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OVERVIEW

m [heimportance of tracking in the LHC
discovery pipeline

= How have we done tracking in the past
m [rackingwith graphs

m Overview of graphs and GNNs

m  Construction of graphs

. ONN4ITKk project and pipeline

' mBERKELEY an HighRR Lecture Week -

m ATLAS ITkdata

m Graphconstruction in 1Tk

= Thelnteraction Network in GNN4ITK
m Graphsegmentation techniques

m [rack building in GNN4ITk

m Measuring tracking performance

= [rackfitting
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WARNING: BIAS AHEAD

| chairthe GNN4ITK project in the ATLAS experiment
| will have a bias towards tracking in ATLAS

| will also have a bias towardsthe GNN4ITK "solution”to the ATLAS tracking
oroblem

However: Thisapproach is the de facto standard way to use GNNs for
tracking, since it was first proposed by the Heplrkx project in arxiv:I810.0611]
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https://arxiv.org/pdf/1810.06111.pdf

HIGH LUMINOSITY TRACK RECONSTRUCTION
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DATA SCIENCE IN THE DISCOVERY PIPELINE

Simulation Reconstruction Analysis

Matrix-element Parton-shower / Detector Digitization ~ Topoclusters Track Finding Jet Tagging Particle ID Calibration Likelihood Fitting Unfolding
Calculation Hadronization Simulation & Spacepoints & Fitting & Vertexing & Particle Flow

Numerical Markov Chain Topological clustering Kalman Filtering Conformal Fits Statistical Techniques,

Integration Monte Carlo & Fitting & Hough Transform Bayesian Inference

elberg University - September13,2023
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ML TODAY & TOMORROW [N THE DISCOVERY PIPELINE

Simulation

Reconstruction Analysis

Matrix-element Parton-shower / Detector Digitization ~ Topoclusters Track Finding Jet Tagging Particle ID Calibration Likelihood Fitting Unfolding
Calculation Hadronization Simulation & Spacepoints & Fitting & Vertexing & Particle Flow
Generative Models: Metric Learning, Object  Deep Full Event CNNs, Graph Neural Symmetric ML Autoencoders Omnifold and Likelihood-

GANSs, VAEs, Normalizing Flows and Diffusion

m BERKELEY LAB

Condensation Reconstruction Networks & Transformers & Equivariance & Anomaly Detection free Inference
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TASKS INAN HL-LHC DETECTOR

= |norderto perform the analysis that leads to discovery (e.g. of dark matter, extra dimensions, SUSY,
.., need to make sense of the detector read-out

= [hereare many tasks required to reconstruct the physicsevent behind the read-out

pile-up vertex —% tracks

b jet

@ secondaryverg, | b hadron

------ impact
parameter

secondary
vertex

decay chain
proton bung

do_

: ‘—7" - primary vertex

Missing Energy

Jet Tagging Reconstruction

Pile-up Removal

Reconstruction
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TASKS INAN HL-LHC DETECTOR

= |norderto perform the analysis that leads to discovery (e.g. of dark matter, extra dimensions, SUSY,
-], need to make sense of the detector read-out

= [hereare many tasks required to reconstruct the physicsevent behind the read-out

These all require accurate
track reconstruction
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WHAT IS TRACK RECONSTRUCTION

= Protons collide in center of detector, “shattering” into thousands of
particles

= The charged particles travel in curved tracks through detector’s
magnetic field (Lorentz force)
\‘
= Atrack is defined by the hits left as energy deposits in the detector
g

material, when the particle interacts with material

= The goal of track reconstruction:
Given set of hits from particles in a detector, assign label(s)to each hit.

Perfect classification: All hits from a particle (and only those hits) share the
same label
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ITHE IMPORTANCE OF TRACKING

Finding and fitting tracks accurately is essential for
Most downstream tasks in ATLAS and many other

experiments

Classic exampleis b-tagging (which itself is
necessary for Higgs searches, top physics, and BSM

searches)

The current ATLAS CNN tagger takes 2 overall jet

features, and 21 trackfeatures

m BERKELEY LAB

Jet Input Description
Pr Jet transverse momentum
] Signed jet pseudorapidity
Track Input Description
q/p Track charge divided by momentum (measure of curvature)
dy Pseudorapidity of the track, relative to the jet n
do Azimuthal angle of the track, relative to the jet ¢
dy Closest distance from the track to the PV in the longitudinal plane
zgsiné Closest distance from the track to the PV in the transverse plane
o(q/p) Uncertainty on q/p
o(0) Uncertainty on track polar angle #
o(p) Uncertainty on track azimuthal angle ¢
s(dy) Lifetime signed transverse 1P significance
s(zg) Lifetime signed longitudinal IP significance
nPixHits Number of pixel hits
nSCTHits Number of SCT hits
nIBLHits Number of IBL hits
nBLHits Number of B-layer hits
nIBLShared Number of shared IBL hits
nIBLSplit Number of split IBL hits
nPixShared Number of shared pixel hits
nPixSplit Number of split pixel hits
nSCTShared  Number of shared SCT hits
nPixHoles Number of pixel holes
_ nSCTHoles Number of SCT holes /

ATL-PHYS-SLIDE-2023-048
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ITHE COST OF TRACKING

Over half the current ATLAS
computing budgetis spent on
generating and reconstructing
simulated data

In Run 2 in 2018, a typical event (in
data) required 1693 HSOb-seconds, of
which 67% was spent on tracking

TLDR: Tracking is an expensive piece
of reconstruction, and is therefore an
expensive piece of any experiment
that has a tracking subdetector

m BERKELEY LAB
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Wall clock consumption per workflow

@® MC simulation

@ MC reconstruction

@ MC event generation

@ Analysis @ Group production @ Data processing
® Other
Detector | (u) inner | muon spectrometer combined monitoring || total
tracking and calorimeter reconstruction
Run 2 90 1137 149 301 106 1693
https://cds.cern.ch/record/2729668/files/LHCC-G-178.pdf
Heldelberg University - September 13,2023 11



COMPUTE SCALING FOR HIGH LUMINOSITY

ATLAS Computing Requirements Over Time

Run 3 (u=55) Run 4 (1=88-140) Run 5 (u=165-200)
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CERN-LHCC-2022-005 Year

HIghRR Lecture Week - Heidelberg University

Computing power

Traditional
methods
(scale quadratically)

HL-LHC, 14 TeV |
2027
3 billion collision/second :

Predicted
capacity

— >
»

Time, Energy, Number of Collisions
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http://cdsweb.cern.ch/record/2802918

WHY HICH LUMINOSITY PRYSICS?

Wino ¥ %, = W' ¥, W™ %, — 2L + MET final state
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https://www.science.org/doi/10.1126/science.abk1781
https://indico.cern.ch/event/765096/contributions/3295995/attachments/1785339/2906404/HLLHC.pdf
http://cdsweb.cern.ch/record/2651927/files/ATL-PHYS-PUB-2018-048.pdf
https://lhc-commissioning.web.cern.ch/schedule/LHC-long-term.htm

TRACKING 0]
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IHE GOAL EXPERIMENT
OF
TRACKING

\ N\ N
% ~\ -‘i\\_\‘ RN \ 4\

The following

slides have - Up to ~5k Cha(ged Ram AN

material borrowed

from Heather | Nee tQ }eeonsltru

Cray's excellent

e ' efﬁme itly, precnsely-;_

—

https)//indico.cern.
ch/event/504284/

—~ ——

—

Run: 286665
Event: 419161
2015-11-25"11:12: 50" CEST

“first stable beams heavy-lon colllslons
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WITHOUT A
DeleCIOR..

