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Where to Find Help

Tim Ruhe, HighRR Lecture Week, September 12th 2023

§ General Introduction to Statistical Learning
§ Good start to get an overview
§ A lot of extra material: https://hastie.su.domains/ElemStatLearn/
§ (I believe you can also download the pdf there....)
§ Mathematical and statistical foundations of machine learning

§ Focus on Deep Learning and Neural Networks
§ Nice pedagogic approach
§ Relatively expensive (by no fault of the authors)
§ Focus on physics application!

Source: https://hastie.su.domains/ElemStatLearn/

Source: amazon

https://hastie.su.domains/ElemStatLearn/
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Where to Find Help

Tim Ruhe, HighRR Lecture Week, September 12th 2023

§ Focus on astroparticle and particle physics
§ Contains a lot of topics also covered in this talk
§ Open access
§ published by the end of 2022
§ Open Access!!! 
§ https://www.degruyter.com/serial/mlrc-b/html?lang=en
§ Many physics examples (CTA, IceCube, FACT, LHCb, ATLAS)

Source: Von The scikit-learn developers - github.com/scikit-learn/scikit-
learn/blob/master/doc/logos/scikit-learn-logo.svg, BSD, 
https://commons.wikimedia.org/w/index.php?curid=71445288

https://www.degruyter.com/serial/mlrc-b/html?lang=en


4Tim Ruhe, HighRR Lecture Week, September 12th 2023



5

Outline of the Lecture

§ Take away messages
§ Very quick motivation for astroparticle physics
§ Brief introduction to IceCube
§ Applications of Data Science Techniques
§ Deep Learning Applications

Tim Ruhe, HighRR Lecture Week, September 12th 2023
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Understand your Input
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Data Model Predictions

In machine learning, one uses data
to build a model, which will then

generate an output (generally
some sort of prediction)

If the data are biased, then there‘s
a good chance that the model and
also the output will be biased!

Hiring models that disfavour e.g.
women are the result of input data
that disfavour women.
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Validate!

Tim Ruhe, HighRR Lecture Week, September 12th 2023

Data set 1

Data set 2

Data set 3

One big data set!!!
(data set 4)

If data sets 1 to 3 have overlappping examples, any classifier, build
using data set 4, will appear much more accurate than it actually is!

The same might be true if you do not cross validate!



8

Understand your Output

During the COVID-19 pandemic a lot of hope was put on AI tools to assist
doctors to diagnose and treat patients. But none of them succeeded. Instead

§ AI models learned to distinguish kids from adults based on chest scans
§ Identified serious cases of COVID based on the font a hospital used to

label the chest scans
§ ...

Tim Ruhe, HighRR Lecture Week, September 12th 2023

This is where your scientic expertise as a physicist (your
expert knowledge) becomes incredibly valuable. 
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Machine Learning is a Tool

Tim Ruhe, HighRR Lecture Week, September 12th 2023Tim Ruhe, HighRR Lecture Week, September 12th 2023

Von Banffy - Eigenes Werk, CC BY-SA 3.0, 
https://commons.wikimedia.org/w/index
.php?curid=11657709

Source: CC BY-SA 3.0, 
https://commons.wikimedia.org/w/inde
x.php?curid=577886

Source: Von smial (talk) - Eigenes Werk, 
FAL, 
https://commons.wikimedia.org/w/inde
x.php?curid=6028669

Machine Learning provides tools
to accomplish an analysis task
faster and more accurately
(when used correctly).
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Astroparticle Physics and Neutrino Astronomy
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2012: People getting itchy
about missing

astrophysical neutrinos
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The IceCube Neutrino Observatory
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IceCube Geometry and Drill Seasons
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The Fundamental Unit of IceCube: The DOM
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§ Downward facing 10“ PMT 
(Hammamatsu R7081-02), 25% Peak 
QE

§ High Voltage Supply
§ Electronics
§ Flasher LEDs
§ Higher QE (34%) for DeepCore DOMs 

(Hammamatsu R7081MOD)
§ Very few DOM failures (mostly during

deployment)
§ Slightly larger fraction of DOMs with

issues (mostly non-standard Local
Coincidence)
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The Detection Principle: Cherenkov Light
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IceCube Events: Tracks and Cascades

Tim Ruhe, HighRR Lecture Week, September 12th 2023

Track like events:

§ !" - CC interactions
§ Interaction may happen outside 

instrumented volume
§ Good angular resolution≈ 1°
§ Poor energy resolution

Cascade like events:

§ !& - CC and all flavour NC interactions
§ Interaction inside instrumented volume
§ Poor angular resolution≈ 15°
§ Good energy resolution
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Fully and Partially Contained Cascades

Tim Ruhe, HighRR Lecture Week, September 12th 2023
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IceCube Events: Double Cascades
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!-Track (~ 50m/PeV)

"# + % → !' + %( !' → )' + "#

Re
me
mb
er:

*Φ
*,
∝ ,'

.



19

From Double Cascades to Double Pulses
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From Double Cascades to Double Pulses
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Double Pulse

Single Pulse
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What IceCube Sees (and what it does not see)
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What IceCube Sees

Tim Ruhe, HighRR Lecture Week, September 12th 2023
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IceCube Reconstructions

Tim Ruhe, HighRR Lecture Week, September 12th 2023

3 Reconstruction Algorithms

The muon track reconstruction algorithm is a maximum likelihood procedure. Prior to
reconstruction simple pattern recognition algorithms, discussed in section 4, generate the
initial estimates required by the maximum likelihood reconstructions.

3.1 Likelihood Description

The reconstruction of an event can be generalized to the problem of estimating a set of
unknown parameters {a}, e.g. track parameters, given a set of experimentally measured
values {x}. The parameters, {a}, are determined by maximizing the likelihood L(x|a)
which for independent components xi of x reduces to

L(x|a) =
∏

i

p(xi|a) , (2)

where p(xi|a) is the probability density function (p.d.f.) of observing the measured value
xi for given values of the parameters {a} [20].
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Figure 3. Cherenkov light front: definition of variables

To simplify the discussion we assume that the Cherenkov radiation is generated by a
single infinitely long muon track (with β = 1) and forms a cone. It is described by the
following parameters:

a = (r0, t0, p̂, E0) (3)

and illustrated in figure 3. Here, r0 is an arbitrary point on the track. At time t0, the
muon passes r0 with energy E0 along a direction p̂. The geometrical coordinates contain
five degrees of freedom. Along this track, Cherenkov photons are emitted at a fixed angle

6

1. Simple features, which do not require
sophisticated reconstruction, e.g. total 
charge acquired in an event.

2. Simple Fits, assuming a straight line
and minimizing a X2:

!" =$
%&'

(
(*% − *,%-./%0 − 12.3%45 6 7)2

3. Likelihood-based reconstructions:

ℒ =;
%
<(=%|<⃗)Ahrens et al., NIM A 524 (1-3), 169 -194 (2004)



24

COGX, -Y and -Z

Tim Ruhe, HighRR Lecture Week, September 12th 2023

Center of Gravity of the charge
distribution in the detector.

For cascades this is a relatively good
estimator for the vertex position of the
neutrino interacation.

Can be used e.g. for containment cuts.

Interpretation is less intuitive for tracks.

20 Chapter 3. Separation

-400 -200 0 200 400
COGZ [m]

10

102

103

104

105

N
u
m

b
e
r 

o
f 
E

v
e
n
ts

Neutrino MC
Real Data
CORSIKA

(a)

0 10 20 30 40 50 60

DoubleMuFitTimeSplitBayesianParams_NDirA

10-2

1

102

104

N
u
m

b
e
r 

o
f 
E

v
e
n
ts

Neutrino MC
Real Data
CORSIKA

(b)

Neutrino MC
Real Data
CORSIKA

N
u
m

b
e
r 

o
f 
E

v
e
n
ts

0 40 80 120 160 200

DoubleMuFitTimeSplitBayesianParams_NEarly

1

10

102

103

104

105

(c)

10

1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0

LineFit_Zenith

102

103

104

N
u
m

b
e
r 

o
f 
E

v
e
n
ts

Neutrino MC
Real Data
CORSIKA

(d)

0 200 400 600 800 1000 1200

MPEFit_LDirC [m]

1

10

102

103

104

105

N
u
m

b
e
r 

o
f 
E

v
e
n
ts

Neutrino MC
Real Data
CORSIKA

(e)

Neutrino MC
Real Data
CORSIKA

0 40 80 120 160 200

MPEFit_NDirC

10-1

10

103

105

N
u

m
b

e
r 

o
f 

E
v
e

n
ts

(f)

0 4 8 12 16 2018141062

MPEFit_rlogl

10-1

10

103

105 Neutrino MC
Real Data
CORSIKA

(g)

Neutrino MC
Real Data
CORSIKA

0.0 0.4 0.8-0.4-0.8

MPEFit_SmoothAll

10-1

1

10

102

103

104

105

N
u
m

b
e
r 

o
f 
E

v
e
n
ts

(h)

Figure 3.5: Data Monte Carlo comparison for various attributes at level 4 of the event
selection.

What is happening here?

