Tracking with Graph Neural Networks Part 1: Fundamentals

DANIEL MURNANE BERKELEY LAB, CERN

HIGHRR LECTURE WEEK, HEIDELBERG UNIVERSITY SEPTEMBER 13, 2023

OVERVIEW

- The importance of tracking in the LHC discovery pipeline
- How have we done tracking in the past
- Tracking with graphs
- Overview of graphs and GNNs
- Construction of graphs
- GNN4ITk project and pipeline

- ATLAS ITk data
- Graph construction in ITk
- The Interaction Network in GNN4ITk
- Graph segmentation techniques
- Track building in GNN4ITk
- Measuring tracking performance
- Track fitting

WARNING: BIAS AHEAD

- I chair the GNN4ITk project in the ATLAS experiment
- I will have a bias towards tracking in ATLAS
- I will also have a bias towards the GNN4ITk "solution" to the ATLAS tracking problem
- However: This approach is the de facto standard way to use GNNs for tracking, since it was first proposed by the HepTrkx project in <u>arxiv:1810.06111</u>

HIGH LUMINOSITY TRACK RECONSTRUCTION

DATA SCIENCE IN THE DISCOVERY PIPELINE

Simulation				Reconstruction				Analysis		
Matrix-element Calculation	Parton-shower / Hadronization	Detector Simulation	Digitization	Topoclusters & Spacepoints	Track Finding & Fitting	Jet Tagging & Vertexing	Particle ID & Particle Flow	Calibration	Likelihood Fitting	Unfolding
Numerical Integration	Markov Chain Monte Carlo	Topological clustering		Kalman Filtering & Fitting	Conformal Fits & Hough Transform		Statis Bayes	tical Techniques, ian Inference		

MLTODAY & TOMORROW IN THE DISCOVERY PIPELINE

Simulation Reconstruction Analysis Track Finding Matrix-element Parton-shower / Detector Digitization Topoclusters Jet Tagging Particle ID Calibration Likelihood Fitting Unfolding Calculation Hadronization Simulation & Spacepoints & Fitting & Vertexing & Particle Flow Metric Learning, Object Symmetric ML Deep Full Event CNNs, Graph Neural Autoencoders Omnifold and Likelihood-Generative Models: & Equivariance GANs, VAEs, Normalizing Flows and Diffusion Condensation & Anomaly Detection Reconstruction Networks & Transformers free Inference

TASKS IN AN HL-LHC DETECTOR

- In order to perform the analysis that leads to discovery (e.g. of dark matter, extra dimensions, SUSY, ...), need to make sense of the detector read-out
- There are many tasks required to reconstruct the physics event behind the read-out

TASKS IN AN HL-LHC DETECTOR

- In order to perform the analysis that leads to discovery (e.g. of dark matter, extra dimensions, SUSY, ...), need to make sense of the detector read-out
- There are many tasks required to reconstruct the physics event behind the read-out

WHAT IS TRACK RECONSTRUCTION

- Protons collide in center of detector, "shattering" into thousands of particles
- The charged particles travel in curved tracks through detector's magnetic field (Lorentz force)
- A track is defined by the hits left as energy deposits in the detector material, when the particle interacts with material
- The goal of track reconstruction:

Given set of hits from particles in a detector, assign label(s) to each hit.

Perfect classification: All hits from a particle (*and only those hits*) share the same label

THE IMPORTANCE OF TRACKING

- Finding and fitting tracks accurately is essential for most downstream tasks in ATLAS and many other experiments
- Classic example is b-tagging (which itself is necessary for Higgs searches, top physics, and BSM searches)
- The current ATLAS GNN tagger takes 2 overall jet features, and 21 track features

Jet Input	Description
p_{T}	Jet transverse momentum
η	Signed jet pseudorapidity
Track Input	Description
q/p	Track charge divided by momentum (measure of curvature)
$d\eta$	Pseudorapidity of the track, relative to the jet η
$\mathrm{d}\phi$	Azimuthal angle of the track, relative to the jet ϕ
d_0	Closest distance from the track to the PV in the longitudinal plane
$z_0 \sin \theta$	Closest distance from the track to the PV in the transverse plane
$\sigma(q/p)$	Uncertainty on q/p
$\sigma(\theta)$	Uncertainty on track polar angle θ
$\sigma(\phi)$	Uncertainty on track azimuthal angle ϕ
$s(d_0)$	Lifetime signed transverse IP significance
$s(z_0)$	Lifetime signed longitudinal IP significance
nPixHits	Number of pixel hits
nSCTHits	Number of SCT hits
nIBLHits	Number of IBL hits
nBLHits	Number of B-layer hits
nIBLShared	Number of shared IBL hits
nIBLSplit	Number of split IBL hits
nPixShared	Number of shared pixel hits
nPixSplit	Number of split pixel hits
nSCTShared	Number of shared SCT hits
nPixHoles	Number of pixel holes
nSCTHoles	Number of SCT holes

ATL-PHYS-SLIDE-2023-048

THE COST OF TRACKING

- Over half the current ATLAS computing budget is spent on generating and reconstructing simulated data
- In Run 2 in 2018, a typical event (in data) required 1693 HS06-seconds, of which 67% was spent on tracking
- TL;DR: Tracking is an expensive piece of reconstruction, and is therefore an expensive piece of any experiment that has a tracking subdetector