Particles are well-described
oy helices in a magnetic
field

But once they are in 3
detector..

Particles in a magnetic field

- Magnetic field bends charged
particles to measure their momenta

* in a perfect homogenous field :
circle in transverse direction

« helical track in a solenoidal field © 0 /0O ©

- transverse & longitudinal
components are independent

2
* ATLAS field is far from homogenous % _ [? X B(r)]
_ . S P S
 Solve equations numerically!
+ E E d’z dx dr dr\’>
I :2—%R£i31—(1+(5>>3y

@ @ © 6@ 6

©

© 0 06 0 60 0

dx

— —B
dz

>
z

2y q. | dy\* dz dy

=8 <1+(—:) B,———B8,
Rod_ [, (& 2+ dy
dz dz dz
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IYPeS OF
INTERACTION

Multiple Scattering

_\/..—\/-—""'

lonisation loss

Bremsstrahlung

Had ro%lvnt

all charged
particles

all charged
particles

all charged
particles,
dominant for e

all hadronic
particles

idelberg University

radiation length
Xo

effective density
A/Z* p

radiation length
Xo

nuclear

interaction length

Ao

almost gaussian
average effect O
depends ~ 1/p

small effect in
tracker, small
dependence on

p

highly non-
gaussian,
depends ~ 1/m?

destroys particle,

rather constant
effectinp

September 13,2023

deflects particles,
increases
measurement
uncertainty

increases
momentum
uncertainty

introduces
measurement
bias

main source of
track
reconstruction
inefficiency

17



Track Parametrisation

* A trajectory of a charged particle in a
track parameters (Q)

magnetic field requires five

HELIX . Uncertainties encoded in a covariance matrix

€ — | . o* ()

(02(610) cov(do, 20) cov(do, ) cov(dy,0) cov(do,q/p
0

() cov(z0,8) cov(z,

( )
) COU(ZOaQ/P)\

cov(p,0)  cov(p,q/p)
a*(0)  cov(0,q/p)
o*(a/p) )

* Right handed coordinate system

/‘ - Azimuthal angle, ¢, measured in
< transverse plane in [-11,+)
~7Aap
i R  Polar angle, 8 measured from z axis in
‘‘‘‘‘‘ [O,T.[]
- Pseudorapidity, 77 = — In (tan6/2)

HighRR Lecture Week - Heidelberg University - September 13,2023 18



TRACKING
TERMINOLOGY

Tracking typically
happens in silicon:
channels lie on flat-ish
modules

Like a set of millions of
cameras, arranged in
layers

Particles curve out,
depositing energy in
‘clusters” or
‘spacepoints” or "hits”

Sequence of hits is a
“track’

A prediction of a track is
a 'track candidate’

------------------------
||||||||||||||||
.....
nnnnnn

Transition ° o
Radiation © s
o o
Tracker ° o ° %o
lllllllllllllllllllllllllll O "'bh
lllllllllllllllll O‘ 'O "‘\-“'u

Silicon
Track
Candidate

Silicon
Detectors
Nominal
Interaction
Point '

HighRR Lecture Week - Heidelberg University - September 13,2023
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TRADITIONAL TECHNIQUES FOR TRACKING

HighRR Lecture Week - Heidelberg University - September 13,2023
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KALMAN FILTER TRACKING AS
NAVICATION

predict
‘ /-\__) Measurement Update (“Correct”)
Time Update (“Predict”)
1. Compute the Kalman Gain
1. Extrapolate the state K, = Pnan_lﬂT(HPn‘n_lﬂT + Rn)_l
3n+1n:F/x\nn""Gufn. . .
> | ’ ' 2. Update estimate with measurement
- 2. Extrapolate uncertainty Xon = Xpp-1 + Kn(zn - an,n—1)
— T
Proin = FPnnF"+Q 3. Update the estimate uncertainty
Pn,n = U - KnH)Pn,n—l(I - KnH)T + KanKg
correct
>
m Arecurrent sequence of predictions Initial Estimate: %o,0, Po,o
and corrections according to
measurement . .
https://www.kalmanfilter.net/multiSummary.htmi
mBERKELEY e HighRR Lecture Week - Heidelberg University - September13,2023 21




KALMAN FILTER: TRACKING AS
NAVICATION

= [heoptimal algorithm for any linear
system with independent
Mmeasurements with Gaussian
uncertainty

m Self-driving carsare the perfect use-
case of this: many independent
sensor measurements, with a
olanned trajectory that is updated in
time

= [rackinglooksa lot likedriving a car...

HighRR Lecture Week - Heidelberg University - September 13,2023



444 Nuclear Instruments and Methods in Physics Research A262 (1987) 444-450
North-Holland, Amsterdam

KA MAN FIIL TER TRACKING AS APPLICATION OF KALMAN FILTERING TO TRACK AND VERTEX FITTING

R. FRUHWIRTH

N ff \/ ‘ G if ‘ Q N Institut fiir Hochenergiephysik der Osterreichischen Akade der Wi haften, Vienna, Austria

Received 30 June 1987

3 space point seed

= Beginwithaseedof 3or 4
spacepoints

» Produce a prediction of the helix
parameters, and the covariance matrix

m [ ook atwhere this helix would intersect
with the next layer(s)

m ook foranearby hittothis prediction
m  Usethe mostlikely hitto updatethe model p/ f,

Y
. center
N

m Repeat!

= \We can also hypothesise a "hole”

o . . https://cds.cern.ch/record/ 1281363 /files/ATLAS-CONF-2010-072.pdf
(Missing hit) to handle a skipped layer

mBERKELEY . HighRR Lecture Week - Heidelberg University - September13,2023 23




: Nuclear Instruments and Methads in Physics Research A 395 (1997) 169-184 —
}:{“@. m:tmm:urs
COMBINATORIAL KALMAN FILTER S

ELSEVIER

A concurrent track evolution algorithm for pattern recognition
in the HERA-B main tracking system
Rainer Mankel™®
Institut fiir Physik, Humbaldt Universitdt zu Berlin, Invalidenstr 110, D-10115 Berlin, Germany

Running the Kalman Filter naively leadsto an gy
exponential explosion in time of possible paths

We can improve this in time (if not necessarily
N memory) by recursively looking for
combinations of hits that match a prediction

If several candidate paths match a seed, then
the value with the lowest y? value and the
mMost Nits is considered the “winner”

This still scalescombinatorially in time-space,
and can be very expensive if the number of

seedsis high https://www.researchgate.net/publication/344039130_Pattern_
Recognition_and_Reconstruction
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TRACKING AS GRAPHA SECMENTATION

HighRR Lecture Week - Heidelberg University - September 13,2023
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COMPUTE SCALING FOR HIGH LUMINOSITY

ATLAS Computing Requirements Over Time

Run 3 (u=55) Run 4 (1=88-140)

Run 5 (u=165-200)

50— ATLASPrelminary
2022 Computing Model - CPU

40 . Conservative R&D o
v Aggressive R&D ‘.,»"'
— Sustained budget model o5
30 (+10% +20% capacity/year) &
.
'.0
20 '

Annual CPU Consumption [MHSO06years]

10

0

»

R |
IIII|IIII|IIII|IIIIII

2020 2022 2024 2026 2028 2030 2032 2034 2036

CERN-LHCC-2022-005

HighRR Lecture Wee

Year

K

N
N\

ML Image Classification Efficiency Over Time

delberg University

44x less compute required to get to AlexNet performance 7 years later (linear scale)

Training Efficiency Factor
50

5 million

EfficientNet-b0 »

o parameters
35
30
25 .ShufﬂENet_VZ_lx
20 ShuffleNet_vl_lx.
15 leNet 1
62 million
MobileNet_v2
r MobileNet_v1
v parameters PrDReLYEe
2 GODE£ENEt Squeezenet vl 1
Resnet-18 DenseNetl121
0 VGG-11
2013 2014 2015 2016 2017 2018 2019

September 13,2023
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http://cdsweb.cern.ch/record/2802918

TEASER GRAPH-BASED PIPELINE FOR TRACK RECONSTRUCTION

= Using graph-based ML, can perform
track reconstruction on High
LumMinosity detector events

m Comparaple efficiency and fake rates
to traditional algorithms

m Scaling thatis approximately linear in
event size (on open-source TrackML

o o o
S & &
A S o

d a J[ a S @U Number of space;oints

Q Q
S &
Q N

N

X Trk> mBERKELEY an HIghRR Lecture Week - Heidelberg University - September13,2023 27



HOW SHOULD WE ReEPRESENT PARTICLE COLLISIONS?