Center of the detector.
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South Pole Ice as a Detection Medium
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Absoprtion

Scattering

Graphics: Aartsen et al., PRD 99.3 (2019): 032007.
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Ice Model Evolution
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Figure 1: The IceCube Neutrino Observatory, final configuration. Also shown is the AMANDA array, pre-
cursor to IceCube, which ended operation in 2009.
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Figure 2: Left (a): simplified schematics of the experimental setup: the flashing sensor on the left emits
photons, which propagate through ice and are detected by a receiving sensor on the right. Right (b): example
photon arrival time distributions at a sensor on one of the nearest strings (122 m away) and on one of the
next-to-nearest strings (217 m away; histogram values are multiplied by a factor of 10 for clarity). Dashed
lines show data and solid lines show simulation based on the model of this work (with best fit parameters).
The goal of this work is to find the best-fit ice parameters that describe these distributions as observed in data
simultaneously for all pairs of emitters and receivers.

in Fig. 2a. The recorded data include the total charge (corresponding to the number of arriving34

photons) and photon arrival times, shown in Fig. 2b. A data set that covers all detector depths35

was produced. A global fit of these data was performed, and the result is a set of scattering and36

absorption parameters that best describes the full data set. The AMANDA Collaboration used37

an analysis based on separate fits to data for individual pairs of emitters and receivers [4] to38
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Figure 3: Left: Top view layout of IceCube in the 40-string configuration in 2008. String 63, for which the
DOMs emitted flashing light in the study presented here, is shown in black. The nearest 6 strings are shown
in brown. The dashed lines and numbers 2009 and 2010 in the left figure indicate the approximate location
of the detector parts deployed during those years. Right: a typical DOM flasher event, DOM 46 on string 63
flashing. The larger circles represent DOMs that recorded larger numbers of photons. The arrival time of the
earliest photon in each DOM is indicated with color: early times are shown in red while late times trend to
blue.

Figure 4: Flasher light output time profile for pulses of minimum and maximum width. The relative height of the
short pulse has been scaled so the leading edges are comparable. This measurement was performed using a small PMT
(Hamamatsu R1450) after optical attenuation of the pulses to facilitate counting of individual photons.

(as discussed and shown in Fig. 8 below). To supplement data from the standard flashers, 1684

special DOMs were constructed and deployed with LEDs that emit at 340 nm, 370 nm, 450 nm,85

and 500 nm. Data from these special flashers were not used in the analysis of this paper but will86

be used in future analyses of wavelength-dependent effects.87

The 12 LEDs in each DOM are aimed in six different azimuth angles (with 60◦ spacing) and88

along two different zenith angles. After correcting for refraction at interfaces between air, glass89

and ice, the angular emission profiles peak along the horizontal direction for the 6 horizontal90

LEDs and 48◦ above the horizontal for the 6 tilted LEDs. The angular spread is reduced by the91

refraction and is modeled using a 2-D Gaussian profile with σ = 10◦ around each peak direction.92

During the DOM deployment and freeze-in within the glacial ice sheet, the azimuthal orientations93

6

AHA

SPICE-1

SPICE:Mie

SPICE-Lea

Ice core measurements

In situ 
measurements 
using flasher LEDs

... Aartsen et al., NIMA 711, 73 – 89 (20013)
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Bulk Ice vs. Hole Ice
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Aartsen, Mark G., et al., Journal of Physics G, 44.5 (2017): 054006.
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IceCube Data Levels
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Level 0 (trigger level)

Level 1 (filter level)

Level 2 

Level 3 

Supposed to be very fast. The aim is to
identify and extract particle
interactions from noise.
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IceCube Data Levels
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Level 0 (trigger level)

Level 1 (filter level)

Level 2 

Level 3 

Data rate of approx. 3 kHz. Dominated
by atmospheric muons. Some degree
of background rejection, mainly by
selecting events with a certain
topology or energy (e.g. DeepCore
Filter).
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IceCube Data Levels
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Level 0 (trigger level)

Level 1 (filter level)

Level 2 

Level 3 

No events are discarded at this level. 
Sophisticated reconstructions are
applied. 
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IceCube Data Levels

Tim Ruhe, HighRR Lecture Week, September 12th 2023

Level 0 (trigger level)

Level 1 (filter level)

Level 2 

Level 3 

Reconstructions are continued and
become working group specific. Some
cuts are applied to events that pass a 
subset of filters (cascades,  muons, 
low energy). 

Data rate is reduced to approx. 1  Hz.

Starting point for the majority of the
IceCube analyses.



32

Example Analysis: Reconstruction of Neutrino Energy Spectra
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? ? ?
? ?

? ??

?
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Example Analysis: Challenges
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A lot of events

Very few events
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Example Analysis: Challenges
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A lot of events

Very few events

Overwhelming background of
atmospheric muons!
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Example Analysis: Challenges
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A lot of events

Very few events

Overwhelming background of
atmospheric muons!
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Using the Earth as Muon Shield
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µ

µ

µ
K

D

Cosmic ray
Muon rejection via 

zenith cut.
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Defining Signal and Background
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Signal: Muon tracks correctly
reconstructed as upward going.
(Encoded as 1)

Background: Muon tracks falsely
reconstructed as upward going.
(Encoded as 0)

M. Börner, PhD thesis (2018)
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How to handle Missing Values
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Name Age Gender Job Salary

Joey 23 male actor 1000,00
Rachel 24 female buyer 1340,00
Ross 28 male ??? 1200,00
Chandler 28 male accountant nan
Monica 24 female chef 1280,00
Phoebe nan female ??? 4300,00

§ Some algorithms can only handle 
numerical values

§ Missing values (nans, infs, ...) can be
replaced
§ Average
§ Median
§ Constant
§ ...

§ Features with too many missing values
can be excluded

§ Missing value can actually provide
valuable information, e.g. reconstruction
algorithm failed because this is an event
with poor information



39

How to handle Missing Values

Tim Ruhe, HighRR Lecture Week, September 12th 2023

Name Age Gender Job Salary

Joey 23 male actor 1000,00
Rachel 24 female buyer 1340,00
Ross 28 male ??? 1200,00
Chandler 28 male accountant nan
Monica 24 female chef 1280,00
Phoebe nan female ??? 4300,00

Given that we understand the data
fairly well, it is probably safe to
replace this values with mean or
median.
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How to handle Missing Values
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Name Age Gender Job Salary

Joey 23 male actor 1000,00
Rachel 24 female buyer 1340,00
Ross 28 male ??? 1200,00
Chandler 28 male accountant nan
Monica 24 female chef 1280,00
Phoebe nan female ??? 4300,00

Given that we understand the data
fairly well, it is probably safe to
replace this values with mean or
median.

This might be more problematic, 
because Phoebe‘s salary is an outlier
here, that might create a bias.
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How to handle Missing Values
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Name Age Gender Job Salary

Joey 23 male actor 1000,00
Rachel 24 female buyer 1340,00
Ross 28 male ??? 1200,00
Chandler 28 male accountant nan
Monica 24 female chef 1280,00
Phoebe nan female ??? 4300,00

Given that we understand the data
fairly well, it is probably safe to
replace this values with mean or
median.

This might be more problematic, 
because Phoebe‘s salary is an outlier
here, that might create a bias.

This is even harder. The feature is not numerical, so it cannot be easilyreplaced.

One could encode it, e.g. „unknown“ or one could discard the entirefeature.
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Feature Selection
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Event Selection – Feature Selection
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Data/MC Classification

7

M. Börner, PhD thesis (2018)

Exclude features that either bias the
selection or are only present in simulation.
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Feature Selection
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Event Selection – Feature Selection
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Feature/Observable selection to find a low dimensional representation for the 
classification task without losing information

Data/MC Classification

7

M. Börner, PhD thesis (2018)

Exclude features that either bias the
selection or are only present in simulation.

Constant features do not carry information.

**One could go one step further and also 
exclude features with small variance.

*Useless in this case includes features
that exceed a certain threshold in the
relative number of missing values.
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Feature Selection
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Event Selection – Feature Selection
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7

M. Börner, PhD thesis (2018)

Exclude features that either bias the
selection or are only present in simulation.

Constant features do not carry information.

Strongly correlated features do not contain
new information (or only very little)
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Event Selection – Feature Selection
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Feature/Observable selection to find a low dimensional representation for the 
classification task without losing information

Data/MC Classification

7

M. Börner, PhD thesis (2018)

Exclude features that either bias the
selection or are only present in simulation.

Constant features do not carry information.

Strongly correlated features do not contain
new information (or only very little)

Simulated and experimental data
should agree to not bias the result.
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Feature Selection
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Event Selection – Feature Selection
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Feature/Observable selection to find a low dimensional representation for the 
classification task without losing information

Data/MC Classification

7

M. Börner, PhD thesis (2018)

Exclude features that either bias the
selection or are only present in simulation.

Constant features do not carry information.

Strongly correlated features do not contain
new information (or only very little)

Simulated and experimental data
should agree to not bias the result.

Automated selection by a feature
selection algorithm.
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Feature Selection: Forward Selection
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Feature 1

Feature 2

Feature 3

Feature n

Train Model with
Selected Features (one
after the other) and
select the one with the
best performance

Feature 1

Model
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Feature Selection: Forward Selection
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Feature 1

Feature 2

Feature 3

Feature n

Add Features (one
after another) and train
a classifier. 

Select the features
that give the best
performance.

Model

Feature 1

Feature 3

Feature 2
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Feature Selection: Backward Elimination (1st Iteration)
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Feature 1

Feature 2

Feature 3

Feature n

Feature 1

Feature 2

Feature 3

Feature n
M

odel 1

M
odel n

Least important feature is removed
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Feature Selection: Backward Elimination (2nd Iteration)
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Feature 1

Feature 2

Feature 3

Feature n

Feature 1

Feature 2

Feature 3

Feature n
M

odel 1

M
odel n

Feature 3 was the least important

feature in the previous iteration.
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Minimum Redundancy Maximum Relevance (1st Iteration)
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Feature 1

Feature 2

Feature 3

Feature n

Compute correlation of
all features with
respect to the target
class.

Select the feature with
the largest correlation.
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Minimum Redundancy Maximum Relevance (3rd Iteration)
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Feature 1

Feature 2

Feature 3

Feature n

Compute correlation of
all features with
respect to the target
class.

Compute Correlation
with already selected
features.

