Quarkonium production for precision NRQCD

Valeriia Zhovkovska Trans-European School of High Energy Physics 2023 Bezmiechowa Gorna, Poland

TESHEP 2016 in Yaremche, Ukraine

• First summer school!

Production cross-section measurement

• Number of events N obserbed by an experiment for a decay $(H \rightarrow AB \dots)$:

Good final state for studies has high efficiecny and large branching ratio

- Cross-section determination:
 - absolute:

$$\sigma = \frac{N(H \to AB \dots)}{\mathcal{L} \times \varepsilon \times \mathcal{B}(H \to AB \dots)}$$

relative:

$$\frac{\sigma_H}{\sigma_{H'}} = \frac{N_H}{N_{H'}} \times \frac{\mathcal{B}(H' \to A'B' \dots)}{\mathcal{B}(H \to AB \dots)} \times \frac{\varepsilon_{H'}}{\varepsilon_H}$$

Production studies require precise luminosity measurement or well-known normalisation channel

Quarkonia

Quarkonium

- A bound state of two **heavy quarks** ($c\bar{c}$ or $b\bar{b}$)
- J/ ψ discovery in 1974 first discovery of *c*-quark
- Non-relativistic QCD object: charmonium: $v^2 \approx 0.3$, bottomonium: $v^2 \approx 0.1$
 - three intrinsic scales $m \gg mv \gg mv^2$
 - simple potential model

Ideal probe for different QCD processes

 v^2 - typical velocity of

a heavy quark in the quarkonium rest frame

)11) 1534

Qarkonium: Decay modes

Bottomonium

Hadronic final states allow to study different quarkonium states simultaneously

Quarkonium: (Un)known modes

- Good final state for study:
 - large and precise branching ratio \Rightarrow large signal
 - "easy" to reconstruct \Rightarrow high efficiency
 - low background ⇒ better precision
 - available for several states ⇒ normalisation
- Branching ratios are studied at flavour factories
- Lack of information for some states: challenging to find a decay mode for production studies

$\eta_b(1S)$	DECAY	MODES
--------------	-------	-------

	Mode	Fraction (Γ _i /Γ)	Confidence level	
Γ_1	hadrons	seen		
Γ2	3h ⁺ 3h ⁻	not seen		
Γ ₃	$2h^+2h^-$	not seen		
Γ ₄	$4h^{+}4h^{-}$	not seen		
Γ ₅	$\gamma \gamma$	not seen		
Г ₆	$\mu^+\mu^-$	$< 9 \times 10^{-3}$	90%	
Γ ₇	$ au^+ au^-$	<8 %	90%	

h_b(1P) DECAY MODES

	Mode	Fraction (Γ_i/Γ)		
Г1	$\eta_b(1S)\gamma$	$(52^{+6}_{-5})\%$		

	$\mathcal{B} imes 10^3$								
	$p\overline{p}$	$\phi\phi$	ϕK^+K^-	$\phi \pi^+ \pi^-$	$ \Lambda \overline{\Lambda} $	=+=-	$\Lambda(1520)\overline{\Lambda}(1520)$	$\eta_c\gamma$	$p\overline{p}\pi^+\pi^-$
η_c	1.52 ± 0.16	1.79 ± 0.20	2.9 ± 1.4	unknown	1.09 ± 0.24	9.0 ± 2.6	-	-	5.3 ± 1.8
J/ψ	2.12 ± 0.03	forbidden	0.83 ± 0.12	0.87 ± 0.09	1.89 ± 0.08	0.97 ± 0.08	$\operatorname{unknown}$	17 ± 4	6.0 ± 0.5
χ_{c0}	0.22 ± 0.01	0.80 ± 0.07	0.97 ± 0.25	unknown	0.33 ± 0.02	0.48 ± 0.07	0.31 ± 0.12	forbidden	2.1 ± 0.7
h_c	< 0.15	forbidden	unknown	unknown	unknown	unknown	unknown	510 ± 60	unknown
χ_{c1}	0.076 ± 0.003	0.42 ± 0.05	0.41 ± 0.15	unknown	0.11 ± 0.01	0.08 ± 0.02	< 0.09	forbidden	0.50 ± 0.19
χ_{c2}	0.073 ± 0.003	1.06 ± 0.09	1.42 ± 0.29	unknown	0.18 ± 0.02	0.14 ± 0.03	0.46 ± 0.15	forbidden	1.32 ± 0.34
$\eta_c(2S)$	0.07^{1}	unknown	unknown	unknown	unknown	unknown	unknown	forbidden	unknown
$\psi(2S)$	0.29 ± 0.01	forbidden	0.07 ± 0.02	0.12 ± 0.03	0.38 ± 0.01	0.29 ± 0.01	unknown	3.4 ± 0.5	0.60 ± 0.04