Assuming we want to use deep learning, how can we represent a particle collision?

Image?

>5.
31 ATLAS Simulation Preliminary = - -
| PowhegPythia Z—p, 41 ~ 34, /s = 13 TeV R
EM clusters= -~ ] =
- - " m M |
29 om - - - = 4. =
= a ™am B ©
E S
. ' =
g, 3. é
=z @
£’ . 5
= - = £
E - = 2 o
& -1 .- 2
@
| = 1. =
2 - - - =
-1 Y B - m-m
- -
B - , . ; . 0
-2 -1 0 1 2
Pseudorapidity »

Convolutional Neural Networks with Event
Images..., ATLAS Collab.

Sequence?

Particle Track Reconstruction with Deep

Learning, Farrell et al

Set/Point Cloud?

L]
L]
Trfcl_(Z_ o 100 relu units [N

Track1 | o features 'Il][] relu units
I( b [ ERTED - 128 relu units ,
————————
| l
BN 100 relu units

CON 100 relu units m

| (ndets, 1, 128) IRPLRCURINIE] '4> Concatenate
|

(ndets, n, 128)

b |

Deep Sets based Neural Networks for

Impact Parameter..., ATLAS Collab

For event collision as point cloud, with relationships between points, this is a graph.

' m BERKELEY LAB
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https://dl4physicalsciences.github.io/files/nips_dlps_2017_28.pdf
https://cds.cern.ch/record/2684070/files/ATL-PHYS-PUB-2019-028.pdf
https://cds.cern.ch/record/2718948/files/ATL-PHYS-PUB-2020-014.pdf

WHAT IS A GRAPH?

A %

COLLECTION .
OF NODES .

HIghRR Lecture Week - Heidelberg University

September 13,2023
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WHAT IS A GRAPH?

AND EDGES

EDGE

m SERKELEY AR HighRR Lecture Week

Helidelberg University - September 13,2023
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WHAT IS A GRAPH?

NODES +
EDGES =
DOUBLETS

DOUBLET

HIghRR Lecture Week - Heidelberg University

September 13,2023
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WHAT IS A GRAPH?

NODES
CAN HAVE
FEATURES

NODE FEATURE ]

e.g. “West Oakland”

SAN FRANCISCO

Embarcadero
Montgomery St //
Powell § 7
Civic Center/UN Plaza
16th-5t Mission
4th 5t Mission

Glen Park
Balboa Park /
Daly City

Colma

South_
San Francisco

San Bruno “o—y

Pittsburg/ Pittsburg
Bay Point  Center

A
Change at platform

Concord
Pleasant Hill/
Contra Costa Centre

Walnut Creek

Antioch

North Concord/

Richmond ith Conco

B\

El Cerrito del Norte

\ El Cerrito Plaza

North Berkeley
Downtown Berkeley
Ashby
Lafayette

. Orinda
Rockridge

”')[ MacArthur
;" 19th St/Oakland

West Oak|amia 2X4-12th St/Oakland City Center
7 S \ Lake Merritt

) EAST BAY
Fruitvale
3\ .
\'. Coliseum
)\ San Leandro
\\ .
 Bay Fair West Dublin/
@ x Castro Valley Pleasanton

Oakland
International
Airport (OAK)

Dublin/Pleasanton

Hayward

South Hayward

- Union City
San Francisco
® International Airport (SFQ)

Fremont

illbrae
o BART 2019 PENINSULA Warm Springs/South Fremont
ecture Week - Heidelberg University - September 13,2023
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WHAT IS A GRAPH?

EDGES
CAN HAVE
FEATURES

EDGE FEATURE
e.g. “Under Maintenance
- Single Track”

/

SAN FRANCISCO

Embarcadero
Montgomery Stz
Poweh St /
Civic Center/UHV Plaza

St Mission
24th 5t Mission

Glen Park
Balboa Park /
Daly City

South_
San Francisco

Colma

San Bruno “o—y

Richmond

B\

El Cerrito del Norte

\ El Cerrito Plaza

North Berkeley
Downtown Berkeley
Ashby

. Orinda
Rockridge

.”')[ MacArthur

”' 19th St/Oakland
West Oakland

—

Lake Merritt
Fruitvale
\“‘. Coliseum

[ Xy
\ San Leandro
® \ ~ Bay Fair

Castro Valley

Oakland
International
Airport (OAK)

San Francisco
® International Airport (SFQ)

North Concord/ 4\
Change at platform

Pittsburg/ Pittsburg
Bay Point  Center

Antioch

Martinez

Concord
Pleasant Hill/
Contra Costa Centre

Walnut Creek

Lafayette

b~ 12th St/Oakland City Center

EAST BAY

West Dublin/
Pleasanton

Dublin/Pleasanton

Hayward

South Hayward

Union City

Fremont

illbrae
o BART 2019 PENINSULA Warm Springs/South Fremont
ecture Week - Heidelberg University - September 13,2023
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Pittsburg/

urg
Bay Point

Cent

North Concord/ 4
Martinez Change at platform
El Cerrito Plaza Concord
Pleasant Hill/
North Berkeley Contra Costa Centre
Downtown Berkeley

Walnut Creek

Ashby

" Orinda Lafayette
Rockridge

”')[ MacArthur
,'!"f 19th St/Oakland

,‘(0 12th St/Oakland City Center

CAN HAVE

West Oakland

SAN FRANCISCO

Embarcadero ! Lake Me"'ﬁ EAST BAY
Montgomery St W\ Fruitvale
Powell St / N\, Coliseum
Civic Center/UN Plaza s San Leandro

16th St Mission
24th 5t Mission

Glen Park ®
Oakland

Balboa Park / International

Daly City Airport (OAK)

PA

Bay Fair West Dublin/
Castro Valley Pleasanton

Dublin/Pleasanton

GRAPH FEATURE — |
e.g. “Sunday Timetable”

South Hayward

Colma

South_
Francisco

Union City

San Francisco
® International Airport (SFQ)

illbrae

PENINSULA

“-.-.--——-___¥ 4__-———————___,——"

clberg University - September 13,2023

prings/South Fremont

© BART 2019




y direction

ORAPHS ARE A NATURAL WAY TO REPRESENT TRACKS

T S SR ' Given hits on
. : - : , . layers of a detector
. :
x direction

' mBERKELEYLAB HighRR Lecture Week - Heidelberg University - September 13,2023 35



y direction

ORAPHS ARE A NATURAL WAY TO REPRESENT TRACKS

504

254

-2.5

=504

Connect the
hits in some way

x direction

HighRR Lecture Week - Heidelberg University - September13,2023 36



ORAPHS ARE A NATURAL WAY TO REPRESENT TRACKS

10.0

75

50

25

0.0

y direction

=25

-5.0

-15

-10.0

x direction

Heidelberg University

HighRR Lecture Week

Tracks should be found
amongst the connected
nodes.