Select the feature
which maximizes

Feature 1 (Selected)

Feature 3 (Selected)

max
$% & '()*+,

- ./, 1 − 1
4 − 1 5

$6 & )*+,

-(.8, ./)

Peng, H.C., Long, F., and Ding, C., IEEE Transactions on Pattern Analysis and
Machine Intelligence, Vol. 27, No. 8, pp. 1226–1238, 2005.

Ding, C., & Peng, H., Journal of bioinformatics and computational biology, 3(02), 185-205. (2005)
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Why is this Preferrable?
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Source: By Thore Husfeldt at English Wikipedia, CC BY-SA 3.0, 
https://commons.wikimedia.org/w/index.php?curid=31823619

Feature Selection

Model Training 
& 

Estimation of Feature 
Importance

Remove Worst

Repeat n-times
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Feature Selection Stability
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172 7 Monitoring and Feature Extraction

Fig. 7.2: Feature selection stability for a MRMR . The stability of the selection increases with
an increasing number of attributes and starts to saturate for nAtt � 20. Figure taken from
Ref. [328].

be noted that Eq. (7.7) is not defined for k = 0 and k = n. As these are the trivial
cases of selecting either no or all features, which render the comparison of feature sets
useless, this does not pose a problem. A good agreement between the selected subsets
is achieved when the indices are close to one, whereas a poor agreement is observed
in case the indices are close to 0 (Jaccard) or -1 (Kuncheva). Examples regarding the
stability of the feature selection carried out with MRMR, and a simple forward selection
are depicted in the Figs. 7.2 (MRMR) and 7.3 (forward selection). One finds that for
MRMR, the stability of the selection increases with an increasing number of selected
attributes. The opposite case is observed for the forward selection, and both indices
are found to decrease with an increasing number of selected attributes. For selection
algorithms, both indices are equal to one in case only one attribute is selected. This
indicates the existence (and selection) of a feature with a very strong correlation to the
class variable.

Further Remarks The best and most stable feature selection becomes useless in case
the selected features are subject to disagreements between simulated- and experimental
data. As experiments in astroparticle physics are sometimes subject to such mismatches,
all selected features should be monitored with respect to this agreement. This will allow
for training a well-generalizing classifier, which can be applied to experimental data. It is
mostly a matter of taste at which point of the feature selection such a check for potential
disagreements should occur. One may, for example, analyze the selected features after
the selection is completed. This has the advantage that relatively few attributes must
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Fig. 7.3: Feature selection stability for a simple forward selection. A decreasing stability is ob-
served with an increase in the number of attributes. Figure taken from Ref. [328].

be closely studied, and features with detected mismatches can be manually excluded
from the selected set. However, by doing so, one runs the risk that an entirely new
feature selection becomes necessary if too many selected features have to be excluded.
In contrast, the opposite case of investigating and excluding attributes before running
an automated feature selection can become rather time and resource-consuming. For
more details on the so-called data/MC mismatches and their detection via the use of
machine learning, we refer to Sec. 5.3.2

As an additional sanity check on the feature selection, it is often helpful to study the
importance of the individual features with respect to the classification task they have
been selected for. When using MRMR with IceCube data, it has been observed that the
features selected in the later iterations of MRMR show little to very little importance
with respect to the classification task. Whether some of those less important features
can be manually excluded from the feature set depends on the available computational
resources and the classification task at hand. Moreover, to some extent, such an exclusion
can also be considered a matter of taste.

7.3 Feature Extraction for IACTs

Maximilian Linhoff
Jens Buß

Lukas Nickel

! ", $ = " ∩ $
" ∪ $

()(", $) =
,- − /0
/(- − /)

/ = " = $

, = " ∩ $

-: number of features
Ludmila I. Kuncheva: A STABILITY INDEX FOR FEATURE SELECTION

Jaccard Index:

Kuncheva‘s Index:

Forward Selection

MRMR
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Feature Engineering
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Feature 1

Feature 2

Feature 3

Feature n

Mathematical
operations of your
choice

Feature n+1

Feature n+2

Feature n+m

*The early layers of Deep
Neural Networks tend to
take care of this
automatically.



56

Data/MC Disagreement
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5.3 Validation of the simulation 131
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Fig. 5.10: Two example features from the IceCube dataset for observations and simulations. Top:
Total charge in the DOMs, one of the well simulated features. Bottom: Number of pulses in the
DOMs, one of the not-so-well simulated features.

above. But most of the time, due to the combinatorial nature and complexity of the
detectors, the cause, and effects are much more indirectly linked, making it very hard
to identify the root cause once a mismatch is identified.

5.3.2 Detection of Mismatches

Tim Ruhe
Maximilian Linhoff

For well-simulated data, simulated events should be indistinguishable from observed
events by their properties. Classically, investigations of possible mismatches between
simulated and observed datasets rely on one-dimensional parameter distributions.
However, systematic errors in the simulation will also affect the correlation between
parameters, so looking at single parameter distributions is insufficient. With the high
dimensionality of typical intermediate data representations in particle and astroparticle
physics, it is infeasible to inspect all possible combinations of parameters manually.

A way to quantify the agreement of simulations and observations is thus to try to
classify the datasets with the goal of predicting for each event if it was simulated or
observed and then apply the usual quality metrics for supervised classification tasks

sufficient agreement

insufficient agreement

Challenges when inspecting
distributions by eye:

§ only looking at one-
dimensional distributions

§ Systematic errors in 
simulation will also affect
correlations between
features

§ Which metric ???

§ Which threshold ??? Graphics: M. Linhoff
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Quantifying Disagreements
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132 5 Monte Carlo Simulations
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Fig. 5.11: Feature importance of the 20 most important features for the classification into
observations or simulations

like accuracy or the area under the ROC curve. For a well-simulated dataset, this
classification task should be hard to impossible, and thus the classification metrics
should be compatible with randomly guessing.

In addition to quantifying the match between simulations and observations, this
approach also allows the identification of badly simulated features by calculating how
important an individual feature was to the overall classification. Decision-tree-based
algorithms can provide individual feature importances via the total reduction of the
loss function achieved by the splits in the respective features. For all algorithms, a
permutation-based approach can be used [97, section 10]. To quantify the importance of
a single feature, the values of this feature are permuted, and the classifier is evaluated
on the permuted dataset, resulting in a worse metric than the baseline if the feature is
important to the classification.

After identifying problematic features, two approaches are possible: removing badly
simulated features until the classification is no longer possible or using the gained insight
to improve the simulations. These two approaches are akin to treating symptoms or the
underlying root condition in medicine. If possible, the latter will always produce better
results, and the former is easier in the short term. Again, both approaches complement
each other.

This approach was developed as part of [91], and more details can be found in [90].

General Idea:

§ Train classifier to distinguish
simulated and experimental 
data

§ Hard to impossible for a 
perfect agreement

§ Sort features according to
their importance

§ Discard to n features
§ Advantage: Extent to which

mismatches can be tolerated
is set by the classifier

Graphics: M. Linhoff
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Separating Data from MC
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5.3 Validation of the simulation 133
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3, ĀROC = 0.57

Rk, ĀROC = 0.55

Fig. 5.12: ROC curves for the classification into observations or simulations. After removing the
12 most important features for this classification from the dataset, the task is much harder to
solve.

Application to an IceCube high-level dataset In the following, we will apply this
approach to a high-level IceCube dataset, which generally has an excellent agreement
between simulated and observed data. Using the approach, we will identify a few
columns in the dataset that show mismatches and make the classification impossible
by iteratively removing features with high feature importance with respect to the
classification into observed and simulated.

The dataset consists of simulated, neutrino-induced events and observations after
suppressing the atmospheric muon background to very low levels. As the simulations do
not directly follow the expected energy spectra and the observation durations are not
equivalent, sample weights for the simulated dataset are necessary to obtain a realistic
comparison. Due to the low cross-section, neutrino interactions in IceCube are very
rare compared to atmospheric muons. Primary neutrinos are also simulated with an
artificially increased cross-section to force interactions inside the detector to obtain
sufficient statistics for the neutrino events (the searched-for signal in most IceCube
analyses). This artificially increased cross-section must be considered when calculating
the sample weights for these events. While most of the features in the dataset show
very good agreement between simulations and observations, few do not like those shown
at the bottom of Figure 5.10.

As quality metric, area under the ROC curve (AROC) is used, with AROC ⇡
0.5 constituting random guessing, the desired outcome. Both loss-reduction feature

134 5 Monte Carlo Simulations
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Fig. 5.13: Score distributions for the classification into observations or simulations

importance for tree-based models and permutation-based feature importance for all
classification algorithms are implemented in scikit-learn. For this example, we will
use a random forest classifier and rely on the loss-based feature importances, as these
are provided by scikit-learn out-of-the-box after training. We train a random forest
classifier using tenfold cross-validation.

In the first iteration, we train with all available features. The mean feature impor-
tance over the cross-validation iterations is shown in Figure 5.11. It can be seen that
a few features stick out, including the one shown in Figure 5.10. We now remove the
four features with the largest importance and repeat the procedure three more times.
Figure 5.12 shows the resulting ROC curves for each cross-validation iteration along
with the mean area under the curve. As expected, the problem gets progressively harder
to solve for the classifier, after removing 12 features the mean area under the ROC
curve is down to ĀROC = 0.55 from ĀROC = 0.67 on the full dataset.

The same behavior can be seen when looking at the score distributions in Fig-
ure 5.13, while for the entire dataset, there is a considerable number of events that the
model assigned a large likelihood to be simulated, the distributions approach a normal
distribution around a mean of 0.5 for the reduced dataset.

For further investigations, looking at the events that were classified as simulations
with high likelihood might give valuable insights into why those events were clearly
identified, meaning they belong to a class of events that is not or only much more
rarely observed in measured data. The same could be said for the opposite case: events

Prediction score centered
around 0.5 (close to random
guess).

Area under Curve is close to
0.5 (close to random guess).

