}} = (V_{R}^{d})_{ij} d_{R_{j}}^{Int.}$$
$$u_{L_{i}} = (V_{L}^{u})_{ij} u_{L_{j}}^{Int.} ; \qquad u_{R_{i}} = (V_{R}^{u})_{ij} u_{R_{j}}^{Int.}$$
$$l_{L_{i}} = (V_{L}^{d})_{ij} l_{L_{j}}^{Int.} ; \qquad l_{R_{i}} = (V_{R}^{d})_{ij} l_{R_{j}}^{Int.}$$
$$v_{L_{i}} = (V_{L}^{l})_{ij} v_{L_{j}}^{Int.} \qquad v_{L_{i}} \text{ arbitrary (assuming v massless)}$$

In this basis the Lagrangian for the gauge interaction is:

$$L_{W} = \frac{g}{2} \overline{u}_{L_{i}} \gamma^{\mu} (V_{L}^{u} V_{L}^{d\dagger}) d_{L_{j}} W_{\mu}^{a} + h.c.$$

The coupling is not anymore universal
$$Unitary matrix$$
$$Unitary matrix$$
$$Unitary matrix$$
$$Unitary matrix$$
$$Unitary matrix$$
$$Unitary matrix$$
$$W = \frac{u}{d} \frac{u}{s} \frac{u}{b} \frac{d}{d} \frac{s}{s} \frac{b}{b} \frac{d}{s} \frac{s}{b}$$

Now the neutrino have a mass, it exists a similar matrix in the lepton sector with mixing a CP violation

For the Z^0

$$L_{W} = \frac{g}{2} \overline{\mathcal{Q}}_{L_{i}}^{Int.} \gamma^{\mu} \sigma^{a} \mathcal{Q}_{L_{i}}^{Int.} W_{\mu}^{a} \qquad a = 1, 2, 3$$

$$-L_{B} = g' [\frac{1}{6} \overline{\mathcal{Q}}_{L_{i}}^{Int.} \gamma^{\mu} \mathbf{1}_{ij} \mathcal{Q}_{L_{j}}^{Int.} + \frac{2}{3} \overline{u}_{R_{i}}^{Int.} \gamma^{\mu} \mathbf{1}_{ij} u_{R_{j}}^{Int.} - \frac{1}{3} \overline{d}_{R_{i}}^{Int.} \gamma^{\mu} \mathbf{1}_{ij} d_{R_{j}}^{Int.}] B_{\mu}$$
for the $Z^{0} \qquad Z^{\mu} = \cos \vartheta_{W} W_{3}^{\mu} - \sin \vartheta_{W} B^{\mu}$; $\tan \vartheta_{W} = g' / g$
in the mass basis (example for d_{L})
$$-L_{Z} = \frac{g}{\cos \vartheta_{W}} (-\frac{1}{2} + \frac{1}{3} \sin^{2} \vartheta_{W}) \overline{d}_{L_{i}} \gamma^{\mu} (V_{dL}^{\dagger} V_{dL}) d_{L_{i}} Z_{\mu} = \frac{g}{\cos \vartheta_{W}} (-\frac{1}{2} + \frac{1}{3} \sin^{2} \vartheta_{W}) \overline{d}_{L_{i}} \gamma^{\mu} d_{L_{i}} Z_{\mu}$$

The neutral currents stay universal, in the mass basis : we do not need extra parameters for their complete description

SUMMARY
The mass is a LEFT-RIGHT coupling and has to respect the gauge invariance
$$SU(2)_{L} \times U(1)_{Y}$$

 $W = \begin{pmatrix} \psi_{L} & \psi_{R} & \psi$

Pattern	U	D	$ V_{us} $	V _{ub}	V _{cb}	
			(Exp. 0.22)	(Exp. 0.0036)	(Exp. 0.040)	
1 M ₇ , M ₃	$\begin{pmatrix} 0 & * & 0 \\ * & * & 0 \\ 0 & 0 & * \end{pmatrix}$	$\begin{pmatrix} 0 & * & 0 \\ * & * & * \\ 0 & * & * \end{pmatrix}$	$\sqrt{\frac{m_d}{m_z}} \pm \sqrt{\frac{m_u}{m_c}}$	$\sqrt{\frac{m_d m_u}{m_b m_c}}$	$\sqrt{\frac{m_d}{m_b}}$	No (V _{ub})
		(0 + +)	(0.17, 0.28)	0.0023	0.040	
2 M ₈ , M ₃	$\begin{pmatrix} 0 & * & 0 \\ * & 0 & * \\ 0 & * & * \end{pmatrix}$		$\sqrt{\frac{m_d}{m_z}} \pm \sqrt{\frac{m_u}{m_c}}$	$\sqrt{\frac{m_u}{m_c}} \left[\sqrt{\frac{m_c}{m_t}} \pm \sqrt{\frac{m_d}{m_b}} \right]$	$\sqrt{\frac{m_c}{m_t}} \pm \sqrt{\frac{m_d}{m_b}}$	No (V_{ub}, V_{cb})
	(0 * *)	(0 * *)	(0.17,0.28)	(0.0011, 0.0058)	(0.022, 0.10)	
3	$\begin{pmatrix} 0 & 0 & * \\ 0 & * & 0 \end{pmatrix}$		$\sqrt{\frac{m_d}{m}}$	$\sqrt{\frac{m_u}{m}}$	$\sqrt{\frac{m_a}{m_a}}$	OK
M_6, M_3	(* 0 *)	(0 * *)	0.22	0.0036	0.040	
4		$\begin{pmatrix} 0 & * & 0 \\ * & * & 0 \end{pmatrix}$	$\sqrt{\frac{m_d}{m}} \pm \sqrt{\frac{m_u}{m}}$	$\sqrt{\frac{m_u^2}{m m}}$	$\sqrt{\frac{m_u}{m}}$	No (V_{ub}, V_{cb})
M_{3}, M_{7}	0 * *)	(0 0 *)	(0.17,0.28)	0.00021	0.0036	
5			$\sqrt{\frac{m_d}{m}} \pm \frac{m_u}{m}$	$\sqrt{\frac{m_u}{m}}$	$\sqrt{\frac{m_u}{m}}$	No (V_{cb})
M_2, M_7	(* * *)		(0.22,0.23)	0.0036	0.0036	