Note the trade-off: Rather
than needingto classify or
cluster nodes with many
labels, we only need binary
classification of edges
However, introduce the
extra step of building tracks
from classified edges

September13,2023 37



INTRO TO GRAPH NEURAL NETWORKS

HighRR Lecture Week - Heidelberg University - September 13,2023
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ORAPH NEURAL NETWORK APPLICATIONS

ADDING MORE. STOPS TBKES
LONGER- BND LONGER. AND LONGER. TO FIGURE T OUT

Travelling Salesman Problem Rnowledge Grgph .
Comprehension Comprehension

o Valid amino acid
Molecule Cluster graph sequences

Folded proteins

e OO > OO0

Protein
Comprehension

Molecular
Chemistry

P Ao mBERKELEY . HighRR Lecture Week - Heidelberg University - September 13,2023




ORAPH NEURAL NETWORK PROCEDURE

Messages

N

Node
Aggregation

Node features Node channels Message
- > Encoder —. !
passing
\/ Node channels
Node channels
Task output
layer

_ ¥ Trkx mBERKELEY . HighRR Lecture Week - Heidelberg University - September13,2023 40



SleP [ MESSACE PASSING MECHANISM

For each node neighborhood:

a) Pass node channels
through a multi-layer
perceptron (MLP) encoder

b)) Pass encoded channels
along each edgetothe
central node of the
neighbornhood

Note: Thisis quite inexpensive
since we store Npgges fOr
backpropagation

IV N ' m BERKELEY LAB

I Input channels

Encoded channels

Figure inspired by Koshi et. al.

HighRR Lecture Week - Heidelberg University - September 13,2023
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https://graphdeeplearning.github.io/files/informs-oct2019.pdf

STEP 2: AGGREGATION | ot cnane

At each node;
Sum all messages

Note: Called isotropic
message passing.
INntroduced as "Graph

Convolution Network”

m BERKELEY LAB

Encoded channels

Figure inspired by Koshi et. al.

HighRR Lecture Week - Heidelberg University - September 13,2023
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https://graphdeeplearning.github.io/files/informs-oct2019.pdf

—DGOE CHANNELS

lsotropic message passing can't
differentiate importance of
neighbors

Anisotropic message passing:
encode a combination of node
and neighbor along each edge

Much more expensive — Nnow
need to store Negges fOr
backpropagation

But much more powerful

Found in "Craph Attention
Network” and “Interaction
Network”

mBERKELEY " HIghRR Lecture Week - Heidelberg University - September13,2023

I Pre-encoded channels

Encoded channels

43


https://arxiv.org/pdf/2003.00982.pdf

I Pre-encoded channels
DO CHANNELS

Encoded channels

o Small town
Socialite ”I

s Can access contextual [I
relationsnips Hilton

France
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“— = reduces to ITHE LANDSCARPE OF GNNS

https://arxiv.org/pdf/1809.02942.pdf

Linearl , .
Connect)e/d Grid MLP + 1-pixel
adjacency Equivalency
https://ci rx.ist.psu. view \
wnload?doi=10.1.1.554.4
5&rep=repl =pdf
Cellular
Automata
Fully- MLP + 1-pixel Grid adjacency
Connected Equivalency Graphical
Automata

https://github.com/murnanedaniel/ GNN-as-Transformer-as-GNN/blob/main/0O-Transforme 1NN_Annotated.ipynb

hitps://arxiv.org/pdf/2012 09699.pdf 45


https://arxiv.org/pdf/2012.09699.pdf
https://arxiv.org/pdf/2012.09699.pdf
https://arxiv.org/pdf/1809.02942.pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.554.4395&rep=rep1&type=pdf

ONNS IN TRACKING

= As mentioned in the introduction, the "HepTrkX”
formulation of GNN tracking is the de facto
standard

m A workshop last year on GNN Tracking =2

m Almost all contributions are affiliated with Exatrkx,
or use a codepase forked from or motivated by
the Exatrkx approach

= Avariety of experimentsare applying this fully
supervised, edge-classification pipeline

HIghRR Lecture Week - Heidelberg University

Mini-workshop on Graph Neural Networks for Tracking

3 June 2022
Princeton University
Europe/Copenhagen timezone

Overview
Timetable
Contribution List

My Conference
i. My Contributions
Registration

Participant List

Timetable

Fri 03/06

18.00

19:00

B Print PDF

Welcome

Princeton University

Accelerated Graph Neural Network Inference

Princeton University

A differentiable graph pooling method based on spatial clustering algorithms”

Princeton University

BESHI track finding algorithm based on edg ifying GNN

Princeton Uriversity

Heterogencous GNN for tracking

Princeton University

GNN Interpretability in HEP

Princeton University

Pion reconstruction in the ATLAS detector using Graph Neural Networks

Princeton University

Graph generative networks

Princeton University
Towards Achieving Real-time GNN Inference

Princeton University

September 13,2023

Detailed view Filer

Savannah Jennifer Thais &

15:00 - 15:10

Javier Mauricio Duare &

15:10- 15550
RyanLu &
15:50 - 16:10
Xiaogian Jia &
16:10 - 16:30

16:30 - 16550

Dael Thomas Murnarne | @
16:50- 17:10

Savannah Jennifer Thais &

17:10- 1780

Piyush Karande &
17:50- 18:10

18:10- 19:10

Thiago Tomei Fernandez &

19:10- 19:40

Alina Lazaretal &

19:40 - 20:00

Daniel Thomas Murnane &

20:00 - 20:30

46



ONNS IN TRACKING

= As mentioned in the introduction, the "HepTrkX”
formulation of GNN tracking is the de facto

standard

. Aworkshop last year on GNN Tracking =2

particle direction

m  Almost all contributions are affiliated with Exatrkx,
or use a codepase forked from or motivated by

the Exatrkx approach

m Avariety of experiments are applying this fully
supervised, edge-classification pipeline

= Another promising approachis reinforcement
learning, which may or may not use deep
geometriclearning (i.e. graph technigues)

' m BERKELEY LAB
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ONNS ELSEWHERE IN PARTICLE PHYSICS

High Lumi Generic High Lumi CMS
Tracking Calorimetry

= Verylarge and active field of study!

P Group labels and

o true edges

LArTPC Particle

Reconstruction

Ry: Y Rotation on the Bloch Sph:

There are 11 parame|
(shown in red boxe
1o optimize

== hls 4 ml
rialized N | PyG-to-HLS
- model
. converter \‘ o
v N
o " ) 5 Sosss
precision, reuse factor, merge layers, I L
strategy clone arrays
v

FPGA-based Track Quantum Track

TTN Circuit ]

=

Reconstruction Reconstruction

m Comprehensive review of GNNsfor Track Reconstruction - arXivi2012.01249

m \White paper on progress and future of the field — arxXiv.2205. 12857

X Trk mBERKELEY . HighRR Lecture Week - Heidelberg University - September13,2023 48


https://link.springer.com/article/10.1140/epjc/s10052-021-09675-8
https://arxiv.org/pdf/2204.01681.pdf
https://www.osti.gov/pages/servlets/purl/1826698
https://arxiv.org/abs/2012.01249
https://arxiv.org/abs/2203.12852
https://indico.cern.ch/event/852553/contributions/4057625/
https://www.frontiersin.org/articles/10.3389/fdata.2022.828666/full

THE TORPOLOGY PROBLEM

HighRR Lecture Week - Heidelberg University

September 13,2023

49



TRACKING WITH GRAPHS VS POINT CLOUD

m  Could use a transformer —this is now the state-
of-the-artin jet tagging with GN2 tagger (ATl -
PHYS-PROC-2023-017) and ParticleTransformer

m | e Treatasa point cloud with all-to-all
connections, and compute attention between
each pair

= Thisistractableinajet of 0(1k)clusters =0(1m)
attention weights

m A HL-LHCATLAS event has 0(100k) clusters =
0(10b) attention weights..