Graphics: M. Linhoff
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Model Building and Model Performance (Sketch)
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Events available for model building (e. g. Monte 
Carlo simulations).

Training Data Holdout Set
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Model Building and Model Performance (Sketch)
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Training Data

Set 1 Set 2 Set 3 Set 4

Train ML model of your
choice

Estimate performance of
the model with respect

to desired metric.

Repeat 4-times (cross
validation)

Repeat n-times to
optimize the model

parameter.



61

Model Building and Model Performance (Sketch)
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Events available for model building (e. g. Monte 
Carlo simulations).

Training Data Holdout Set

Fully optimized ML 
model

Re-check classifier
performance on unseen

data.



62

Nomenclature
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Events (Examples) are
characterized by a  feature
vector: 

! = #$ … #&

In this example

! = (#$, #))

And a class variable 

+ ∈ +$ … +&

In this example

+ ∈ -./0, 123450
N (!, +) pairs are referred to as training set
Or annotated data
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Nomenclature
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Events (Examples) are
characterized by a  feature
vector: 

! = #$ … #&

In this example

! = (#$, #))

And a class variable 

+ ∈ +$ … +&

In this example

+ ∈ -./0, 123450

Task: Build a model to
separate blue and orange 
examples.
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The Linear Model
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!" = $% +'
()*

+
,($(

!" = -orange: 0blue: 1

Solve e.g. by least squares fit
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The Linear Model: Graphical Representation of the Model
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Below line:
Classify as blue

Above line:
Classify as orange

The model is not able to perfectly
describe the training data.
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Application to Unseen Data
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Confusion Matrix

*I defined that border will be part of
the orange class.

Blue (+) Orange (-)
Blue (+) 22 2
Orange (-) 3 22
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True and False Negatives and Postives

T. Ruhe, PHYSTAT-Gamma 2022

Confusion Matrix

*I defined that border will be part of
the orange class.

Blue (+) Orange (-)
Blue (+) 22 2
Orange (-) 3 22

True Positives (TP)

True Negatives (TN)

False Positives (FP)

False Negatives (FN)
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TPR, FPR, Accuracy and All That
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Confusion Matrix

* These measures can sometimes
have different names

Blue (+) Orange (-)
Blue (+) 22 2
Orange (-) 3 22

True Positives (TP)

True Negatives (TN)

False Positives (FP)

False Negatives (FN)

!"" = $% + $'
% + ' = $% + $'

$% + (% + $' + ('

Accuracy:

%)*" = $%
$% + (%

)*" = $%
$% + (%

Precision:

Recall:



69

Area Under Curve
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Source: By cmglee, MartinThoma - Roc-draft-xkcd-
style.svg, CC BY-SA 4.0, 
https://commons.wikimedia.org/w/index.php?curid=1097
30045

ROC characteristic for the FACT Open Crab data set

Graphic: M. Linhoff

Graphics: M. Linhoff [Learning Under Resource
Constraints – Discovery in  Physics] (in preparation)
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Naive Bayes
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Some sort of preprocessing

Some sort of postprocessing

Super fancy machine
learning algorithm that‘ll

take days to finish 

Use Naive Bayes here, and
replace with actualy

algorithm after debugging. Great for debugging and
benchmarking!

! " $⃗ = !(") ( !($⃗|")
!($⃗)

! " $⃗ = 1
+ !("),-./

0
!($-|")

Naive assumption
that all features are

independent.
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Decision Trees
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!"

!#
A separation of the two
classes is difficult to achieve
with a linear model.
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Building a Decision Tree
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!"

!#
root node
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Building a Decision Tree
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!"

!# !" > %"!" ≤ %"
!" ≤ %" !" > %"

A decision tree with only a 
single split is sometimes
referred to as a decision stump.
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Building a Decision Tree
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!"

!# !" > %"!" ≤ %"
!" ≤ %" !" > %"

!# ≤ %# !# > %#

%"

%#
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Building a Decision Tree
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!" > $"!" ≤ $"

!& ≤ $& !& > $&
!& > $'!& ≤ $'
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Decision Trees: Parameters and Nomenclature
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!" ≤ $"

!% ≤ $% !% > $%

root node

terminal nodes/leaves

Depth of the tree: 3

§ Typical Settings:

§ Split criterion
§ Maximum depth
§ Minimum samples

required for split
§ Minimum samples

required for a leaf
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No Further Splits
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!" > $"!" ≤ $"

No further split possible

à Majority vote: green
à Average: 

confidence(green)= 2/3, 
confidence(orange) = 1/3

No further split possible

à Majority vote: orange
à Average: 

confidence(green)= 1/3, 
confidence(orange) = 2/3
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Decision Trees for Regression
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!" > $"!" ≤ $"

!& ≤ $& !& > $& No further split possible

1
3 2 + 2 + 1 = 5

3

1
1
1

2 2
3

1 1

1 1

3

3

2 2 1
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How to DecideWhere to Split?
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∆" # = " # − &' ( " #' − (1 − &') ( "(#,)
Impurity at the current

node, e.g. the root node

Impurity at the left

node, after a certain

split

Impurity at the right

node after a certain

split.

The goal of a split is to find the combination of feature and cut-value
that maximizes the decrease in impurity.

The  nodes at the next step should be as pure as possible.
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Different Measures of Impurity
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!"#$# = &
'(')

*+'*+') = &
',-

.
*+'(1 − *+')

!3456 7$8459: = −&
',-

.
*+'log(*+')

!>#6?@A66 = 1 − *+'(+)

*+': Proportion of class k in node m

**Definitions are from Elements of
statistical learning.
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Random Forests
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Random forests utilize an ensemble of
independent weak classifiers (decision trees) to
obtain a better classification.

Final classification is achieved via:

!" =
1

%&'())
*
+,-

./0112
!+"

!+": Classification for example j by tree i

4- ≤ 6-

Random subset of
examples to build each
tree.

Random subset features to
determine the optimal split

A Decision Tree is a weak
classifier, but it can be

strengthened by using ensembles
of decision trees.
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Boosting
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Elements of Statistical Learning (2nd Ed.) c©Hastie, Tibshirani & Friedman 2009 Chap 10
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G(x) = sign
[∑M

m=1 αmGm(x)
]

GM (x)

G3(x)

G2(x)

G1(x)

Final Classifier

FIGURE 10.1. Schematic of AdaBoost. Classifiers
are trained on weighted versions of the dataset, and
then combined to produce a final prediction.

Source: Elements of Statistical Learning, Figure 10.1

§ Classifiers are weighted by
!" = log((1 − *++")/*++")

§ Better classifiers obtain higher weights
§ Example weights are updated in every

iteration
./ ← ./ 1 exp(!" 1 5(6/ ≠ 8(9/)

§ Falsely classified examples obtain
higher weights in the next iteration
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Reasonable agreement between
simulated and experimental data.

Direct usage of the classifier
output is not sufficient.

Extra cut is required.
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The classifier will declare
everything with c > 0.5 as
signal.
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? The analysis goal is to
reconstruct a muon neutrino

energy spectrum and to
observe a flattening of the

flux at high energies.
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We can probably tolerate some
muon backround in this region.

The analysis goal is to
reconstruct a muon neutrino

energy spectrum and to
observe a flattening of the

flux at high energies.
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?
? ? ?

?
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?

We can probably tolerate some
muon backround in this region.

Muon background in this region
will alter the physical
interpretation of the result.

The analysis goal is to
reconstruct a muon neutrino

energy spectrum and to
observe a flattening of the

flux at high energies.
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What to Consider Bevore Applying Additional Cuts
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?
? ? ?

?
? ?

?

?

We can probably tolerate some
muon backround in this region.

Muon background in this region
will alter the physical
interpretation of the result.

The analysis goal is to
reconstruct a muon neutrino

energy spectrum and to
observe a flattening of the

flux at high energies.

The caveat is that
there might not be

sufficient background
simulation.
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Fig. 3 Same as Fig. 2, zoom into the region where the final selection
cut is considered.

The systematic uncertainty of the event selection was es-
timated by applying the forest to simulated events produced
with different DOM efficiencies and a different modeling of
the ice. For this purpose the efficiencies of all DOMs were
either increased or decreased by 10% from their nominal
values. The modeling of the ice was taken into account by
using the SPICE Mie ice model [21] instead of its predeces-
sor SPICE-1. It was found that the uncertainty of the event
selection due to the ice model is on the order of 5%, whereas
the uncertainty due to the DOM efficiency was estimated to
be 18%. Combining both values one finds that the total sys-
tematic uncertainty of the event selection is 19%.

After verifying the performance of the Random Forest
the final model was trained using 27,000 simulated neutrino
events and 27,000 simulated background events. The events
for each class were drawn at random from the total sample
of available simulated events.

The application of the entire event selection chain on the
full set of IceCube-59 data yielded 27,771 neutrino candi-
dates in 346 days of detector live-time (≈ 80 neutrino candi-
dates per day). The number of remaining atmosphericmuons
was estimated to be 114± 103. The purity of the final neu-
trino event sample was estimated to be (99.59+0.36−0.37)%. No
events with a zenith angle θ < 90◦ were observed in the
sample after the application of the Random Forest.

The number of events surviving the two preselection cuts
on the zenith angle and the LineFit velocity is 15.3× 106.
This corresponds to an estimated background rejection of
91.4% at a signal efficiency of 57.1%.

Comparing the total number of neutrino candidates at fi-
nal level an increase of 62% is observed with respect to [2],
which used IceCube in the 40-string configuration. Taking
into account the larger volume of the detector (59 compared
to 40 strings) and the increased trigger rate, the event selec-
tion method presented in this paper succeeds in an increase
of 8% in the number of neutrino candidates compared to the
event selection presented in [2]. The relative contamination
of the sample with atmospheric muons was found to be of
the same size as in [2].