Pattern	U	D	V _{us} (Exp. 0.22)	V _{ub} (Exp. 0.0036)	V _{eb} (Exp. 0.040)	
M_{1}, M_{7}	(0 * *) * * * * * *)	$\begin{pmatrix} 0 & * & 0 \\ * & * & 0 \\ 0 & 0 & * \end{pmatrix}$	$\sqrt{\frac{m_a}{m_s}} \pm \sqrt{\frac{m_s}{m_e}}$ (0.17,0.28)	$\sqrt{\frac{m_{\omega}}{m_{t}}}$ 0.0036	$\sqrt{\frac{m_{\omega}}{m_{\ell}}}$ 0.0036	No (V_{eb})
2 M ₂ , M ₃	$\begin{pmatrix} 0 & 0 & * \\ 0 & * & * \\ * & * & * \end{pmatrix}$	$\begin{pmatrix} 0 & * & 0 \\ * & * & * \\ 0 & * & * \end{pmatrix}$	$\sqrt{\frac{m_d}{m_s}}$ 0.22	$\sqrt{\frac{m_{\nu}}{m_{t}}}$ 0.0036	$\sqrt{\frac{m_d}{m_b}} \pm \sqrt{\frac{m_u}{m_t}}$ (0.036,0.043)	OK
3 M ₂ , M ₄	$\begin{pmatrix} 0 & 0 & * \\ 0 & * & * \\ * & * & * \end{pmatrix}$	$\begin{pmatrix} 0 & * & * \\ * & * & 0 \\ * & 0 & * \end{pmatrix}$	$\sqrt{\frac{m_d}{m_s}}$ 0.22	$\sqrt{\frac{m_s m_s}{2m_b^2}} \pm \sqrt{\frac{m_u}{m_t}}$ (0.0013,0.0085)	$\sqrt{\frac{m_{\omega}}{m_{t}}}$ 0.0036	No (V _{eb})
4 M ₃ , M ₄	$\begin{pmatrix} 0 & * & 0 \\ * & * & * \\ 0 & * & * \end{pmatrix}$	$\begin{pmatrix} 0 & * & * \\ * & * & 0 \\ * & 0 & * \end{pmatrix}$	$\sqrt{\frac{m_d}{m_s}} \pm \sqrt{\frac{m_u}{m_e}}$ (0.17,0.28)	$\sqrt{\frac{m_{a}m_{s}}{2m_{b}^{2}}} \pm \sqrt{\frac{m_{u}^{2}}{m_{e}m_{t}}}$ (0.0047, 0.0051)	$\sqrt{\frac{m_{\omega}}{m_{t}}}$ 0.0036	No (V_{ub},V_{eb})
5 M ₄ , M ₃	$\begin{pmatrix} 0 & * & * \\ * & * & 0 \\ * & 0 & * \end{pmatrix}$	$\begin{pmatrix} 0 & * & 0 \\ * & * & * \\ 0 & * & * \end{pmatrix}$	$\sqrt{\frac{m_d}{m_s}} \pm \sqrt{\frac{m_u}{m_t}}$ (0.22,0.23)	$\sqrt{\frac{m_{\omega}}{m_{t}}}$ 0.0036	$\sqrt{\frac{m_d}{m_b}}$ 0.040	OK
6 M ₅ , M ₃	$\begin{pmatrix} 0 & * & * \\ * & 0 & * \\ * & * & * \end{pmatrix}$	$\begin{pmatrix} 0 & * & 0 \\ * & * & * \\ 0 & * & * \end{pmatrix}$	$\sqrt{\frac{m_d}{m_s}} \pm \sqrt{\frac{2m_u}{m_i}}$ (0.22,0.23)	$\sqrt{\frac{m_u}{m_t}}$ 0.0036	$\sqrt{\frac{m_e}{m_t}} \pm \sqrt{\frac{m_d}{m_b}}$ (0.022,0.10)	? (V _{eb})
7 M ₆ , M ₁	$\begin{pmatrix} 0 & 0 & * \\ 0 & * & 0 \\ * & 0 & * \end{pmatrix}$	(0 * * * * * * * *)	$\sqrt{\frac{m_d}{m_s}}$ 0.22	$\sqrt{\frac{m_{u}}{m_{t}}} \pm 2\sqrt{\frac{m_{d}^{2}}{m_{s}m_{b}}}$ (0.014,0.021)	$\sqrt{\frac{m_d}{m_b}}$ 0.040	No (V _{ub})
8 M ₇ , M ₁	$\begin{pmatrix} 0 & * & 0 \\ * & * & 0 \\ 0 & 0 & * \end{pmatrix}$	(0 * *) * * * * * *)	$\sqrt{\frac{m_a}{m_a}} \pm \sqrt{\frac{m_a}{m_c}}$ (0.17,0.28)	$2\sqrt{\frac{m_{d}^{2}}{m_{s}m_{b}^{2}}} \pm \sqrt{\frac{m_{d}m_{u}}{m_{b}m_{e}}}$ (0.015,0.020)	$\sqrt{\frac{m_d}{m_b}}$ 0.040	No (V ₂₀)
9 M ₈ , M ₁	$\begin{pmatrix} 0 & * & 0 \\ * & 0 & * \\ 0 & * & * \end{pmatrix}$	(0 * *) * * * * * *)	$\sqrt{\frac{m_d}{m_s}} \pm \sqrt{\frac{m_u}{m_e}}$ (0.17,0.28)	$2\sqrt{\frac{m_{d}^{2}}{m_{a}m_{b}}} \pm \sqrt{\frac{m_{d}m_{u}}{m_{b}m_{c}}}$ (0.015,0.020)	$\sqrt{\frac{m_e}{m_t}} \pm \sqrt{\frac{m_d}{m_b}}$ (0.022,0.10)	No $(V_{ub} 1 2_{ub})$