Point Transformer

m  Candiscussthislater if there'sinterest!

m \We thus want to impose some intuitive way of
connecting hits much below 0(n?) https://arxiv.org/pdf/2012.09164.pdf

¥ Trkx mBERKELEY " HighRR Lecture Week - Heidelberg University - September13,2023 50


https://cds.cern.ch/record/2860610/files/ATL-PHYS-PROC-2023-017.pdf
https://arxiv.org/abs/2202.03772

]

TORPOLOGY FOR MESSAGE o
0 /Message O-1

PASSING AND SECMENTATION ®

= |ntracking, the graph structure (“topology”) has two purposes: Message O-2

1. To pass hidden features ("messages’) from hit to hit, to minimise the loss, 2 @

. . . Topology for
oresumably solving an N-step combinatorial problerm across tracklets POIody

message passing
2. As "possible connections’ between hits, therefore the edges need to be
classified as true of fake |

= Noinherent reason the two structures have to be the same. E.g. could pass

messages totally randomly, but still try to classify the edges between likely
Nits

Probability O-1

m  Forsimplicity, we create a single graph that serves both purposes: Edges

| i Probability 0-2
transmit messages, and they are the target of the classification model

Topology for edge
classification

B T mBERKELEY . HighRR Lecture Week - Heidelberg University - September13,2023 51



ITHREE WAYS TO BUILD A GRAPH

GCEOMETRIC HEURISTICS MODULE MAP METRIC LEARNING

S— :
E 1400 ATLAS Simulation
19

= Inclined Duals
C n=10

T W

Connections added:

1000; -
800: < n=20 7 1>2->3
. L : 2>3->4 - - ed into leafned. .-
600- i | 3->4->5 - detrien ] .
f A | 45556 atent space
400! n=30 = o F
ooopiiren | b e i A
..,_.._n..f)."'ﬁf.l.",'.’r"h.l O B T ST S g b ,
OOWYSE' ‘10‘06' Yiean' Annn acan ‘anan' acan
(XA RS She e e e b & W A we - MR H
Hrs Allsogeepoimtvoeairs
Ve it
—> jofmed [ato grapn
Barrel Layers Endcap Layers G
Transition Region
1 Consider all connections on sequential SR :
layers 1. Build a module-to-module map from : Come?t al\ SpaceF
within radius

data
2. Apply some hard geometric cuts for each

module-to-module possible connection

2. Applysome hard geometric cuts
according to heuristic knowledge of
particles of interest

https://arxiv.org/abs/210316701
i ¥ Trko mBERKELEY e HighRR Lecture Week - Heidelberg University - September13,2023 52



ITHE GNN4ATTK PIPELINE

HighRR Lecture Week - Heidelberg University

September 13,2023
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WHO IS INVOLVED?Y

B WO groups worked on the results in this presentation, and both first tested
methodson TrackML, based on the GNN-based reconstruction introduced in
arxivi1810.06llTand arxiv:i2003.116035

m | 2|T: Laboratoire des deux Infinis, institute based at the University of Toulouse,
within the Institute of Nuclear Physics and Particle Physics

m Exa.lrkx A Dok Office of Science-funded collaborationof LBNL, Caltech, FNAL
SLAC and a collaboration of US institutionsincluding Cincinnati, Princeton, Urbana-
Champaign, Youngstown State, and others

= Now, other groups have joined the effort, or are applying the R&D to particular
applications, such as ATLAS trigger: Heidelberg University, Niels Bohr Institute, UC
rvine

X Trk> mBERKELEY an HIghRR Lecture Week - Heidelberg University - September13,2023 54



ORAPH REPRESENTATION OF AN EVENT

m [he goalof track
reconstruction:

Civen set of hits in a detector from
particles, assign label(s) to each hit.

Perfect classification: All hits from 3
particle (and only those hits) share
the same label

= What does it mean to represent an event with a graph?

!
=/
|

=  Treat each hit as a node
= A node can have features (e.g. position, energy deposit, etc.)

= Nodes can be connected by edges, that represent the possibility of belonging to the same track

= Goal: Use MLand/or graph techniques to segment or cluster the nodes to match particle tracks

= Proof-of-concept: TrackML community challenge dataset with simplified simulation

| mBERKELEY e HighRR Lecture Week - Heidelberg University - September13,2023 55



PIPELINE OVERVIEW

. Current pipeline of the L2IT-Exatrkx collaborative effort

m [Fach stage offers multiple independent choices, depending on hardware and time constraints

Metric Graph NeL||(raI Connected
Learning NI o\ ‘4 Components
Mghte & roneu
Map + Walkthrough
Hits Graph Edge Scores Track Candidates
Graph Edge Graph
Classification Segmentation

Construction

m SERKELEY AR HighRR Lecture Wee Heldelberg University - September13,2023 56



DATASETS

x direction (mm)

Two datasets used to study this pipeline. For absolute clarity, when citing a result specific to
one dataset, will place the badge of TrackML or ATLAS ITk on slide:

Longitudinal Spacepoint Distribution

Down-beampipe Spacepoint Distribution

y direction (mm)

~-1000 0 1000 2000 3000 =1000 -500
z direction (mm)

Mean number of spacepoints: 110k

Simplified simulation: No secondaries and optimistic
. chargei

ation

BERKELEY LAB

0
x direction (mm)

1000

ATLAS ITk

L L L L L L L L L
ATLAS Simulation
Inclined Duals

Number of Silicon Hits

i 3 2 9 0 1 2 3 4
track n

Mean number of spacepoints: 310k

Full simulation

HighRR Lecture Week - Heidelberg University - September 13,2023

1000

Number of Tracks
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ATLAS [TK GCEOMETRY O X S

) | . . ~ . Cluster Spacepoint Silicon Track
m Ceneration script™ using Athena, tt atu = (200): with
statistics dominated by soft interactions 5
. Tk <te of barrel and end L with Divel Pbk.\ e Pixel is trivial: Each
consists of barrel and endcap, each with pixels S sAEmal TS (6 GE
and strips: R cluster, which can map to

“ Py, Pp many particles

= r~rr~ryrrrryrTrTT T T T T T T T T T T T T T T T T ] \
E 1400-ATLAS Simulation Preliminary — "
py 12OO:lTk Layout: 23-00-03 -
: n=1.0 . . 4
1000 - _ \
| =20 - O: Pixel barrel P s ¢ ® ®
i — . 1503 . ’
i - 1: Pixel endcap g 108 p X X P,
- i . _Aj’\,l;':_! a .
600 - 2: Strip barrel 1507 i PN
400 n=30 - 3: Strip endcap -
200 n=40 ] gt ‘ /
o=k | J o . N Lo 2 % IP P
0 500 1000 1500 2000 2500 3000 3500 b a

z[mm] . :
Strip: Each spacepoint maps to two clusters - one on

> either side of strip, which can map to many particles

A

m Spacepoints (3D representations of track hits) are
- delined depend|ng, ONSUID orpxelectre week - becelberg Lnvers - SepterdThanke Noemi Calace 58


https://gitlab.cern.ch/xju/athena/-/blob/my_dump/Tracking/TrkDumpAlgs/src/DumpObjects.cxx

ATLAS [TK GCEOMETRY

= Fiducial particles are charged,withn €
[—4, 4], and production radius < 260mm

m Eachevent has O(15k) fiducial particles,
O(300K) spacepoints

= \We define backgroundspacepointsas
iNncluding:
m [hose left by non-fiducial or intermediate particles

(l.e. any particle barcodes not retained during
simulation), or

= Those mis-constructed in the strip regions as ghost
spacepoints

. Anevent has O(170k) background
sSpacepoints

v

® X

Cluster Spacepoint Silicon Track

_._.\__\,._,_.)