New and more precise measurements are necessary for further studies

LHC detectors hunting for quarkonium

• ATLAS and CMS: mid-rapidity region, with muons in final state

IJMPA 30 (2015) 1530022

JINST 3 (2008) S08003

RIMENT

Experiments provide complementary measurements

 ALICE: both mid- and forward-rapidity regions, with muons and electrons in final state

JINST 3 (2008) S08004

 $\subseteq M$

Quarkonium production @ LHC

Understanding quarkonium production is challenging both experimentally and theoretically

Quarkonium production: Assumptions and Models

- Nearly all models assume factorisation between the $Q\bar{Q}$ formation and its hadronization into a meson
 - hard-scale $Q\bar{Q}$ formation calculated as an expansion in powers of α_s
 - soft-scale hadronization non-perturbative; mostly extracted from data; process-independent (universal)
- Factorisation depends on a chosen kinematic regime:
 - Collinear, $\sqrt{q^2} \approx q_T \gg \Lambda_{QCD}$
 - Transverse Momentum Dependent, $\sqrt{q^2} \gg q_T \gg \Lambda_{QCD}$
 - $k_{\rm T}$ or High Energy, $\sqrt{q^2} \gg q_T \gg \Lambda_{QCD}$
- Additionally, intrinsic scales are used in hadronization description: $m \gg mv \gg mv^2$
- Most advanced models:

Colour Evaporation Model, Colour Singlet Model, Non-relativistic QCD, Fragmentation Function approach

No consensus on the quarkonium production mechanism

Quarkonium production: Models

- Essential difference in various approaches is in the **description of the hadronization**:
 - Colour evaporation model (CEM): application of quark-hadron duality; only the invariant mass matters;
 - **Colour-singlet model (CS)**: intermediate $Q\bar{Q}$ state is colourless and has the same J^{PC} as the final-state quarkonium;
 - **Colour-octet model (CO)** (encapsulated in NRQCD): all viable colours and J^{PC} allowed for the intermediate $Q\bar{Q}$ state;

Colour Singlet state

ntired

antired

NRQCD: Theory vs Experiment

• Factorization: $d\sigma_{A+B\to H+X} = \sum_{n} d\sigma_{A+B\to Q\bar{Q}(n)+X} \times < O^{H}(n) >$

- Short distance: perturbative cross-sections + pdf for the production of a $Q\bar{Q}$ pair
- Long distance matrix elements (LDMEs): non-perturbative part
- Both CS and CO states are allowed with varying probabilities

 \Rightarrow LDMEs from experimental data: p_T-differential production, feed-down...

• **Universality**: same LDMEs for different \sqrt{s} , prompt production and production in b-decays

 \Rightarrow production at all possible \sqrt{s} , associated production, separate prompt and b-decays...

 Heavy-Quark Spin-Symmetry: links between CS and CO LDMEs of different quarkonium states

 \Rightarrow simultaneous studies of several states: $\eta_c + J/\psi$, $\chi_{cJ} + h_c$...

 $egin{aligned} &\langle \mathcal{O}_{1}^{\chi_{cJ}}(^{3}P_{J})
angle =rac{2J+1}{3}\langle \mathcal{O}_{1}^{h_{c}}(^{1}P_{1})
angle \ &\langle \mathcal{O}_{8}^{\chi_{cJ}}(^{3}S_{1})
angle =rac{2J+1}{3}\langle \mathcal{O}_{8}^{h_{c}}(^{1}S_{0})
angle \ &\langle \mathcal{O}_{1,8}^{\eta_{c}}(^{1}S_{0})
angle =rac{1}{3}\langle \mathcal{O}_{1,8}^{J/\psi}(^{3}S_{1})
angle \ &\langle \mathcal{O}_{8}^{\eta_{c}}(^{3}S_{1})
angle =\langle \mathcal{O}_{8}^{J/\psi}(^{1}S_{0})
angle \ &\langle \mathcal{O}_{8}^{\eta_{c}}(^{1}P_{1})
angle =3\langle \mathcal{O}_{8}^{J/\psi}(^{3}P_{0})
angle \ &_{12} \end{aligned}$