In the event selection, which is the basis for the subse-
quent unfolding of the νµ energy spectrum, a signal effi-
ciency of 18.2% was achieved at a background rejection of
99.9999%, which corresponds to a reduction of the contam-
ination of the event sample with atmospheric muons by six
orders of magnitude. Both signal efficiency and background
rejection were computed for events with θZenith ≥ 88◦, with
respect to the starting level of the analysis and for neutrino
energies between Eν = 100 GeV and Eν = 1 PeV.

All event selection steps regardingmachine learning, pre-
processing, and validationwere carried out using the RAPID-
MINER [22] machine learning environment.

5 Spectrum Unfolding

As the neutrino energy spectrum cannot be accessed directly,
it needs to be inferred from the reconstructed energy of the
muons. This task is generally referred to as an inverse, or
ill-posed, problem and described by the Fredholm integral
equation of first kind [3]:

g(y) =
∫ a

b
A(y,E) f (E)dE. (7)

For the discrete case this transforms to:

g(y) = A(y,E)f(E), (8)

where f(E) is the sought energy distribution and the mea-
sured energy dependent distribution is given as g(y). The
matrix A(y,E) represents the response matrix of the detec-
tor, which accounts for the physics of neutrino interactions
in or near the detector as well as for the propagation of the
muon.

Several approaches to the solution of inverse problems
exist. The unfolding program TRUEE [3], which is an exten-
sion of the RU N [23] algorithm, was used for unfolding
in this analysis. The stability of the unfolding as well as the
results obtained on experimental data are addressed in the
following.

Aartsen et al., EPJC 75, 116 (2015)

~ 200 neutrino candidates per day ~ 80 neutrino candidates per day
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(redundancy). The variable with the largest di↵erence
D = K � L is added to the set. The relevance of a
variable with respect to the class variable is determined
by an F-test, whereas the redundancy between two vari-
ables is computed as the absolute value of the Pearson
correlation coe�cient [28]. This way a set of m variables
is built up. A more detailed description of the approach
can be found in [3] and [27].

In this analysis, m = 25 showed a reasonable trade-
o↵ between computational feasibility and retaining in-
formation in the dataset. The selected variables can
be ordered into three di↵erent groups: variables to ap-
proximate the energy, variables containing geometric
properties of the event and variables indicating the
reconstruction quality. Since the performance of the
Random Forest depends on the agreement between data
and simulation, the 25 variables selected by MRMR
were manually inspected for disagreement between data
and Monte Carlo. No such disagreement was found and
the 25 variables were used to train the Random Forest
accordingly.

A Random Forest is an ensemble of decision trees. It
is trained with simulated events to build a model that
can be applied to unclassified events. In the application
the j-th tree assigns a label xi,j = {0, 1} to to the i-
th event. Thus, the final classification is achieved by
averaging the output of all decision trees in the forest:

cSignal,i =
1

Ntrees

NtreesX

j

xi,j . (2)

In machine learning, cSignal,i is generally referred to as
confidence. To achieve unique trees in the RF, each
decision tree is trained on a subset of simulated events.
At each node only k randomly chosen variables are
used to find the best cut. Before applying the RF to
experimental data, the RF is applied to simulated events
to evaluate the performance of the classification.

After the application of the forest, the vast majority
of the simulated background muons (more than 99.9%)
is found to be scored with a confidence cSignal,i < 0.8.
Only 26 simulated atmospheric muons were found to
populate the high confidence region (cSignal > 0.8). Since
the analysis relies on a high purity sample of neutrino
candidates, the number of remaining background events
needs to be estimated as accurately as possible. The
confidence distribution is the basis for this estimation
and thus has to be obtained as accurately as possible,
as well. Due to the few background events found for
cSignal,i � 0.8 the accuracy of the confidence distribu-
tion is statistically limited for this very region. This
limitation can be overcome by utilizing a bootstrapping
technique [29].

Fig. 2: Confidence distribution for data and simulation.
Low confidence values indicate background-like events
and high confidence values indicate signal-like events.
A cut in the confidence � 0.92 yields a sample with a
purity of (99.5 ± 0.3)%.

In the bootstrapping, a total of 200 Random Forest
models were trained, each built on a randomly chosen
sample with 50% of the size of the full sample. Using
this technique, each event is scored on average 100 times.
By normalizing the resulting confidence distribution for
each event, the approximation of the confidence distri-
bution is improved by taking the variance of cSignal,i into
account. Furthermore, it provides statistical uncertain-
ties for the classification. Using this way to control sta-
bility and performance, the parameters of the Random
Forest were set to k = 5 and 200 trees. The forest was
trained using 120,000 simulated signal events and 30,000
simulated background events. The resulting confidence
distributions for simulated events and experimental data
show good compatibility and confirm a stable separation
(see Fig. 2). No signs of overtraining were observed in
the cross validation.

The cut on cSignal is a trade-o↵ between background
rejection and signal e�ciency. Due to the steeply falling
spectrum of atmospheric neutrinos and the expected
contribution of astrophysical neutrinos, the cut was
selected to yield a su�cient number of events in the
highest energy bins. For this analysis, a cut at cSignal �
0.92 was chosen (see Fig. 2).

This cut yields a total of 66,885 neutrino candidates
in 319.6 days of detector livetime (2.26 · 10�3 neutrino
candidates per second). The number of background
events surviving to the final level of the analysis was
estimated to 330± 200 ((1.10± 0.73) · 10�5 background
events per second), which corresponds to an estimated
purity of (99.5 ± 0.3)%. In total, 21 neutrino candidates

59 strings

79 strings

Aartsen et al., EPJC 77,  692 (2017)

Expected Purity well above 99.5% for both analyses.
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ables is computed as the absolute value of the Pearson
correlation coe�cient [28]. This way a set of m variables
is built up. A more detailed description of the approach
can be found in [3] and [27].

In this analysis, m = 25 showed a reasonable trade-
o↵ between computational feasibility and retaining in-
formation in the dataset. The selected variables can
be ordered into three di↵erent groups: variables to ap-
proximate the energy, variables containing geometric
properties of the event and variables indicating the
reconstruction quality. Since the performance of the
Random Forest depends on the agreement between data
and simulation, the 25 variables selected by MRMR
were manually inspected for disagreement between data
and Monte Carlo. No such disagreement was found and
the 25 variables were used to train the Random Forest
accordingly.

A Random Forest is an ensemble of decision trees. It
is trained with simulated events to build a model that
can be applied to unclassified events. In the application
the j-th tree assigns a label xi,j = {0, 1} to to the i-
th event. Thus, the final classification is achieved by
averaging the output of all decision trees in the forest:

cSignal,i =
1

Ntrees

NtreesX
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xi,j . (2)

In machine learning, cSignal,i is generally referred to as
confidence. To achieve unique trees in the RF, each
decision tree is trained on a subset of simulated events.
At each node only k randomly chosen variables are
used to find the best cut. Before applying the RF to
experimental data, the RF is applied to simulated events
to evaluate the performance of the classification.

After the application of the forest, the vast majority
of the simulated background muons (more than 99.9%)
is found to be scored with a confidence cSignal,i < 0.8.
Only 26 simulated atmospheric muons were found to
populate the high confidence region (cSignal > 0.8). Since
the analysis relies on a high purity sample of neutrino
candidates, the number of remaining background events
needs to be estimated as accurately as possible. The
confidence distribution is the basis for this estimation
and thus has to be obtained as accurately as possible,
as well. Due to the few background events found for
cSignal,i � 0.8 the accuracy of the confidence distribu-
tion is statistically limited for this very region. This
limitation can be overcome by utilizing a bootstrapping
technique [29].

Fig. 2: Confidence distribution for data and simulation.
Low confidence values indicate background-like events
and high confidence values indicate signal-like events.
A cut in the confidence � 0.92 yields a sample with a
purity of (99.5 ± 0.3)%.

In the bootstrapping, a total of 200 Random Forest
models were trained, each built on a randomly chosen
sample with 50% of the size of the full sample. Using
this technique, each event is scored on average 100 times.
By normalizing the resulting confidence distribution for
each event, the approximation of the confidence distri-
bution is improved by taking the variance of cSignal,i into
account. Furthermore, it provides statistical uncertain-
ties for the classification. Using this way to control sta-
bility and performance, the parameters of the Random
Forest were set to k = 5 and 200 trees. The forest was
trained using 120,000 simulated signal events and 30,000
simulated background events. The resulting confidence
distributions for simulated events and experimental data
show good compatibility and confirm a stable separation
(see Fig. 2). No signs of overtraining were observed in
the cross validation.

The cut on cSignal is a trade-o↵ between background
rejection and signal e�ciency. Due to the steeply falling
spectrum of atmospheric neutrinos and the expected
contribution of astrophysical neutrinos, the cut was
selected to yield a su�cient number of events in the
highest energy bins. For this analysis, a cut at cSignal �
0.92 was chosen (see Fig. 2).

This cut yields a total of 66,885 neutrino candidates
in 319.6 days of detector livetime (2.26 · 10�3 neutrino
candidates per second). The number of background
events surviving to the final level of the analysis was
estimated to 330± 200 ((1.10± 0.73) · 10�5 background
events per second), which corresponds to an estimated
purity of (99.5 ± 0.3)%. In total, 21 neutrino candidates

79 strings

Aartsen et al., EPJC 77,  692 (2017)

For very high confidence
scores we run out of
background simulation!!!

Signal Backgr. Total Data

4 1 5 10

A not so untypical siuation:

Is this a problem???
This might be a fluctuation or it might
be that the classifier does not 
generalize well.
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D = K � L is added to the set. The relevance of a
variable with respect to the class variable is determined
by an F-test, whereas the redundancy between two vari-
ables is computed as the absolute value of the Pearson
correlation coe�cient [28]. This way a set of m variables
is built up. A more detailed description of the approach
can be found in [3] and [27].