/7

ClusterC -~ !ClusterD

o0
" X XK P
@ O

Cluster A Clyster B

4

P,
Pb

Ghost spacepoint: Incorrectly constructed from
clusters left by different particles
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Hits

® 1 4

Graph Construction

Learning

Module

Metric

}. ' ‘%\
é

Graph

?

HighRR Lecture Week

Heidelberg University
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ATLAS ITK

—DGE TRUTH DERINTTIONS

Target particle

® Non-target particle

o [seq
tSeq

tpip
tpip

Target particle:
* pr>1GeV, and

At least 3 SP on different modules, and

* Primary

HighRR Lecture Week

Matching PID mp,p — Fake f—

Non-target tp;p

Ta rget tPID

All Edges

Target Seq.

Truth tSeq

Therefore, define efficiency and purity (note that we mask
out sequential non-target) for a graph with edges e

le N tseql le Ntseq — tseql
Efficiency = 1 , Purity = q~ 1
|tseql le — tseql
< - Heldelberg University - September 13,2023 61



Hits Metric Graph

MODULE MAP - DOUBLETS _{: L“"“'g *‘}3/’@.

Map

Graph Construction

= Theidea:Build a map of detector modules,

where a connection from module A E’ 1400 ATLAS Simulation .
to module B means that at least one true o« opp. ""eined Duas 4
track has passed sequentially through Ato B . i ]

= Stepl:Build all combinations of sequential Modules 1000; g n=2.0;:
doublets for an event, register an A-to-B Me ‘ ]
entry if a doublet passes through. O(90Kk) ms |
events used to build these combinations zzx i =

ol B S I P ] 1

o Ste.p 2. Foreach A-to-B entry, a!;o lf'nlg ‘\.;‘;‘:‘Z;.'J?J‘.“Ji%i,l"‘ls QLI_.:-: ;"fﬁ: i
register/update the max and min values of g N o A T .

0 500 1000 1500 2000 2500 3000 3500

set of geometric observables. Apply these

cuts when building the graph in inference M — . . .
ap ={my;:m,, my:ms, ..., mg: Mg}

mBERKELEY . HighRR Lecture Week - Heidelberg University - September13,2023 62



Hits Graph

MODULE MAP — TRIPLETS _'—{:}T%%

= Theidea Builda map of detector modules, where a connection from module A Graph Construction
to module B to module C means that at least one true track has passed sequentially through
AtoBtoC

m Step | Build all combinations of sequential tripletsfor an event, register an A-to-B-to-C entry if
a triplet passes through

s Step2: Foreach A-to-B-to-C entry, also register/update the max and min values of a set of
geometric observables. Apply these cuts when building the graph in inference

Step 1 Step 2
Az
3 . — e * zo=zm-rmx(;)
£ 1400 -ATLAS Simulation - . ® =4¢
=  Inclined Duals Slope ~ar
- 0 1 s A - 0=t bm o b
[ ] onnections adaead: * An= - . = = 2z _ 723
10007 3 e N ="Mz =M1 &Ax A%yy By
a0oL 6 } =20 7 >Z-> — pAdz_ Az Az
| E 2553554 Ar  Ary; Argy
600 ] P | 1 3->4->5 * 29 =2p; — T X (%)
E ' ] 4->5->6 _ag
400! =1 301 \ * bsiope =5
; AR I W S S T TR gt * Ad =bp; — Py
200 RO R OB Tha P B ey R 1
pad BASEA—TER R gy * An=Npz —Mm

e

AT g £ ENAIES
Y 1 “1111,[ LI s‘& | e |
o-—-—-n,. a1

2t AN e reererrl PRSP PRI GPUPSATN EPRINPTI B |
0 500 1000 1500 2000 2500 3000 3500
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METRIC LEARNINC 1n={"“’ b

max{0, A — x}, ifyy, =1,

INTUITION = i
.\R‘e'pl;:gsive training Cﬁr;ctive training

3:

=L |
“Contrastive” hinge loss

Encode /embed input

. . . =1
iNto N-dimensional space Y

Reward (low |oss)
mMmatching pairs within
unit distance

Punish (high loss)
mismatching pairs within
unit distance

Repeat for many pairs

mBERKELEY an 0l source !V eck - STarget o Linivers ity - Seurcernber 13, 202 Target 064



Hits

Metric Graph
I - Learning ) s
or it Pkl
METRIC LEARNING [
Map
Graph Construction
= Theidea Teach an MLP toembed spacepoint features (spatial and cell information)
»  |nthis embeddedspace, all doublets in a given particle track are trainedto be x, if true pair
neareachother (Euclidean distance x), using a contrastive loss function L: = {
= Ahitinatrackistrained to be closest toits preceeding and succeeding track hits max(0, —x), if false pair
Embedinto learned Connectall spacepoints All spacepoint pairs
latentspace withinradiusr joinedinto graph
e \\A Pt \\‘A //" \\A

v 3 5 :

HighRR Lecture Week - Heidelberg University - September 13,2023 65



Hits Metric Graph

METRIC LEARNING - FILTERING _{: L“""'g *Qf@

Map 4

. Outputgraph of metric learning is impure: 0.2% Graph Construction

Can pass edges through a simple MLP filter to filter out the easy fakes

ATLAS ITk
mmproves purity to 2%, so graph can be trained entirely on a single CPU
Metric Learning
/

Cross

Entropy
Loss
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OGRAPH CONSTRUCTON RESULTS

UL LI 1 11 1 11 L 1 1 1 1 1 1 1 1 1 1 a 1 5 ! ! ! ! LI 1 ! 1 ! T T
> ' | [ | [ [ P L | .
% 104 ATLAS Simulation Preliminary _ % - ATLAS Simulation Preliminary 5
E : s = 14 TeV, tf, (u) = 200, primaries (tf and soft interactions) P> 1 GeV : t::z 1.1 :_ s =14 TeV. tf, {u) = 200, primaries (tf and soft interactions) Py > 1GeV _:
Q = — (] - <4 -
C 1 02 — —8— Module Map ] c B —&— Module Map ]
-"g : ¥~ Metric Learning : % 1 05 L 5~ Metric Learning ]
S - 1 = N .
3 - " P '4 . 9 g _‘_f__f_‘fl”'+* ———o— ° o
O 098_— *; -.--.-...... Pag ] % - N
o L e * - | L i
N L e -* _ < B .
Q. Q B :
o 0.96— - © 0.9 ]
G i ] O - -
B L1 11 | I I | | 11 1 | 111 | 11 1 | | I I | 111 | I I | i 0_85 L . L L . . S I L L - L L —1 i

094,340 123 s 1 10 10°
n P, [GeV]
* Drop in efficiency at low n due to poor barrel strip * Drop in efficiency at high pr due to low

resolution (will discuss further!) training statistics
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Graph Neural
Network

Edge Labeling

HIghRR Lecture Week - Heidelberg University

# \
A a 0.90 0.94 ?

Edge Scores

o9
0.90 ®

A
@ oss 0.88
° 0.89
! 0.92 .92
’ 0.94
0.95 02 ggq 092 _®

L ]
" s 091 085
0.91 = 3 0.05

0.89 0.78

0.02 0.91 0.82

September 13,2023
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DO CLASSIFICATION WITH
OGRAPH NEURAL NETWORK

Node features (spatial position) are
encoded

Encoded features are concatenated
and encoded to create edge features

Edge features are aggregated
around nodes to create next round of
encoded node features (i.e. message
Dassing)

Each iteration of message passing
mprovesdiscrimination power

m BERKELEY LAB

HighRR Lecture Wee|

v node features
el edge features
at iteration k

k . k .,k k
€01 = (v, v§,ef,)
Battaglia, Peter, et al.
"Interaction networks for

learning about objects,

relations and physics.* k +1
2016. %€y )
INTERACTION "
NETWORK U3 (A

10° : (: ralcei

7 true

10t l

10° \/

107

10!