Experimental approach

J/ψ , ψ (2S) production

- Production measurement via l^+l final state (e.g. $J/\psi \rightarrow \mu^+\mu^-$, $J/\psi \rightarrow e^+e^-$...)
- Cross-section determination in $bin[p_T,y]$

$$\frac{d^{2}\sigma}{dydp_{T}} = \underbrace{N(q\bar{q} \rightarrow l^{+}l^{-})}_{\substack{I \times \varepsilon \times \mathcal{B}(q\bar{q} \rightarrow l^{+}l^{-}) \times \Delta y \times \Delta p_{T}}}$$

integrated o total o number of signal candidates o bin width uninosity of total in the given (p_T, y) bin

• Prompt and b-decay production of charmonium distinguished via pseudo-proper decay time:

$$t_z = \frac{z_{SV} - z_{PV}}{p_z} M_{p\bar{p}}$$

• Full kinematic range cross-section

Ο

J/ψ and $\psi(2S)$: Combined mass-lifetime fits

- Prompt and from b-decay production distinguished via decay time value: $t_z = \frac{z_{SV} z_{PV}}{n_z} M_{\mu\mu}$
- Unbinned maximum likelihood fit in bins of **[p_T, y]** to $M_{\mu^+\mu^-}$ and t_z

Cross-section determination

Production cross-section:

• Final state: $c\bar{c} \rightarrow p\bar{p}$

• Prompt and b-decay separation:

 prompt and b-decay production distinguished via pseudo-proper decay time value:

$$t_z = \frac{z_{SV} - z_{PV}}{p_z} M_{p\bar{p}}$$

• **two different tecnhiques** t_z -cut and t_z -fit technique

Using ratio allows to reduce systematic uncertainties

- Production studied in the thesis:
 - J/ψ normalization channel (p_T<14 GeV/c)
 - $\eta_c(1S) p_T$ -,y-differential x-section
 - $\eta_c(2S)$, h_c integrated x-section
 - χ_{cJ} , $\psi(2S)$ cross-check

$\eta_c(1S)$ production at LHCb at \sqrt{s} =13 TeV

• tz-cut technique: prompt and b-decay production separated using tz-value

- Relative charmonium yields: $6.5 < p_T < 14.0 \, GeV/c, 2.0 < y < 4.5$ $\frac{N_{\eta_c}^{prompt}}{N_{J/\psi}^{prompt}} = 1.18 \pm 0.10 \quad \frac{N_{\eta_c}^{from-b}}{N_{J/\psi}^{from-b}} = 0.33 \pm 0.02$
- Cross-feed probabilities accounted in the simultaneous fit:

$$\begin{array}{l} \longrightarrow \varepsilon^{prompt \rightarrow prompt} = 0.965 \pm 0.021 \\ \longrightarrow \varepsilon^{prompt \rightarrow from - b} = 0.0002 \pm 0.0001 \\ \longrightarrow \varepsilon^{from - b \rightarrow prompt} = 0.066 \pm 0.005 \\ \longrightarrow \varepsilon^{from - b \rightarrow from - b} = 0.689 \pm 0.022 \end{array}$$

Challenging backgound conditions for prompt

$\eta_c(1S)$ production at LHCb at \sqrt{s} =13 TeV

• tz-fit technique

- Simultaneous likelihood fit to $M_{p\overline{p}}$ in bins of $[p_T, t_z]$ to extract charmonium yields
- Simultaneous integral χ^2 fit to t_z in p_T -bins to separate prompt and from b-decays charmonium
- Results consistent with t_z-cut technique

LHCb

 J/ψ data

Ratio between η_c and J/ψ production

• Relative η_c to J/ ψ p_T -differential production cross-sections

Integrated and differential cross-sections

Measurement of integrated and p₁-differential production cross-sections

$$d\sigma(\eta_c)/dp_{\rm T} = \frac{d\sigma(J/\psi)}{dp_{\rm T}} \times \frac{N_{\eta_c}^P}{N_{J/\psi}^P} \times \frac{\mathcal{B}_{J/\psi \to p\bar{p}}}{\mathcal{B}_{\eta_c \to p\bar{p}}} \times \frac{\epsilon_{J/\psi \to p\bar{p}}}{\epsilon_{\eta_c \to p\bar{p}}} \qquad \qquad \sigma(\eta_c) = \sum_i d\sigma_i(\eta_c)/dp_{\rm T}$$

Current status

J/ψ production at the LHC

 J/ψ production and polarisation were studied at different LHC experiments:
 consistent and complementary cross-section measurements

 Description of the production cross-section at different energies

Explicit prediction for η_c using HQSS relations between η_c and J/ ψ LDMEs:

 $egin{aligned} &\langle \mathcal{O}_{1,8}^{\eta_c}(^1S_0)
angle &= rac{1}{3} \langle \mathcal{O}_{1,8}^{J/\psi}(^3S_1)
angle \ &\langle \mathcal{O}_8^{\eta_c}(^3S_1)
angle &= \langle \mathcal{O}_8^{J/\psi}(^1S_0)
angle \ &\langle \mathcal{O}_8^{\eta_c}(^1P_1)
angle &= 3 \langle \mathcal{O}_8^{J/\psi}(^3P_0)
angle \end{aligned}$

η_c production at the LHC

η_c(1S) LDMEs determined
 from known HQSS relations for J/ψ
 and J/ψ production

J/ψ prediction (NRQCD CS+CO) CS prediction

Direct projection to LHCb data

- LHCb data saturated by CS contribution, problem in simultaneous description of η_c production and J/ ψ production and polarization Han, Ma, Meng, Shao, and Chao PRL 114(2015), 092004
- Following progress in theory:
 - using constraints from fits to J/ψ production measurements and fit to η_c production measurement, upper limit on CO LMDE extracted:

 $0 < O^{\eta_c}({}^3S_1^8) < 1.46 imes 10^{-3} \text{ GeV}^3$

Simultaneous study of η_c and J/ψ production

• η_c production @ $\sqrt{s} = 7$ and 8 TeV sets new constraint on J/ ψ polarization

• Outcome:

- Impressive progress
- Tension with CDF data
- Two large CO contributions cancel each other ⇒ hierarchy problem ⇒ Soft Gluon Fragmentation, etc.?
- Joint study of hadroproduction and production in inclusive b-decays?

Same links for $\eta_c(2S)$ and $\psi(2S)$ are expected \Rightarrow clean test to confront NRQCD [Lansberg, Shao and Zhang]

$\eta_c(1S)$: Differential production cross-section

• η_c(1S) production:

$$\begin{split} & 6.5 < p_T < 14.0 \text{ GeV/c}, 2.0 < y < 4.5 \\ & \sigma_{\eta_c}^{prompt} = 1.26 \pm 0.11_{stat} \pm 0.08_{syst} \pm 0.14_{J/\psi} \, \mu b \\ & \mathfrak{B}_{b \to \eta_c X} = (5.51 \pm 0.32_{stat} \pm 0.29_{syst} \pm 0.77_{J/\psi}) \times 10^{-3} \end{split}$$

- Results may provide important constraints for J/ψ production and polarization
- η_c(1S) production can be described by CS contribution only; measurement in extended p_T is required: larger slope would indicate possible CO contribution

Interpretation of $\eta_c(2S)/\psi(2S)$ much cleaner than for $\eta_c(1S)/J/\psi$ due to absence of feed-down

$\eta_c(1S)$: Differential production cross-section

• **Relative** $\eta_c/J/\psi$ and **absolute** η_c p_T - and y-differential production **cross-sections** @ 13 TeV (**2018** data)

- Extended p_T -range compared to the previous analysis
- The first measurement of y-differrential $\eta_{\rm c}(1S)$ cross-section
- Slope in p_T -differential ratio of η_c to J/ ψ production indicates **different shape and maximum position of** p_T -spectra

Comparison with theory and outcome

Extended p_T-range:

- low p_T probe the transition region between NRQCD and models targeting low p_T region
- high p_{T} sensitive to CO contribution
- Hadroproduction results are compared with NRQCD CS and CO, and modified NRQCD predictions:
 - NRQCD CS describes data for $p_T > 7$ GeV/c
 - **no CO contribution** at high p_T
 - modified NRQCD does not describe η_c to J/ ψ production ratio
 - strong motivation to better understand/reduce theoretical uncertainties

Rapidity-differential study may provide a tool to reduce scale uncertainties

Absolute production cross-section

Summary and outlook

- Quarkonia is a great tool to study QCD
- Persisting challenges:

- simultaneous description of J/ψ production and polarization "polarization puzzle"
- simultaneous description of η_c and J/ψ together with J/ψ photoproduction "HQSS puzzle"
- negative contribution in the cross-section

• New sources of input are required:

- New studies of quarkonia decays
- Study of $\boldsymbol{\eta}_{\boldsymbol{q}}$ and $\boldsymbol{\chi}_{\boldsymbol{q}}$ states
- Associated quarkonia production
- Production in heavy-ion collisions
- Non-conventional quarkonium