The matrix $(V_{uL}V_{dL}^{\dagger})$ is the mixing matrix for 2 quark generations. It is a 2×2 unitary matrix. As such, it generally contains 4 parameters, of which one can be chosen as a real angle, θ_C , and 3 are phases:

$$(V_{uL}V_{dL}^{\dagger}) = \begin{pmatrix} \cos\theta_C \ e^{i\alpha} & \sin\theta_C \ e^{i\beta} \\ -\sin\theta_C \ e^{i\gamma} & \cos\theta_C \ e^{i(-\alpha+\beta+\gamma)} \end{pmatrix}.$$
(4.11)

By the transformation

$$(V_{uL}V_{dL}^{\dagger}) \to V = P_u(V_{uL}V_{dL}^{\dagger})P_d^*, \qquad (4.12)$$

with

$$P_{u} = \begin{pmatrix} e^{-i\alpha} \\ e^{-i\gamma} \end{pmatrix}, \quad P_{d} = \begin{pmatrix} 1 \\ e^{i(-\alpha+\beta)} \end{pmatrix}, \quad (4.13)$$

we eliminate the three phases from the mixing matrix. (We redefine the mass eigenstates $u_{L,R} \rightarrow P_u u_{L,R}$ and $d_{L,R} \rightarrow P_d d_{L,R}$, so that the mass matrices remain unchanged. In particular, they remain real.) Notice that there are three independent phase differences between the elements of P_u and those of P_d , and three phases in $(V_{uL}V_{dL}^{\dagger})$. Consequently, there are no physically meaningful phases in V, and hence no CP violation:^{*}

$$V = \begin{pmatrix} \cos \theta_C & \sin \theta_C \\ -\sin \theta_C & \cos \theta_C \end{pmatrix}.$$
 (4.14)

For two generations, V is called the Cabibbo matrix [1]. If $\sin \theta_C$ of (4.14) is different from zero, then the W^{\pm} interactions mediate generation-changing currents.

M(diag) is unchanged if $V_L^{'f} = P^f V_L^f$; $V_R^{'f} = P^f V_R^f$ $V(CKM) = P^u V(CKM') P^{*d}$ P^f = phase matrix

$$V = \begin{pmatrix} V_{11} & V_{12} \\ V_{21} & V_{22} \end{pmatrix} = \begin{pmatrix} e^{-i\varphi_1} & 0 \\ 0 & e^{-i\varphi_2} \end{pmatrix} \begin{pmatrix} V'_{11} & V'_{12} \\ V'_{21} & V'_{22} \end{pmatrix} \begin{pmatrix} e^{-i\chi_1} & 0 \\ 0 & e^{-i\chi_2} \end{pmatrix} = \begin{pmatrix} V'_{11} & e^{-i(\varphi_1 - \chi_1)} & V'_{12} & e^{-i(\varphi_1 - \chi_2)} \\ V'_{21} & e^{-i(\varphi_2 - \chi_1)} & V'_{22} & e^{-i(\varphi_2 - \chi_2)} \end{pmatrix}$$

$$u \to u e^{i\phi_{11}}$$
 $V_{11} e^{i\phi_{11}} e^{-i(\phi_1 - \chi_1)}$

Redifine the quark field

I choose
$$\varphi_1 - \chi_1$$
 such than V_{11} real
I choose $\varphi_1 - \chi_2$ such than V_{12} real
I choose $\varphi_2 - \chi_1$ such than V_{21} real

BUT:
$$(\varphi_2 - \chi_2) = (\varphi_2 - \chi_1) + (\varphi_1 - \chi_2) - (\varphi_1 - \chi_1)$$

I cannot play the same game with all four fields but only with 3 over 4

(2n-1) irreducible phases

APPENDIX III

JARSLOG DISCRIMINANT

UT area and condition for CP violation (formal)

The standard representation of the CKM matrix is:

$$V = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}c_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13} \end{pmatrix} \qquad c_{ij} \equiv \cos\theta_{ij}$$

However, many representations are possible. What are the invariants under re-phasing?

Simplest: U_{ci} = |V_{ci}|² is independent of quark re-phasing
Next simplest: Quartets: Q_{ciβj} = V_{ci} V_{βj} V_{cj}* V_{βi}* with α≠β and i≠j -"Each quark phase appears with and without *"
V[†]V=1: Unitarity triangle: V_{ud} V_{cd}* + V_{us} V_{cs}* + V_{ub} V_{cb}* = 0 -Multiply the equation by V_{us}* V_{cs} and take the imaginary part: -Im (V_{us}* V_{cs} V_{ud} V_{cd}*) = - Im (V_{us}* V_{cs} V_{ub} V_{cb}*) -J = Im Q_{udcs} = - Im Q_{ubcs}
The imaginary part of each Quartet combination is the same (up to a sign)
-In fact it is equal to 2x the surface of the unitarity triangle Area = ½ |V_{cd}| |V_{cb}| h ; h=|V_{ud}| |V_{ub}|sin arg(-V_{ud}V_{cb}V_{ub}*V_{cb}*)| =1/2 |Im(V_{ud}V_{cb}V_{ub}*V_{cb}*)|)|
Im[V_{ci} V_{βj} V_{cj}* V_{βi}*] = J ∑ ε_{ciβγ} ε_{ijk} where J is the universal Jarlskog invariant
Amount of CP Violation is proportional to J