10° ]J

10°%0 a2 04 06 08 10

Model output
09


https://arxiv.org/abs/1612.00222

Graph Graph Neural Edge Scores

e . /7 wm Network

LOSS FUNCTION DESIGN T e,
Edge Labeling
= [he targetof the CNN and track reconstruction is edges from
orimary particleswith pl=1 GeV that have left at least 5 hits on
different modules in the detector (see slide 12]

= Have very small set of target edges (1-2% of edges are true target
tSeq)

= Solutionitgeg ¥y = Lweighted up by X 10, sequential background g,
masked, all othersy =0

= \Weighting gives much better performance at high-efficiency

» Masking gives much petter performance around the 1 GeV cutoff

X Trk> mBERKELEY e HIghRR Lecture Week - Heidelberg University - September13,2023 70
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ONN EDGE CLASSIFICATION RESULTS
ROC CURVE & EDGEWISE PERFORMANCE VS. p;

g 108 E T T T 1T I T T T 1 | L | LU | LU | L LI L 1 a 1 _2 | T T T T T T T I T T T T T T T |_
5 75 ATLAS Simulation Preliminary S - ATLAS Simulation Preliminary ]
% 10 ? Vs =14 TeV, f, (u) = 200, primaries (ff and soft interactions) p_> 1 GeV E 1.15 :_ \s = 14 TeV, f, () = 200, primaries (tf and soft interactions) p_> 1 GeV _:
.; 1 6 | using Module Map (5] — using Module Map —
(o 0 E 3 Q 1 1__ —o— full detector T
3 s ] 2 T Il > 2 .
hd 5L __ B Inl < 2 ]
o 10°F 3 X n §
~ - - $ 1.05 f ]
Q - 7
m S GNN classifier E yd ’ B 7
SLLLLLLL Naive classifier ] — 4 —— =
- = Z - — . —a— ]
3 Edge classificati =0.5 g — o o g " |
10 3 ° ge classification score s = 0 : ++ . E
2 - . 0.95 - —4- I ]
107 E - —— 1
10 3 0.9F =
:| RN B I..I'.llT.I..I..I..l.I..I..I..I.rll"|",lf'Fl\lHl!lrnlll'llilllJ-i-I--L- L 1: 0.85: L L o | ! I L 1:
b2 703 04 05 06 07 08 09 1 1 10 102
Signal efficiency p, [GeV]

m Edge cut of 0.5 on output of GNN edge classifier
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ONN EDGE CLASSIFICATION RESULTS

EDGEWISE PERFORMANCE VS. n

> | Tt e L L > 1 2 [T T T T [T T T T [T T T T [ T T T T[T T T T[T T 11 T T 7 T T T
£ 1.04— ATLAS Simulation Preliminary . - ATLAS Simulation Preliminary .
O ~ 7] o [ ]
é 1.02 ~ Vs=14TeV, tf, (u) = 200, primaries (tf and soft interactions) p.>1GeV ] ) 1.1 — Vs =14TeV, tf, (u) =200, primaries (tf and soft interactions) p,>1GeV -
o ’ — using Module Map ] -8) ~ using Module Map ]
Q B ] o 11— _
(@] 1_ | S - -]
8 B -] ()] C - ’..." *teq & -
v - ’-.-o-.- L N -.._.__._'__._-.-.-_._ . Q. 0.9 - . -C-_._’ ..-_._-0- - <
Z B ot o Seee 7 O N e - 7
& 0.961 7 0.8 . ) -
- 9 . to 00 ol ee e ]
0.92 - 0.6 -
09 [ v e vy v by v v b v b e b Ly N O 5 : T T I I I I A I T IR T B |:
°4 3 =2 1 0 1 2 3 4 24 3 2 1 0 1 2 3 4
n n
" Again, see a drop in performance at low g
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Edge Scores Connected Track Candidates
. Components
0.90 '.
s " [
o \ oo 0.89 ol
.0:92 . 0.95 93 .02 g9 0-92-’ _®
rﬁ s © Connected
0.93 s Rl Ozgg
: ‘\\ Components
#@ "N + Walkthrough

Graph Segmentation
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OCRAPH PARTITIONING 10

Craph: given a graph with expected
‘components’ or ‘communities’, how can
we partition into those likely components

Potentially a very (i.e. NP-hard) expensive
step

Typical partitioning approachestry to cut
the fewest edges, to produce the most
densely connected communities

But this is not really aligned with track
finding, since tracksideally only have one
iINncoming, one outgoing edge per node

(a)

CommunityID |1 2
1 2
2 2 2
6 (BY. 2 [4Y 16
Q:—— — + — = — e
12 12 12 12 144

Ratio cut=2/(3*2)=1/3

Edge Scores Connected

. =-re. Components
e T or D
; o Connected .
aer . S Components

+ Walkthrough

Track Candidates

£
om &
m
oss om0 052
T os
- 2T
52
oo NOE2
foso B
™

Graph Segmentation

CommunityID |1 2
1 10
2 1 0

_lo (1Y o (1Y _-2
12 (12) 12 (12) 144

Ratiocut=1/(4*1)=1/4
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TRACK CANDIDATES CONSTRUCTION @ Lommm %‘

Edge Scores Connected Track Candidates
Components

2B ﬁ?
kﬁ' s Connected

Graph Segmentation

= \We now have labelled edges. Want to now label each node depending on connectivity.

= [wodistinct approaches: component-based segmentation, or path-based segmentation.

Component-based

E.g. connected components algorithm:

/ 6/5{%5#1

e —_—
rack #2
2 2
2

Classified edges Ignore cut edges Label connected
components

* Pros: Fast- O(Nyodes)
e Cons: Can merge tracks into one candidate

HighRR Lecture Week

Path-based

E.g. walkthrough algorithm:

rack #1
1 1

1

Remove a high-
scoring path

Classified edges,

Choose high
score junctions

* Pros: Handles hits as a sequence, as a track should be
* Cons: Potentially slow - O (Ngges), NE€dSs a directed graph
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Edge Scores Connected Track Candidates

Q‘k # Comp::ents
e “*&7 components ) T
TRACK CANDIDATES CONSTRUCTION S e Za
Graph Segmentation
= \We now have labelled edges. Want to now label each node depending on connectivity.

= [wodistinct approaches: component-based segmentation, or path-based segmentation.