In this analysis, m = 25 showed a reasonable trade-
o↵ between computational feasibility and retaining in-
formation in the dataset. The selected variables can
be ordered into three di↵erent groups: variables to ap-
proximate the energy, variables containing geometric
properties of the event and variables indicating the
reconstruction quality. Since the performance of the
Random Forest depends on the agreement between data
and simulation, the 25 variables selected by MRMR
were manually inspected for disagreement between data
and Monte Carlo. No such disagreement was found and
the 25 variables were used to train the Random Forest
accordingly.

A Random Forest is an ensemble of decision trees. It
is trained with simulated events to build a model that
can be applied to unclassified events. In the application
the j-th tree assigns a label xi,j = {0, 1} to to the i-
th event. Thus, the final classification is achieved by
averaging the output of all decision trees in the forest:

cSignal,i =
1

Ntrees

NtreesX

j

xi,j . (2)

In machine learning, cSignal,i is generally referred to as
confidence. To achieve unique trees in the RF, each
decision tree is trained on a subset of simulated events.
At each node only k randomly chosen variables are
used to find the best cut. Before applying the RF to
experimental data, the RF is applied to simulated events
to evaluate the performance of the classification.

After the application of the forest, the vast majority
of the simulated background muons (more than 99.9%)
is found to be scored with a confidence cSignal,i < 0.8.
Only 26 simulated atmospheric muons were found to
populate the high confidence region (cSignal > 0.8). Since
the analysis relies on a high purity sample of neutrino
candidates, the number of remaining background events
needs to be estimated as accurately as possible. The
confidence distribution is the basis for this estimation
and thus has to be obtained as accurately as possible,
as well. Due to the few background events found for
cSignal,i � 0.8 the accuracy of the confidence distribu-
tion is statistically limited for this very region. This
limitation can be overcome by utilizing a bootstrapping
technique [29].

Fig. 2: Confidence distribution for data and simulation.
Low confidence values indicate background-like events
and high confidence values indicate signal-like events.
A cut in the confidence � 0.92 yields a sample with a
purity of (99.5 ± 0.3)%.

In the bootstrapping, a total of 200 Random Forest
models were trained, each built on a randomly chosen
sample with 50% of the size of the full sample. Using
this technique, each event is scored on average 100 times.
By normalizing the resulting confidence distribution for
each event, the approximation of the confidence distri-
bution is improved by taking the variance of cSignal,i into
account. Furthermore, it provides statistical uncertain-
ties for the classification. Using this way to control sta-
bility and performance, the parameters of the Random
Forest were set to k = 5 and 200 trees. The forest was
trained using 120,000 simulated signal events and 30,000
simulated background events. The resulting confidence
distributions for simulated events and experimental data
show good compatibility and confirm a stable separation
(see Fig. 2). No signs of overtraining were observed in
the cross validation.

The cut on cSignal is a trade-o↵ between background
rejection and signal e�ciency. Due to the steeply falling
spectrum of atmospheric neutrinos and the expected
contribution of astrophysical neutrinos, the cut was
selected to yield a su�cient number of events in the
highest energy bins. For this analysis, a cut at cSignal �
0.92 was chosen (see Fig. 2).

This cut yields a total of 66,885 neutrino candidates
in 319.6 days of detector livetime (2.26 · 10�3 neutrino
candidates per second). The number of background
events surviving to the final level of the analysis was
estimated to 330± 200 ((1.10± 0.73) · 10�5 background
events per second), which corresponds to an estimated
purity of (99.5 ± 0.3)%. In total, 21 neutrino candidates

79 strings

Aartsen et al., EPJC 77,  692 (2017)

For very high confidence
scores we run out of
background simulation!!!

It. Signal Backgr. Total
----------------------------
1 4 1 5
2 3 0 3
3 6 2 8
4 4 0 4
5 5 1 6

Using cross validtion will not make this
problem disappear, but it will provide
you with more information.
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Aartsen et al., EPJC 75, 116 (2015)
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Additional Improvements: 2D Cuts
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Event Selection - Classification
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Selection can be easily adjusted 
to provide even higher event 
rate, when a lower purity is 
acceptable

Will be extended as soon as possible to pass2 (IC86%I +) (Corsika simulations 
missing)
! At least 700 000 neutrino events in the new sample (7 years)

Interested? Contact: mathis.boerner@icecube.wisc.edu or tobias.hoinka@icecube.wisc.edu

15

~ 300 neutrino candidates per day

Classifier output is energy and
zenith dependent.

Score cut as a function of energy
and zenith. 
M. Börner, PhD thesis (2018)
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(Atmospheric) Neutrino Energy Spectra
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PoS(ICRC2015)1098

Unfolded Muon Neutrino Energy Spectrum M. Börner1

Figure 1: The unfolded spectra for IC79 and IC86 are shown in gray and black. The unfolded spectrum
for the year before IC79 (IC59) is shown in brown [6]. For comparison, theoretical predictions for the
conventional component QGSJET-II [8] (green) as a lower bound and SYBILL-2.1 [8] (yellow) as a upper
bound are shown. Most of the common predictions, like those .Honda et al. [9], are in between those bounds.
For the prompt component the prediction by Enberg et al. [10], with the bounds also given in the paper, is
shown. In addition the sum of the conventional and the prompt flux is shown for both conventional models.
All theoretical predictions are calculated for the primary spectrum by Gaisser [11].

Because the methods and the energy binning for the IC79 and IC86 spectrum are the same, it is
reasonable to calculate the weighted average for both spectra to obtain a combined IC79 and IC86
spectrum. This averaged spectrum in comparison to recent IceCube measurements and theoretical
prediction for the atmospheric flux is depicted in Fig. 2. The comparison shows that the observed
excess is compatible with the recent measurements of the astrophysical component.

4. Zenith Dependent Unfolding

The unfolded spectrum is a measurement of the sum of the conventional, prompt and as-
trophysical component. It is not possible to disentangle the astrophysical from the atmospheric
component without knowing the shape and the normalization of the conventional and prompt flux.

Pions and kaons producing conventional muon neutrinos have a shorter interaction than decay
length. Therefore, they interact in the atmosphere resulting in a loss of energy and steepening of the
muon neutrino energy spectrum. The length of the path through the atmosphere and therefore the
amount of energy lost before the decay depends on the zenith angle. The prompt muon neutrinos
on the other hand originate from decays of short-lived mesons decaying directly after production.
Therefore, the prompt neutrino flux has no additional zenith dependency. All components have a
common zenith dependence due to the increase of the neutrino cross sections for high energies.

3
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Deep Neural Networks for Reconstruction in IceCube
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Source: By en:User:Cburnett - This W3C-unspecified vector
image was created with Inkscape., CC BY-SA 3.0, 
https://commons.wikimedia.org/w/index.php?curid=14968
12

Source: By Alvesgaspar - Top left: File:Cat August 2010-4.jpg by AlvesgasparTop middle: File:Gustav chocolate.jpg by
Martin BahmannTop right: File:Orange tabby cat sitting on fallen leaves-Hisashi-01A.jpg by HisashiBottom left: File:Siam
lilacpoint.jpg by Martin BahmannBottom middle: File:Felis catus-cat on snow.jpg by Von.grzankaBottom right: 
File:Sheba1.JPG by Dovenetel, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=17960205

Highly successful in many applications, 
including image classification.
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Neural Network Basics: The General Idea
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Elements of Statistical Learning (2nd Ed.) c©Hastie, Tibshirani & Friedman 2009 Chap 11

 Y Y Y 21 K
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FIGURE 11.2. Schematic of a single hidden layer,
feed-forward neural network.

Output layer

Input layer

Hidden layer
(cannot be
observed directly)

Originally developed to mimic
the human brain.

Nodes are sometimes called
neurons, and connections are
sometimes called synapses.
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Neural Network Basics: The General Idea
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Nodes are linear combinations of
nodes from previous layers. 

The task is to optimize the weights
such that the estimated label %
matches the true label %̂.

A feed-forward neural network with linear output
and at least one hidden layer with a finite number
of nodes can approximate any of the above* 
functions with arbitrary precision**.

*Continuous functions on closed bounded subsets of
the Eucledian spaceℝ*.

**Figure and definition adopted from Erdmann et al.
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Neural Network Basics: More mathematically speaking
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Neural Network Basics: Adding Non-Linearity
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$ is generally referred to as the
activation function.
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Some Popular Activation Functions
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Deep Neural Networks can Exploit Spatial Invariance
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A Deep Neural Network will 
classify this as a cat independent
of its position in the picture.

The phyics of a neutrino interaction is
also spatially invariant.
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Convolutional Layers
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Source: By Vincent Dumoulin, Francesco Visin -
https://github.com/vdumoulin/conv_arithmetic, MIT, 
https://commons.wikimedia.org/w/index.php?curid
=78003423

§ Considering all pixels in an image in a fully
connected network, results in too many
parameters to be optimized

§ The position of an object in an image should
not alter the prediction (translational
invariance)

§ The convolutional operation exploits the
neighbourhood of each pixel
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Challenges in Cascade Reconstruction
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§ Missing lever arm due to spherical light 
distribution

§ Local events and therefore more
susceptible to ice properties

§ Quantities of interest: Deposited energy
and direction of incoming neutrino

Why cascades?