The Amount of CP Violation

Using Standard Parametrization of CKM:

$$V = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}c_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13} \end{pmatrix} \qquad c_{ij} \equiv \cos\theta_{ij} \\ s_{ij} \equiv \sin\theta_{ij}$$

$$J = c_{12}c_{23}c_{13}^2s_{12}s_{23}s_{13}\sin\delta = (3.0\pm0.3)\times10^{-5} = \lambda^6 A^2 \eta \quad (eg.: J=Im(V_{us} V_{cb} V_{ub}^* V_{cs}^*))$$

(The maximal value J might have = $1/(6\sqrt{3}) \sim 0.1$)

More details

CP Violation at the Lagrangian level

$$\begin{split} L_W &= \frac{g}{2} \overline{Q}_{L_i}^{Int.} \gamma^{\mu} \sigma^a Q_{L_i}^{Int.} W_{\mu}^a \quad a = 1, 2, 3 \qquad Q_{L_i}^{Int.} = \begin{pmatrix} u_{L_i} \\ d_{L_i} \end{pmatrix} \quad L_{L_i}^{Int.} = \begin{pmatrix} v_{L_i} \\ l_{L_i} \end{pmatrix} \\ L_M &= M_{ij}^a \overline{d}_{L_j}^{Int.} d_{R_j}^{Int.} + M_{ij}^u \overline{u}_{L_j}^{Int.} u_{R_j}^{Int.} + M_{ij}^l \overline{l}_{L_j}^{Int.} l_{R_j}^{Int.} \quad \text{where} \quad M^f = (v/\sqrt{2})Y^f \end{split}$$

Accept that (or verify) the most general CP transformation which leave the lagrangian invariant is

$$\begin{aligned} d_L^{Int.} &- > W_L C d_L^{Int.*} &; \qquad d_R^{Int.} - > W_R^d C d_R^{Int.*} \\ u_L^{Int.} &- > W_L C u_L^{Int.*} &; \qquad u_R^{Int.} - > W_R^u C u_R^{Int.*} \\ (C &= i\gamma^2 \gamma^0 \qquad W_L, W_R^u, W_R^d \quad \text{unitarity matrices}) \end{aligned}$$

In order to have $\rm L_{\rm M}$ to be invariant under CP, the M matrices should satisfy the following relations :

$$\begin{split} W_L^{\dagger} M_u W_R^u &= M_u^* & W_L^{\dagger} H_u W_L &= H_u^* & \text{where } H_u = M_u M_u^{\dagger} \text{ and } W_R^u = M_u^{\dagger} W_L \\ W_L^{\dagger} M_d W_R^d &= M_d^* & W_L^{\dagger} H_d W_L &= H_d^* & \text{where } H_d = M_d M_d^{\dagger} \text{ and } W_R^d = M_d^{\dagger} W_L \end{split}$$

in this form, these conditions are of little use. A way of doing is :

$$W_L^{\dagger} H_u H_d W_L = H_u^T H_d^T$$
$$W_L^{\dagger} H_d H_u W_L = H_d^T H_u^T$$

•The existence of charged current contrains u_L,d_L to trasform in the same way under CP while the absence of right charged current allow u_R,d_R to tranform differentely under CP

Substracting these two equations

$$W_L^{\dagger}[H_u H_d] W_L = -[H_u H_d]^T$$

If one evaluates the traces of both sides, they vanish identically and no constraints is obtained. In order to obtain no trivial contrain, we have to multiply the previous equation a odd number of times :

$$W_L^{\dagger}[H_u H_d]^r W_L = -\{[H_u H_d]^r\}^T$$
 (r odd)

Taking the traces one obtain :

$$Tr[H_u H_d]^r = 0$$

For n=1, and n=2 the previous equations are automatically satified for harbitrary hermitian H matrices (it is the same as the counting of the physical phase of the CKM matrix). For n=3 or larger the previous eq. provides non trivial contraints on the H matrix. It can be shown that for n=3 it implies

$$Tr[H_u H_d]^3 = 6\Delta_{21}\Delta_{31}\Delta_{32} \operatorname{Im} Q$$

$$\Delta_{21} = (m_s^2 - m_d^2) \times (m_c^2 - m_u^2)$$

$$\Delta_{31} = (m_b^2 - m_d^2) \times (m_t^2 - m_u^2)$$

$$\Delta_{32} = (m_b^2 - m_s^2) \times (m_t^2 - m_c^2)$$

CP violation vanish in the limit where any two quarks of the same charge become degenerate. But it does not necessarily vanish in the limit where one quark is massless $(m_u=0)$ or even in the chiral limit $(m_u=m_d=0)$

CP violation vanish if the triangle has area equal to 0

CP Violation in the Standard Model

Requirements for CP violation

$$\begin{pmatrix} m_t^2 - m_c^2 \end{pmatrix} \begin{pmatrix} m_t^2 - m_u^2 \end{pmatrix} \begin{pmatrix} m_c^2 - m_u^2 \end{pmatrix} \\ \times (m_b^2 - m_s^2) \begin{pmatrix} m_b^2 - m_d^2 \end{pmatrix} \begin{pmatrix} m_s^2 - m_d^2 \end{pmatrix} \times J_{CP} \neq 0$$

where

$$J_{CP} = \left| \operatorname{Im} \left\{ V_{i\alpha} V_{j\beta} V_{i\beta}^{*} V_{j\alpha}^{*} \right\} \right| (i \neq j, \alpha \neq \beta)$$

Jarlskog determinant

Using above parameterizations

$$J_{CP} = s_{12} s_{13} s_{23} c_{12} c_{23} c_{13} \sin \delta = \lambda^6 A^2 \eta = O(10^{-5})$$

CP violation is small in the Standard Model

APPENDIX III

Experimental techniques

for **B** Physics

Introduction to mixing and CP phenomena

Pairs of self-conjugate mesons that can be transformed to each other via flavour changing weak interaction transitions are:

 $|\mathbf{K}^{0}\rangle = |\overline{\mathbf{s}}d\rangle$ $|\mathbf{D}^{0}\rangle = |\mathbf{c}\overline{u}\rangle$ $|\mathbf{B}^{0}_{d}\rangle = |\overline{\mathbf{b}}d\rangle$ $|\mathbf{B}^{0}_{s}\rangle = |\overline{\mathbf{b}}s\rangle$

They are **flavour eigenstates** with definite quark content

useful to understand particle production and decay

Apart from the flavour eigenstates there are mass eigenstates:

- eigenstates of the Hamiltonian
- states of definite mass and lifetime

 $\ket{\textit{B}_{\!\scriptscriptstyle L}}$, $\ket{\textit{B}_{\!\scriptscriptstyle H}}$

 $|B^{0}\rangle$, $|\overline{B}^{0}\rangle$

 $|B_L\rangle = p |B^0\rangle + q |\overline{B}^0\rangle |B_L\rangle, |B_H\rangle: \text{ mass eigenstates}$ $|B_H\rangle = p |B^0\rangle - q |\overline{B}^0\rangle |B^0\rangle, |\overline{B}^0\rangle: \text{ flavour eigenstates}$

Since flavour eigenstates are not mass eigenstates, the flavour eigenstates are mixed with one another as they propagate through space and time

 $|B^{0}(t)\rangle$ ($|\overline{B}^{0}(t)\rangle$) : the flavour state of a *B* meson that was a $B^{0}(\overline{B}^{0})$ at t=0.

Schrödinger equation governs time evolution of the B^0 - $\overline{B^0}$ System:

$$i\frac{d}{dt}\left(\begin{vmatrix}B^{0}(t)\rangle\\\\|\overline{B}^{0}(t)\rangle\end{vmatrix}\right) = \underbrace{\left(M - \frac{i}{2}\Gamma\right)}_{P}\left(\begin{vmatrix}B^{0}(t)\rangle\\\\|\overline{B}^{0}(t)\rangle\end{vmatrix}\right)$$

=> **H** (effective Hamiltonian)

 $H |B_{L}^{0}\rangle = (M_{L} - i/2\Gamma_{L}) |B_{L}^{0}\rangle$ $H |B_{H}^{0}\rangle = (M_{H} - i/2\Gamma_{H}) |B_{H}^{0}\rangle$

eigenvalues

- → $|H_{21}| = |H_{12}|$
- $\bullet \quad |H_{21}| = |H_{12}|, \, H_{11} = H_{22}$
- $\bullet \quad H_{11} = H_{22}$

Mass states are eigenvectors of *H* $\Delta m_{B} \equiv M_{H} - M_{l} \approx 2 | M_{12} |$ $\Delta \Gamma_{B} \equiv \Gamma_{H} - \Gamma_{L} = 2 \operatorname{Re}(M_{12}\Gamma_{12}^{*}) / | M_{12} |$

$$m_{B} \equiv \frac{M_{H} + M_{L}}{2} \qquad \qquad \frac{q}{p} \equiv -\sqrt{\frac{H_{21}}{H_{12}}} = \frac{\Delta m_{B} + i\Delta\Gamma_{B}/2}{2M_{12} - i\Gamma_{12}}$$

The time evolution of the mass eigenstates is governed by their eigenvalues :

$$|B_{H,L}(t)\rangle = e^{-i\left(M_{H,L}-i\frac{\Gamma_{H,L}}{2}\right)t}|B_{H,L}(t=0)\rangle + \frac{|B_L\rangle = p|B^0\rangle + q|\overline{B}^0\rangle}{|B_H\rangle = p|B^0\rangle - q|\overline{B}^0\rangle}$$

Time evolution of the physical states $|B^{0}(t)\rangle$ ($|\overline{B}^{0}(t)\rangle$)

$$\left| B^{0}(t) \right\rangle = g_{+}(t) \left| B^{0} \right\rangle + \frac{q}{p} g_{-}(t) \left| \bar{B}^{0} \right\rangle \quad g_{+}(t) = e^{-i \left(m_{B} - i \frac{\Gamma_{H}}{2} \right) t} \left[\cosh \frac{\Delta \Gamma t}{4} \cos \frac{\Delta m t}{2} - i \sinh \frac{\Delta \Gamma t}{4} \sin \frac{\Delta m t}{2} \right]$$

$$\left| \bar{B}^{0}(t) \right\rangle = \frac{p}{q} g_{-}(t) \left| B^{0} \right\rangle + g_{+}(t) \left| \bar{B}^{0} \right\rangle \quad g_{-}(t) = e^{-i \left(m_{B} - i \frac{\Gamma_{H}}{2} \right) t} \left[-\sinh \frac{\Delta \Gamma t}{4} \sin \frac{\Delta m t}{2} + i \cosh \frac{\Delta \Gamma t}{4} \cos \frac{\Delta m t}{2} \right]$$

More general formulae

 $\Delta m_{\rm B} \equiv M_{\rm H} - M_{\rm L}$

 $\Delta \Gamma_B \equiv \Gamma_H - \Gamma_L$

 $m_{\rm B} \equiv \frac{M_{\rm H} + M_{\rm L}}{2}$

 $\Gamma_B \equiv \frac{\Gamma_H + \Gamma_L}{2}$

 $\frac{q}{p} = \frac{\Delta m + i\Delta\Gamma/2}{2M_{12} - i\Gamma_{12}}$

When
$$\Delta\Gamma$$
 is small they simplify to :

$$\left| B^{0}(t) \right\rangle = e^{-im_{B}t} e^{-\Gamma_{B}t/2} \left(\cos \frac{\Delta m_{B}t}{2} \left| B^{0} \right\rangle + i \frac{q}{p} \sin \frac{\Delta m_{B}t}{2} \left| \overline{B}^{0} \right\rangle \right)$$
$$\left| \overline{B}^{0}(t) \right\rangle = e^{-im_{B}t} e^{-\Gamma_{B}t/2} \left(\cos \frac{\Delta m_{B}t}{2} \left| \overline{B}^{0} \right\rangle + i \frac{p}{q} \sin \frac{\Delta m_{B}t}{2} \left| B^{0} \right\rangle \right)$$