Component-based | Path-based

Both methods by construction
assoclate each hit with only one track
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Edge Scores Connected Track Candidates

L e [ ] Components o
Fe ﬁ or B
A &G Connected o
Vi, \ Components A
m-‘(—v' 050 [ 4
viid

+ Walkthrough

TRACK CANDIDATES CONSTRUCTION

. One cancombine the good features of each approach:

Graph Segmentation

1. Connected Components 2. Walkthrough, a.k.a “Wrangler”
O—o—° o—o—© oo
: 0
(02 L, Ly>L,
‘\'\‘ P 4 ‘:;;‘;3\‘
‘\‘\c m
Classified edges Cut score < 0.2 Label simple Walk through paths from Assign longest path
candidates as candidate

count length L
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—INDING & FITTING PERFORMANCE
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TRACK MATCHING DeFRINTTTONS

Particle 2
= N(P,(;)is the number of spacepoints shared by particle i and candidate j
» Particle iis called “matched” if, for somej, %}ng') > firuth Particle 1
; : u no . N(Pl',Cj)
m Candidate jis called "matched’ if, for some LNy > freco
J

m Particle i and candidate j are called "double matched’ if, for someiand j,

N(P,C;) N(P;C;) Candidate 1

v=j Yj

N(P;) > feruen @Nd N(C)) > freco

. e f f _ Y i Pi(matching condition)y pur = % C j(matching condition)
ZiPi Z]CJ

Standard matching: single-matched particles with f¢,-,: = 0.5
Strict matching: double-matched particles with f,..., = 1.0
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TRACK RECONSTRUCTION RESULTS

L>)~. 1.2_' LI I L L L L L B B '.\ '.' e L L =, 1_4_|||\‘\\\|||||||||||||||||||||||||| TT T T[T T T T[T TT71]
S - ATLAS Simulation Preliminary ] % ~ ATLAS Simulation Preliminary .
= 115 — Q0 C 7
':I(:;) E s =14 TeV, tf, (1) = 200, primaries (tf and soft interactions) P> 1 GeV E ‘g 1.3 C  Ys=14TeV, tf, (u) = 200, primaries (tf and soft interactions) P> 1 GeV n
) - in ] © [ using Module Ma .
c 1-1__ using Module Map ] cg 1.2__ g Module Map =
-_8 E Matching to truth particles without track fit: E g [_  Matching to truth particles without track fit: ]
S 105 T g E S 1AE i e =
2 F - @ - -
8 E‘—_._'__‘__‘—’_—’——‘—_' = _‘__.__’__‘__._—0; § 1?00»"0—+——0— | ]
[«)] - ] bt » ]
X 0.95 Ca— Ly —A——a——A—Am L —A— e . < 09 :‘f“*‘h -
O L A A -A —— ] O - ; I ]
S 09F -+ 5 £ B -+-—+— -
> E e ] > 08F E
pd - ] Z - N
0] 0.85 - . S o7k -
: L1 ‘ L1 ‘ L1 | L1 ‘ L1 | L1 | L1 | L1 : :I 111 ‘ 1111 | L1111 | | .| | L 11 | 1111 | 1111 | L1111 | L1 | L 11 |:
08,3530 1 2 37 0 10 20 30 40 50 60 70 80 90 100
n P, [GeV]
Standard matching: single-matched particles with fi = 0.5 * Fake rate is 0(107%) using standard truth
Strict matching: double-matched particles with f,-ec, = 1.0 matching
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TRACK RECONSTRUCTION RESULTS

T)25__""!""!""I""l""l""l""l" ] .%20#7'I""I""l""l""IT"‘I"’rl"'f
8L 1 & .
£ B ATLAS Simulation Preliminary = £ -~ ATLAS Simulation Preliminary .
Z 20— Vs=14TeV, i, u>=200,HS,p_>2GeV < 5 s =14TeV, , qu>=200, HS, p_>2GeV |
15[ . .
10— —
10— — - .
: 1 o .
5:— —}— CKF Track Finding _: B —+— CKF Track Finding ~
E ¢ GNN Track Finding - al ¢ GNN Track Finding .]

! | I :
el o S 1iF 7T
-9 IS L l I I I I I I I I ] I I Y | I LI Y l I I I l I I I I — - =
Ewi I' YY" *+¢-------+- AR ekt £ o . "o A
+ *+ L , : é_1 Rl A h¢| ,m (| lq N | II”._L‘“‘! l‘l.l [ B I_é
095 [ - | 1 1 1 1— 1 [ _ 1 I | I | l I [ S | 2 I+l [ 3I 08_4 _3 _2 _1 1 2 3 4
n

Observe that the GNN track candidates have fewer hits than CKF. Will return to this!
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TRACK HITTING 101

* A trajectory of a charged particle in a magnetic field requires five
track parameters (q)

q = (do, 20,9, 6,q/p)

* Uncertainties encoded in a covariance matrix

= \Why dowe fit? (02(610) cov(do, 20) cov(do, @) cov(do,0) cov(do,q/p)\
: 0*(20)  cov(20,9) cov(2,0) cov(zo,q/p)
= Many downstream tasks need C= : ; o%(¢)  cov(o,0) cov(o,q/p)
the mormentum and “impact : . . o*(0)  cov(0,q/p)
oarameters” \ : : ; ; o*(a/p) )

= Can use the fitted parameters

. _ . * Right handed coordinate system
to "tidy up” the track finding

« Azimuthal angle, ¢, measured in
transverse plane in [-11,+)

+ Polar angle, 8 measured from z axis in
[0,m]

- Pseudorapidity, 77 = — In (tan 0 / 2)
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FAST CIRCLE FIT WITH THE CONFORMAL MAPPING METHOCD

M. Hansroul, CERN/DD
H. Jeremie and D. Savard, Université de Montréal

TRACK FITTING 106 =ITTING
WITH GLOBAL y?

We can propose a shape of the track —a helix

We can then simply minimise the sum of the square of the residuals of the measurements to
oroduce the set of five track parameters

This can be done very efficiently by:
Mapping to the conformal plane =2

Making the assumption that the impact
oarameters (the point of closest approach of
the helix to the origin) isvery small
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TRACK HITTING 106 FITTING WITH KALMAN HILTER

Recall that the Kalman Filter track finding produces a
orediction of the helical parameters in order to find the
next Nit

VWe can thus use the same model to fit to a track

However, to get good performance: First run Kk
forwardsto build the model then run it back from out-
to-in: called "smoothing”

y [mm]
1000

500

-500

1000

http://physik.uibk.ac.at/hephy/theses/diss_as.pdf

Extension
_— Segment

1 | 1 1 | 1 I 1 1 | | | 1 1 | | I 1 1 1 | | 1
-1000 -500 0 500 1000

X [mm]
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ST TING PERFORMANCE OF TRACK CANDIDATES

We see that the tracks found by
the GNN are within 30% of the
‘quality” of the tracks found by
the CKF

Quite promising, given that the
CKF assumes helicity, while the
CGNN makes no such
assumption

g [ N N N L S N LB T T L T R I I ]
% — ATLAS Simulation Preliminary —
g 1L Is = 14 TeV, ff, qu>= 200, HS, p_ > 2 GeV _
. . —— CKF Track Finding =
é u ' ¢ GNN Track Finding E
E — ’ —
= 101 —
o — _
102 = . | L C | | —
-9 1.4:—I LI I L | | L | | L | L | L L | L | L I—:
T 1.2F . =
o 1_"'.'.'-,00.,.*'_
0_8__1 | I 11 1 1 l 11 1 1 l 11 1 1 | 1 1 | | 11 1 | | 11 1 1 | 11 1 I__

—4 -3 —2 -1 0 1 2 3 4

Relative track p, resolution is measured as the multiplication of p. ™ and the RMS of
the pull distribution of (q/p," - q/p,"™¢) / q/p, ™.
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