§ About 2/3 of IceCube‘s HESE starting events
are cascades

§ Directional resolution is awful à huge
potential for improvements
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Reasons for Using Neural Networks in IceCube
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§ Improved reconstruction methods will lead to increased sensitivity for the
detection of sources

§ Hardware limitations at the South Pole
§ Events need to be processed in a given time frame to prevent pileup
§ Limitations call for robust method that can handle raw data in constant

time
§ Neural networks are compuattionally inexpensive once the network is

trained
§ Fixed amount of operations, runtime is (largely) independent of the input
§ Translational invariance (position of the classified object does not impact

the class)
§ Physics of neutrino interaction is invariant in time and space
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Difference Between IceCube and Images
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Source: By Alvesgaspar - Top left: File:Cat August 2010-4.jpg by AlvesgasparTop middle: File:Gustav chocolate.jpg by
Martin BahmannTop right: File:Orange tabby cat sitting on fallen leaves-Hisashi-01A.jpg by HisashiBottom left: File:Siam
lilacpoint.jpg by Martin BahmannBottom middle: File:Felis catus-cat on snow.jpg by Von.grzankaBottom right: 
File:Sheba1.JPG by Dovenetel, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=17960205

Key challenges: hexagonal grid, high dimensionality and variability
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IceCube Pulses
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The pulses at individual DOMs can
be highly variable.
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Defining the Task
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Energy???

Zenith???

Azimuth???

Angular 
Uncertainty???

Decomposed into
directional unit vector

"⃗ = ("%, "', "()

Mainly due periodicity
of the azimuth

This is a multi-
label regression

task!
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A Closer Look at DeepCore
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The DeepCore Sub-Array consists of two
parts:

• 10 DoMs with 10 m vertical spacing, 
upper part (red), veto cap

• 50 HQE DOMs with 7 m vertical spacing,
Deep Core

Horizontal and vertical spacings
differ from each other and from the

main array à Needs to be
considered in the DNN!
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Handling the Sub-Arrays
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3D Space
1D Time

3D Space
1D Time

2D Space
1D Time

Main Array

Lower 
DeepCore

Upper 
DeepCore

Main Array
DeepCore
Zero Padding

Figure 3: The main IceCube array and DeepCore strings are handled separately due to their
di�ering geometry. Hexagonally shaped data of the main array can be transformed from an axial
coordinate system into an orthogonal grid by padding with zeros (orange dots) and aligning the
rows, which results in a 10 ⇥ 10 grid in the G-H-plane. Every DOM defines a bin in the spatial
coordinates (DOM-binning).

lower DeepCore, respectively, where = denotes the number of input variables per DOM. The second
to last dimension in each tensor indicates the number of DOMs (60, 10, and 50) along the z-axis.
Possible input variables for each DOM are discussed in the following section.

3.2 Data Dimensionality and Variability

The transformation described above allows for a convolution over all spatial dimensions for the
main array and a convolution over the z-dimension for DeepCore. Hence, the symmetry in spatial
coordinates can be exploited to the extent possible given IceCube’s geometry. Ideally, translational
invariance in time should also be exploited. The starting point of most reconstruction methods
in IceCube is the extracted pulses as described in Section 2.1. These pulses are an e�cient data
representation. However, the number of pulses at a given DOM is highly variable and therefore the
pulses are an unsuitable input to a CNN. A standard CNN requires a uniform and constant input
size. One option is to bin the measured pulse charges in time. With a four dimensional convolution
over the main array input, translational invariance in space and time can be exploited. A full four
dimensional convolution would require on the order of thousands of time bins per DOM for the
desired timing resolution. This would result in a significant increase in computational complexity.
A simultaneous processing in space and time via a 4D convolution is therefore not feasible. The
dimensionality of the problem must be reduced or separated out in individual tasks. Reducing the
dimensionality of the problem results in a loss of spatial and temporal relations that have to be
compensated for in an alternative way.

There are many ways to achieve this. For this paper, the variable size of the time dimension
is reduced to nine selected summary statistics, which describe the pulse series at each DOM. This

– 7 –

Abbasi et al., JINST, 16 (7) (2021).

(10 x 10 x 60 x n)

(8 x 50 x n)

(8 x 10 x n)

Allows for convolution over z-
dimension for DeepCore and over
all spatial dims for the main
array.
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(Im)Possibility of Discretizing Pulses
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Waveform is transformed into
timeseries of charges (pulses).

Number of pulses per DOM is highly variable, but NN 
requires uniform and constant input size.

Binning requires thousands of bins to achieve desired
timing resolution. à Infeasible due to computational
complexity.
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Input Variables
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Abbasi et al., JINST, 16 (7) (2021).
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Zero Padding
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Figure 6: Hexagonally shaped convolutional kernels in an axial coordinate system on the left (blue
dots) can be transformed into an orthogonal grid on the right by padding with zeros (orange dots)
and aligning the rows [11].

Figure 7: An hexagonally
shaped kernel can be de-
fined by a tuple of size B and
orientation >: (B, >). For an
axis aligned hexagon (ori-
entation > = 0), the size pa-
rameter B defines the num-
ber of points along an edge
of the hexagon.

obtained for the G-H-plane in the detector. The obtained kernels can be defined by a tuple of size and
orientation as illustrated in Fig. 7. Due to their symmetry, these kernels can in principle be rotated
by multiples of 60° to exploit rotational equivariance about the I-axis within group convolutions as
explained in Refs. [32, 33].

4.2 Data Normalization

In order for neural networks to be able to learn non-linear relations, non-linear functions (activation
functions) are applied to the output of a layer. Once the architecture of the neural network is defined,
the parameters of the network can be adjusted to minimize a specified target function, typically
referred to as loss function or loss. The loss function quantifies the deviation from the target values.
It is used to determine which set of parameter values best solves the reconstruction task. During
the training process, the loss is minimized iteratively via a gradient-based minimizer [34]. Details
on the chosen loss function are provided in Section 5.3.

Deep neural networks can in theory process data of any range and scaling. However, the
activation function’s response is typically centered around zero and often converges for very large
or small values leading to vanishing gradients. Moreover, the loss landscape’s dependence on the
parameters of the neural network may be highly asymmetric if input features are on di�erent size
scales, i.e. if the order of magnitude between the features di�er, which can cause problems during
minimization. In addition, if input data is not normalized, small imbalances in the early layers of
the network can cascade throughout neural networks causing gradients to become extremely large

– 10 –

Abbasi et al., JINST, 16 (7) (2004)
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Hexagonal Kernels
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Preparing the Input
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!" = ln(1.0 + !)

," = ln(1.0 + ,)
Applied to total charge and charge collected
within the first 100 and 500 ns

," = ,

!" = !
All other features.

NNs can handle data of basically any
scaling, but activation functions are
typically centered around zero.
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Preparing the Input
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!"" = !" − %!′
'(" + *

+"" = +" − %+′
'," + *

Normalize input data and labels to zero
mean and unit variance. 

Small constante (10-4) is added to
prevent division by zero

NNs can handle data of basically any
scaling, but activation functions are
typically centered around zero.
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Network Architecture
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Figure 5: A sketch of the neural network architecture is shown. Data from the three sub-arrays
are sequenced into convolutional layers. The result is flattened, combined, and passed on to two
fully-connected sub-networks which perform the reconstruction and uncertainty estimation. The
uncertainty-estimating sub-network also obtains the prediction output as an additional input.

4 Neural Network Architecture and Design Choices

Once the data input format is defined, the network architecture can be set up. The reconstruction
quantities of interest (training labels) are defined as the deposited energy in the detector and the
direction of the incoming neutrino. The zenith ⇥ and azimuth � angle of the neutrino direction
is further decomposed into the direction vector components. Due to a widely used convention in
IceCube, the particle direction vector Æ

3 is chosen to point in the direction of travel while ⇥ and �
define the origin of the particle. This results in a total of 6 labels which consist of: energy, azimuth,
zenith, dir.-G, dir.-H, dir.-I. Settings and design choices of the neural network are discussed in this
section. The neural network is implemented within the python interface of TensorFlow [31] and the
code is available on GitHub1.

4.1 Hexagonal Convolution Kernels

Convolution operations in common deep learning frameworks, such as TensorFlow, are performed
on orthogonal grids. Transforming the (in G- and H-dimension) hexagonally shaped IceCube data
to an orthogonal grid as illustrated in Fig. 3 results in convolution kernels shaped as parallelograms
in the detector. To instead obtain convolutional kernels which are shaped according to the IceCube
geometry, the transformation method described in our previous work [11] is applied. The convo-
lution kernels within TensorFlow are adjusted by setting the corner elements to zero as illustrated
by the orange points on the right of Fig. 6. As a result, hexagonally shaped convolution kernels are

1https://github.com/icecube/dnn_reco

– 9 –
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Regularization
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Source: By Mads Dyrmann - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=110373041

Regularization via Dropout, but gradually decreased at later layers.

In addition, individual DOMs are randomly dropped for increased stability.
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Energy Reconstruction Results
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Abbasi et al., JINST, 16 (7) (2021).



119

Directional Reconstruction Results
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Abbasi et al., JINST, 16 (7) (2021).
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The Need To Reconstruct the Uncertainty
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The Need to Reconstruct the Uncertainty
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Franckowiak, Anna. "Multimessenger astronomy with neutrinos." Journal of Physics: Conference Series. Vol. 888. No. 1
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Uncertainty Estimation
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Works well in case the pulls follow 
a Gaussian distribution.

Pulls in this case are well
described by a Gaussian
distribution, except for the tails.

Deviations in the tails are driven by
rare outlier events

This can likely be correctec by
additional training iterations.
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Uncertainty Estimation: Coverage Test
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Based on assumption of
Gaussian with width estimated
by the network, one can
compute the number of events
within a certain quantile.

For perfect coverage this
results in a 1:1 relationship
when compared with actual
results.
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DNN Runtime
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Robustness with Respect to Systematics
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Additional Robustness Tests
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A New Window to the Milky Way
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The Role of Deep Learning 

§ We deep learning-based tools to reject the overwhelming background of
atmospheric muons and neutrinos

§ High inference speed of NNs allows us to use more complex
reconstructions at earlier stages of the event selection

§ This allows us to retain more astrophysical cascade events in the sample, 
including events that are either difficult to reconstruct or hard to
distinguish from background

§ We retain a factor of 20 more events in the sample compared to previous
analyses**

§ We also utilized a GAN to parameterize the relationship between event
hypothesis an expected light yield.