Probability to observe in the state
$$f = B^0$$
 produced at time t=0:

 $P(B^{0}(0) \rightarrow f) = \left| \left\langle f \left| H \right| B^{0}(t) \right\rangle \right|^{2}$

Probability to observe in the state \overline{f} a B⁰ produced at time t=0:

$$P\left(\overline{B}^{0}(0) \rightarrow f\right) = \left|\left\langle f \mid H \mid \overline{B}^{0}(t)\right\rangle\right|^{2}$$

The two master formulae (having however neglected $\Delta\Gamma$:

$$P\left(B^{0}(0) \rightarrow f\right) = \frac{e^{-\Gamma t}}{2} \left\{ (1 + \cos \Delta m t) \left| \left\langle f \right| H \right| B^{0} \right\rangle \right|^{2} + (1 - \cos \Delta m t) \left| \frac{q}{p} \right|^{2} \left| \left\langle f \right| H \right| \overline{B}^{0} \right\rangle \right|^{2}$$
$$-2 \sin \Delta m t \times \mathrm{Im} \left(\frac{q}{p} \left\langle f \right| H \right| \overline{B}^{0} \right) \left\langle f \right| H \left| B^{0} \right\rangle^{*} \right\}$$

$$P\left(\overline{B}^{0}(0) \to f\right) = \frac{e^{-\Gamma t}}{2} \left\{ (1 + \cos \Delta m t) \left| \left\langle f \right| H \right| \overline{B}^{0} \right\rangle \right|^{2} + (1 - \cos \Delta m t) \left| \frac{p}{q} \right|^{2} \left| \left\langle f \right| H \right| B^{0} \right\rangle \right|^{2}$$
$$-2 \sin \Delta m t \times \operatorname{Im} \left(\frac{p}{q} \times \left\langle f \right| H \right| B^{0} \right\rangle \left\langle f \right| H \left| \overline{B}^{0} \right\rangle^{*} \right) \right\}$$

Considering only the mixing :

Starting from a B⁰

$$\left|\left\langle B^{0}\left|H\right|B^{0}\left(t\right)
ight
angle
ight|^{2}=rac{e^{-\Gamma t}}{2}\left(1+\cos\Delta mt
ight)$$

CP violation is neglected : q/p=1

Starting from a B⁰

$$\left|\left\langle \overline{B}^{0}\left|H\right|B^{0}\left(t\right)\right\rangle \right|^{2}=\frac{e^{-\Gamma t}}{2}\left(1-\cos\Delta mt\right)$$

If one does not neglect $\Delta_{\&}$ (useful for charm or B_s) the previous formulae become $-\Gamma t$

$$\frac{e^{-\Gamma t}}{4} \underbrace{(e^{\frac{\Delta \Gamma}{2}t} + e^{-\frac{\Delta \Gamma}{2}t} \pm 2\cos\Delta mt)}_{\cosh\left(\frac{\Delta \Gamma}{2}t\right)}$$

So that one finds for the time dependent mixing asymmetry:

$$A_{\rm mix}(t) \equiv \frac{N({\rm unmixed}) - N({\rm mixed})}{N({\rm unmixed}) + N({\rm mixed})}(t) = \frac{\cos(\Delta m t)}{\cosh(\Delta \Gamma t/2)}$$

Mixed : $B^0 \rightarrow B^0 \text{ or } B^0 \rightarrow B^0$ UnMixed : $B^0 \rightarrow B^0 \text{ or } B^0 \rightarrow B^0$ $Cosh(\Delta\Gamma t/2) \rightarrow 1 \text{ when } \Delta\Gamma \rightarrow 0$

$\cos \Delta m t = \cos \left(\frac{\Delta m}{L} \right) \left(\frac{t}{L} \right) \qquad ; \qquad x \equiv \left(\frac{\Delta m}{L} \right) $	$\prime \equiv \left(\frac{\Delta\Gamma}{2\Gamma}\right)$		
$(\Gamma)(\tau)$	(2Γ)	x=∆m/Г	γ=ΔΓ/Γ
x : the mixing frequency in unit of lifetime	Ko	~1	~1
x>>1 rapid oscillation x<<1 slow oscillation	D ₀	10 ⁻³ -10 ⁻⁵	10 ⁻³ -10 ⁻⁵
	B _d ⁰	~0.75	~few%
Different behaviors for the neutral mesons :	B _s ⁰	~25	(10-15)%

$$\cos \Delta mt = \cos \left(\frac{\Delta m}{\Gamma} \right) \left(\frac{t}{\tau} \right) \qquad ; \qquad x \equiv \left(\frac{\Delta m}{\Gamma} \right)$$

x > 1 rapid oscillation x is a number the mixing frequency in unit of lifetime x < 1 slow oscillation

We also define
$$y \equiv \left(\frac{\Delta\Gamma}{2\Gamma}\right)$$

Bd

More...

The probability that the meson B⁰ produced (by strong interaction) at t = 0 transforms (weak interaction) into B⁰ (or stays as a B⁰) at time *t* is given by :

$$P_{B_q^0 \to B_q^0(\overline{B_q^0})} = \frac{1}{2} e^{-t/\tau_q} \left(1 \pm \cos \Delta m_q t\right)$$

 Δm_q can be seen as an oscillation frequency : 1 ps⁻¹ = 6.58 10⁻⁴ eV

(Super) B-factories and LHC

рр

LHC: $E_{CM} = 7, 8$ TeV , (later 14 TeV) 4 10^{32} cm⁻² s⁻¹ (design was 2 10^{32}) ... 10^{33} cm⁻² s⁻¹ (upgrade)

sketch of an event at B-factory and at LHCb

(Super) B-factories

r(1S), r(2S) and r(3S) : not enough mass to decay into BB pair

M(Y(4S))=10.58 Gev

 $M(B^+, B^0) = 5.28 \text{ GeV}$

only (B⁺, B⁰) are produced

 $M(B_s) = 5.37 \text{ GeV} > M(\Upsilon(4S))/2$

 (B^+, B^0) are produced nearly at rest in the $\Upsilon(4S)$

A $B^0 \overline{B^0}$ or B^+B^- coherent pair in the L=1 state is produced

$B^{0} \overline{B^{0}}$ or $B^{+}B^{-}$ coherent L=1 pairs are produced nearly at rest in the $\Upsilon(4S)$

$$a_{f_{CP}}(t) = \frac{\operatorname{Prob}(B^{0}(t) \to f_{CP}) - \operatorname{Prob}(\overline{B^{0}}(t) \to f_{CP})}{\operatorname{Prob}(\overline{B^{0}}(t) \to f_{CP}) + \operatorname{Prob}(B^{0}(t) \to f_{CP})} = \\ = C_{f} \cos \Delta m_{d} t + S_{f} \sin \Delta m_{d} t \\ = \pm \sin 2\beta \sin \Delta m_{d} t \quad \text{for J/}\psi, K^{0}$$

Time integrated measurement :

```
\int_{-\infty}^{+\infty} \sin \Delta m_d t \, dt = 0 \, !!
```

 $t = t(B_1) - t(B_2)$

The decay of the first B starts the clock $t(B_1)$

The decay of the other B stops the clock $t(B_2)$

t can be >0 or <0

One should measure t in order to probe CP violation

It was not the case for the observation of B mixing performed at an previous $\Upsilon(4S)$ collider because :

 $a_{mixing}(t) = \cos \Delta m_d t$
In the $\Upsilon(4S)$ rest frame p(B) ~ 300 MeV : $\beta\gamma$ =.3/5.28 = 0.06 flight ~ 30 \mu m Boost the $\Upsilon(4S)$!

- By measuring Δz , we can follow time dependent effects in B decays.
- distance scale is much smaller than in the kaon decay exp. that first discovered CP

37

Slightly asymmetric detector

LHC

The 2 b-quarks are produced in the same direction along the beam axis

Incoherent B B production : a B⁰ and a B- for example

Drives the detector design :

- ability to reconstruct the B vertex and to measure its decay time
- K/ π discrimination
- µ identification

All this is similar to (super)B-Factories, but with different kinematic ranges₁ What is not similar to (super)-B-Factories :

$$\frac{b}{\bar{d}} \underset{d}{\overset{b}{\leftarrow}} \frac{\bar{B}^{0}}{u} \underset{u}{\overset{b}{\leftarrow}} B^{-} \underset{s}{\overset{b}{\leftarrow}} \frac{\bar{B}^{0}}{\bar{s}} \underset{s}{\overset{b}{\leftarrow}} \frac{\bar{B}^{0}}{\overset{d}{\leftarrow}} \underset{d}{\overset{a}{\leftarrow}} \Lambda^{0}_{b}$$

All type of b-hadrons are produced at the LHC

Probability that a b quark hadronize a into a $B_{u,d,s}$ meson or a Λ_b baryon.

Important input for BR measurements since most of the measurements are done relative to another well known BR (B-Factories)

Cross sections at 14 TeV:

A trigger is needed to:

- reject the light flavours (u,d,s)
- keep only the interesting events

In 1 every 200 collisions a b-bbar pair is produced

bb production cross section is huge : 290 mb

but the inelastic cross section is about 300 times larger

L limited to 4 10³² cm⁻² s⁻¹ to stay with a limited number of primary vertices

LHCb cannot deal with 30-40 interactions as ATLAS/CMS :

collision₂

ATLAS/CMS

Event at LHCb

In order to record as much data as possible : "luminosity leveling"

 $\frac{dN}{dt} = L \times \sigma$

$$L = \frac{k f N_1 N_2}{4 \pi s_x s_y}$$

$$\rho_{1/2}(x,y) = \frac{1}{2\pi s_x s_y} e^{-\frac{x^2}{2s_x^2}} e^{-\frac{y}{2s_y^2}}$$

luminosity decreases as a function of time (loss of particles) : ATLAS CMS

k bunches

f frequency

 N_1 : number of protons in a bunch

 N_2 : number of protons in a bunch

bb production cross section is huge : 290 μ b but the inelastic cross section is about 300 times larger Should trigger on interesting events

Physics consequences : signal selection

At the LHC : 'standard procedure' : use the B invariant mass

At B factories : use the additional Y(4S) constraint. The $\Upsilon(4S)$ decays into 2 B mesons at rest.

2 variables ΔE and $m_{\scriptscriptstyle ES}$

From the lab frame boost all tracks back in the Y(4S) rest frame where :

This is similar to what can be obtained from a standard invariant mass plot

However one can also use :

Physics consequences : full Breco

At B-Factories all the tracks are from the two B (no hadronization) :

- Can reconstruct B then all the rest is from the other one
- => allow to perform very delicate analyses with neutrinos.

Physics consequences : tagging

Tagging : determination of the flavour of the B (B or \overline{B}) at the production time

The charge of the lepton or of the kaon gives information on the b :

a high $p_T \vdash or a K^-$ probably come from a b quark (and thus a \overline{B} meson) a high $p_T \vdash or a K^+$ probably come from a \overline{b} quark (and thus a B meson) Two main techniques : Opposite Side Tagging or Same Side Tagging.

This is opposite side tagging.