** not all of them are due to Deep Learning.

Tim Ruhe, HighRR Lecture Week, September 12th 2023
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Discovering Neutrinos From the Galactic Plane
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Summary

§ Understand your input!
§ Use the right model for the task!
§ Understand your ouput!
§ Cross validate!
§ Machine learning is a tool, use it wisely!

Tim Ruhe, HighRR Lecture Week, September 12th 2023
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Backup Slides

T. Ruhe, TU Dortmund, Trondheim 2022
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Feature Importance
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Unfolding via Machine Learning
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Discretization

Machine Learning 
Algorithm

Estimation of
Spectrum
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Inverse problem is transferred into
multinominal classification problem.
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DSEA in greater detail
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+ …++#$ =

Iterate: 
1. Discretize
2. Train Model
3. Apply Model
4. Reconstruct spectrum
5. Update weights according to

unfolding result

Choice of learning algorithm largely
arbitrary (and probably somewhat
problem dependent).

Some overlap with IBU in case Naive 
Bayes is used as a learner.
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DSEA+: Variable step width
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68 APPENDIX C. EXPERIMENTS HANDBOOK

C.3.3 ‰2 Distances

The concept of ‰2 distance is rather ambiguous. Several definitions are found in literature,
e.g., Pearson’s ‰2

P
divergence and multiple symmetric variants [23]. Moreover, di�erent

authors have referred to identical variants with di�erent names. For example, the definition
of Pearson’s ‰2

P
in [23] is referred to as Neyman’s ‰2

N
divergence in [25]. This ambiguity

is problematic if another scientific reference does not explicitly define which specific ‰2

distance is used. For example, the Iterative Bayesian Unfolding from Section 2.3 suggests
to use some ‰2 distance to define a stopping criterion without defining the particular
measure explicitly [6].

To achieve a high level of comparability in spite of these di�culties, two di�erent ‰2

distances are chosen here. The asymmetric ‰2
P

divergence defined in Equation C.3 is
regarded as the corner stone of ‰2 distances, being directly motivated by the well-known
‰2 test. The probabilistic symmetric ‰2

Sym distance from Equation C.4 is additionally
chosen due to its popularity. Both measures are defined according to [23].

‰2
P ( f̂ , f) =

Iÿ

i=1

1
f̂i ≠ fi

22

fi

(C.3)

‰2
Sym( f̂ , f) = 2 ·

Iÿ

i=1

1
f̂i ≠ fi

22

f̂i + fi

(C.4)
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Figure C.4: All distance measures produce plots with similar interpretations. This is shown for
the exponential decay strategy from Figure 3.4, where convergence happens too early.
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Very Preliminary Results

T. Ruhe, TU Dortmund, Colloquium University of Alberta Edmonton

only dependent on statistics – systematics are independent on season!
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Loss Functions
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that the relative contributions of each label to the loss function define the contributions to the
gradients used in gradient-descent during training. Labels that are inherently hard to predict can
dominate the training process, preventing the accurate prediction of others. To ensure that each
label contributes equally to the loss function or by a predefined importance, an adaptive weighting
method is proposed.

An importance vector Æ
⇠ is introduced which can be used to distribute weights to individual

labels. The importance vector has an entry for each label where
⇣
Æ
⇠

⌘
:

is the weight associated to the

:-th label. The loss (L)
1,:

for an event 1 in a batch of ⌫ events and label : can then be weighted by

(LF )1,: =
⇣
Æ
⇠

⌘
:

· (L)
1,:

. (5.1)

Optionally, the events can additionally be weighted to reflect their expected frequency in experi-
mental data. This changes the importance weighted loss (LF )1,: from Eq. (5.1) to

(LF )1,: =
⇣
Æ,
⌘
1

·
⇣
Æ
⇠

⌘
:

· (L)
1,:

, (5.2)

where Æ, are the weights defining the expected frequency in experimental data for the ⌫ events in a
mini batch. In this work, Eq. (5.1) is used. The overall scalar loss Lscalar is computed via

Lscalar =
1
⌫

 ’
:=0

⌫’
1=0

(LF )1,: , (5.3)

where  is the number of labels and ⌫ is the number of events in a batch. The importance vector Æ
⇠

is updated every # optimization steps to ensure that each label contributes to the loss function
according to the importance assigned to it. This compensates for the fact that di�erent labels are
trained at di�erent speeds. The importance vector is updated via:

⇣
Æ
⇠

0
⌘
:

=
⇣
Æ
⇠0

⌘
:

· max

1,

⇣�����!hMSEi
⌘
:

� 1
2
�
, (5.4)

where Æ
⇠0 is the unmodified, original importance vector and

�����!hMSEi is given by

�����!hMSEi = 1
#

#’
==0

���!
MSE= (5.5)

with the mean squared error
���!
MSE= over each normalized label for the =-th mini batch. A rolling

average can also be chosen as an alternative to the update rule from Eq. (5.4).

5.3 Loss Functions

During the first training steps, both the predictions and uncertainty estimates are trained by loss
functions employing mean squared errors (MSE) due to their robustness. The loss (L)

1,:
from

Eq. (5.1) is therefore given by

(L)
1,:

=
✓⇣
.
00
true � . 00

pred

⌘
1,:

◆2

|                   {z                   }
(Lpred)

1,:

+
 �
.
00
unc

�
1,:

� gradient_stop
✓����
⇣
.
00
true � . 00

pred

⌘
1,:

����
◆ �2

|                                                                 {z                                                                 }
(Lunc)1,:

(5.6)
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MSE (first training steps, robustness)

where L, . 00
true, .

00
pred, and . 00

unc are ⌫ ⇥  -matrices with the number of labels  and the number
of events ⌫ in a batch. The true normalized labels are given by . 00

true (see Eq. (4.2)). .
00
pred is

the normalized network prediction and . 00
unc is the normalized output of the uncertainty estimating

sub-network. The function gradient_stop(G) is an identity operation that e�ectively treats G as
a constant during backpropagation. Optimization of Lunc therefore only a�ects the weights of the
uncertainty estimating sub-network due to the applied gradient-stop. Gradients are not propagated
through to the main neural network architecture. The gradient-stop is introduced in order to stabilize
the initial training iterations and to allow for independent optimization of the two sub-networks.

In later training stages, once the loss starts to converge, i.e. the improvement in loss per training
step starts to flatten out, the neural network’s reconstruction and uncertainty estimation is robust
enough for the application of the more sensitive Gaussian Likelihood (GL). In this case, the loss
changes to

(L)
1,:

= 2 · ln
⇣ �
.
00
unc
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When employing Eq. (5.7) as a loss function, the presented network architecture may be interpreted
as a mixture density network [41] with a single Gaussian kernel.

5.4 Training Procedure

The loss function Lscalar from Eq. (5.3) is minimized with the ADAM-optimizer [34] within the
TensorFlow framework [31]. The general learning scheme is to start training with a high dropout
rate, forcing the network to learn robust features. Over time the learning and dropout rate are
reduced. During early stages of training, the neural network is also trained on systematic variations
of the baseline dataset to promote robustness towards uncertainties in the MC simulation. Training
is performed in a process of multiple steps as depicted in Tab. 4 and takes about five days on an
NVIDIA Tesla P40 GPU.

6 Reconstruction Performance

Although the CNN architecture is a versatile tool, emphasis is put on the performance of cascade-
like events for the purpose of this paper. The architecture can easily be used to reconstruct other
event topologies or labels of interest. Minor changes to the loss function and activation of the
last layer can be applied to use the architecture for classification tasks. In the following sections,
the performance of the described CNN architecture is compared to the current standard cascade
reconstruction method in IceCube (see Section 2.3 for details). Results shown in this paper are
obtained for the cascade event selection described in Ref. [10], which aims to select high-energy
events in the TeV range and above resulting from charged-current a4 and ā4 as well as neutral-current
interactions of all neutrino types. Wherever applicable, results shown for the CNN-based method
are denoted by a icon and results for the standard (approximate) likelihood-based reconstruction
are denoted by a L symbol.
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Gaussian Likelihood (later stages)
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Epoch and (mini)batch

§ Minibatch, Batch: Using all examples can be infeasible in case many
parameters need to be optimized, instead random subsets (batches) of
examples are used. The optimal size of the batch depends on the problem
to be solved. Popular choices are 2"

§ Epoch: Complete use of all examples.

T. Ruhe, PHYSTAT-Gamma 2022
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Regularization

T. Ruhe, TU Dortmund, Resource Aware Machine Learning Summer School 
2022

Source: By Mads Dyrmann - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=110373041

Regularization via Dropout, but gradually decreased at later layers.

In addition, individual DOMs are randomly dropped for increased stability.
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Input Preparation

§ Zero-centered: ReLU changes drastically around 0, !" − !" to include
positive and negative values

§ Order of magnitude: Large variables could be preferred in the network
training !′" = &' ( &'

)'
§ Logarithm to achieve more evenly distributed data
§ Decorrelation: highly correlated variables should be decorrelated

T. Ruhe, PHYSTAT-Gamma 2022
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Weight Updates

T. Ruhe, PHYSTAT-Gamma 2022
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This is the basic idea, this will most likely
be handled by an optimizer.
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Take-AwayMessages

§ Machine Learning and esp. Deep Learning is not magic
§ Machine Learning and Deep Learning are tools that will help you to

accomplish an analysis task faster and more accurately (when used
correctly)

§ The preprocessing of data is part of machine learning (and very
important)

§ Not every classifier is suited for every problem (consider runtime)
§ If something fast and simple does the job: use it
§ Make sure simulated and experimental data agree
§ ...

T. Ruhe, PHYSTAT-Gamma 2022