It can be performed both at B-factories and LHC, but fundamental differences due to the production mechanism

The B meson fully reconstructed (eg D^{*+} π , J/ Ψ Ks)

The tagging B

• At B-factories : coherent $B^{0} \overline{B^{0}}$ production

• At LHC if a $\overline{B^0}$ is produced, at the same time one can have at the same time a Bs, a B+ , a Λ_b The Bs oscillates many time before decaying and does not keep track of its flavour at the production time : information is lost

In addition at LHC they are all the fragmentation tracks and the tracks from the other interaction

The fragmentation tracks can however helps the tagging : Same Side Tagging

Search for a track attached to the primary vertex (not to the B decay vertex), close to the B and not too slow

cannot be done at B-factories !

fragmentation tracks

Tagging performances :

 $Q = \varepsilon (1 - 2\omega)^2 = \varepsilon D^2$ tagging efficiency ε mistag probability w ('wrong')

QxN : equivalent number of events perfectly tagged

B-Factories typical result (here BaBar)

Category	ε(%)	ത(%)	Q(%)
Lepton	8.6±0.1	3.2 ± 0.4	7.5±0.2
Kaon I	10.9±0.1	4.6±0.5	9.0±0.2
Kaon II	17.1±0.1	15.6±0.5	8.1±0.2
Κ-π	13.7±0.1	23.7±0.6	3.8±0.2
Pion	14.5±0.1	33.9±0.6	1.7±0.1
Other	10.0±0.1	41.1±0.8	0.3±0.1
Total	74.9±0.2		30.5±0.4

LHCb (Tevatron similar)

Taggers	ε _{tag} (%)	ω (%)	$\epsilon_{tag} \cdot (1-2\omega)^2$ (%)
μ	4.8±0.1	29.9±0.7	0.77±0.07
е	2.2±0.1	33.2±1.1	0.25±0.04
К	11.6±0.1	38.3±0.5	0.63±0.06
Q _{vtx}	15.1±0.1	40.0±0.4	0.60±0.06

Total : 2.3 % SSK tagging adds about 1.3 %

1000 events reconstructed are equivalent to

- 300 perfectly tagged at B-Factories
- 30 perfectly tagged at LHCb/Tevatron colliders

Putting all together : comparison

		$\sigma(b\overline{b})$	σ(inel)/ σ(<i>bb</i>)	∫Ldt	Number of B produced in the detector acceptance
	LHCb	~290 µb	~300	1fb ⁻¹ (2011) + 2fb ⁻¹ (2012) +	150 10 ⁹ b bbar pairs (2011)
BELLE	BaBar	~1 nb	~4	425 fb ⁻¹ (BaBar)	1.1 10 ⁹ B Bbar pairs
	BELLE			700 fb ⁻¹ (BELLE)	Super B factories :
					~ 80 10 ⁹ B Bbar pairs

But for LHCb

- trigger efficiency : from 90-95 % efficiency to 30 % efficient depending on the mode
- acceptance : depends on the decay mode (40% 20%)
- for mode requiring tagging : a factor 1/10 wrt B-factories for LHCb

What is the value of the B lifetime ? What is the average path in a detector of a B meson with boost of 10?

Do you understand why the lifetime of a D meson is smaller than the lifetime of a B meson ?

Why the B-factory have two asymmetric beams ?

What is the observable of the meson oscillation?

x is small for K, intermediate for Bd, large for Bs. Which is the most difficult to measure ?

CP violation is observed in K and B and « suspected » in D sector. Does it come from the same CKM matrix element ?

APPENDIX IV

More on CKM

Unitarity Triangle analysis in the SM:

Unitarity Triangle analysis in the SM:

Inclusive vs Exclusive

Details if you want ot see how it works

UT analysis including new physics

fit simultaneously for the CKM and

the NP parameters (generalized UT fit)

- add most general loop NP to all sectors
- use all available experimental info

find out NP contributions to ΔF=2 transitions

B_d and B_s mixing amplitudes (2+2 real parameters):

$$A_{q} = C_{B_{q}} e^{2i\phi_{B_{q}}} A_{q}^{SM} e^{2i\phi_{q}^{SM}} = \left(1 + \frac{A_{q}^{NP}}{A_{q}^{SM}} e^{2i(\phi_{q}^{NP} - \phi_{q}^{SM})}\right) A_{q}^{SM} e^{2i\phi_{q}^{SM}}$$

$$\Delta m_{q/K} = C_{B_q/\Delta m_K} (\Delta m_{q/K})^{SM}$$

$$A_{CP}^{B_d \to J/\psi K_S} = \sin 2(\beta + \phi_{B_d})$$

$$A_{SL}^q = \operatorname{Im}(\Gamma_{12}^q/A_q)$$

$$\varepsilon_K = C_{\varepsilon} \varepsilon_K^{SM}$$

$$A_{CP}^{B_s \to J/\psi \phi} \sim \sin 2(-\beta_s + \phi_{B_s})$$

$$\Delta \Gamma^q / \Delta m_q = \operatorname{Re}(\Gamma_{12}^q/A_q)$$

NP parameter results

Details if you want ot see how it works

The ratio of NP/SM amplitudes is:

< 25% @68% prob. (35% @95%) in B_d mixing < 25% @68% prob. (30% @95%) in B_s mixing

70

To evaluate which constraint we can put on contributions from New Physics amplitudes is a delicate problem and often is Model dependent.

Out of these measurement there a general agreement that we have limited the contributions of New Physics amplitudes (A_{NP}) wrt to SM ones (A_{SM}) at the the level of

$$R = \frac{A_{NP}}{A_{SM}} < 20\%$$

What does it imply ?

What happened since....

Many new (or more precise) measurements to constraint UT parameters and test New Physics

∆m_s

10.55

45 0 05

45

V_{ub}/V_{cb}

Beyond the Standard Model with flavour physics

The indirect searches look for "New Physics" through virtual effects from new particles in loop corrections

SM quark CPV comes from a single sources (if we neglect θ_{QCD})

New Physics does not necessarily share the SM behaviour of FV and $CPV^{\prime 3}$