Detector	$\langle \mu \rangle$	inner	muon spectrometer	combined	monitoring	total
		tracking	and calorimeter	reconstruction		
Run 2	90	1137	149	301	106	1693

https://cds.cern.ch/record/2729668/files/LHCC-G-178.pdf

COMPUTE SCALING FOR HIGH LUMINOS

ATLAS Computing Requirements Over Time Run 5 (µ=165-200) Run 4 (u=88-140) Run 3 (μ =55) **ATLAS** Preliminary Annual CPU Consumption [MHS06years] 50 2022 Computing Model - CPU Traditional methods (scale quadratically) 40 **Conservative R&D** Aggressive R&D Computing power Sustained budget model 30 HL-LHC, 14 TeV (+10% +20% capacity/year) 2027 3 billion collision/second In other words... 20 Predicted capacity 10 2020 2022 2024 2026 2028 2030 2032 2034 2036 Time, Energy, Number of Collisions Year **CERN-LHCC-2022-005**

WHY HIGH LUMINOSITY PHYSICS?

- 1. Better reach for Supersymmetry discovery:
 - a) Electroweakino particles produced by much greater range of chargino masses
 - b) Gluino exclusion from channels across 0.7-2.0TeV to channels across 2.5-3.2TeV
- Sensitive to resonances (W', Z') up to 6-8TeV
- W mass precision improvement from <u>+9.4MeV</u> to <u>+6MeV</u>

ATL-PHYS-PUB-2018-048

TRACKING 101

THE GOAL OF TRACKING

The following slides have material borrowed from Heather Gray's excellent talk @ Zurich: https://indico.cern. ch/event/504284/ EXPERIMENT

Up to ~5k charged particles per event Need to reconstruct every one efficiently, precisely and quickly

Run: 286665 Event: 419161 2015-11-25 11:12:50 CEST

first stable beams heavy-ion collisions

WITHOUT A DETECTOR...

Particles are well-described by helices in a magnetic field

But once they are in a detector...

Particles in a magnetic field

- Magnetic field bends charged particles to measure their momenta
 - in a perfect homogenous field : circle in transverse direction
 - · helical track in a solenoidal field
 - transverse & longitudinal components are independent
- ATLAS field is far from homogenous
- Solve equations numerically!

 $\frac{d^2x}{dz^2} = \frac{q}{p}R\left[\frac{dx}{dz}\frac{dy}{dz}B_x - \left(1 + \left(\frac{dx}{dz}\right)^2\right)B_y + \frac{dy}{dz}B_z\right]$ $\frac{d^2y}{dz^2} = \frac{q}{p}R\left[\left(1 + \left(\frac{dy}{dz}\right)^2\right)B_x - \frac{dx}{dz}\frac{dy}{dz}B_y - \frac{dx}{dz}B_z\right]$ $R = \frac{ds}{dz} = \sqrt{1 + \left(\frac{dx}{dz}\right)^2 + \left(\frac{dy}{dz}\right)^2}$

	Туре	Particles	Fund. parameter	Characteristics	Effect	
TYPES OF	Multiple Scattering	all charged particles	radiation length X_0	almost gaussian average effect 0 depends ~ 1/p	deflects particles, increases measurement uncertainty	
INTERACTION	Ionisation loss	all charged particles	effective density $A/Z * ho$	small effect in tracker, small dependence on p	increases momentum uncertainty	
	Bremsstrahlung	all charged particles, dominant for e	radiation length X_0	highly non- gaussian, depends ~ 1/m ²	introduces measurement bias	
	Hadronic Int.	all hadronic particles	nuclear interaction length Λ_0	destroys particle, rather constant effect in p	main source of track reconstruction inefficiency	
TrkX BERKELEY LAB	HighRR Lecture Week - Heidelberg University - September 13, 2023					

REPRESENTING A HELIX

BERKELEY LAB

Track Parametrisation

 A trajectory of a charged particle in a magnetic field requires five track parameters (q)

$$\mathbf{q} = (d_0, z_0, \phi, \theta, q/p)$$

· Uncertainties encoded in a covariance matrix

- Right handed coordinate system
- Azimuthal angle, φ, measured in transverse plane in [-π,+π)
- Polar angle, θ measured from z axis in $[0,\pi]$
- Pseudorapidity, $\eta = -\ln\left(an heta/2
 ight)$

TRACKING TERMINOLOGY

- Tracking typically happens in silicon: channels lie on flat-ish modules
- Like a set of millions of cameras, arranged in layers
- Particles curve out, depositing energy in "clusters" or "spacepoints" or "hits"
- Sequence of hits is a "track"

TrkX

• A *prediction* of a track is a "track candidate"

BERKELEY LAB

TRADITIONAL TECHNIQUES FOR TRACKING

KALMAN FILTER: TRACKING AS NAVIGATION

measurement

https://www.kalmanfilter.net/multiSummary.html

KALMAN FILTER: TRACKING AS NAVIGATION

- The optimal algorithm for any linear system with independent measurements with Gaussian uncertainty
- Self-driving cars are the perfect usecase of this: many independent sensor measurements, with a planned trajectory that is updated in time
- Tracking looks a lot like driving a car...

444

KALMAN FILTER: TRACKING AS NAVIGATION

- Begin with a seed of 3 or 4 spacepoints
- Produce a prediction of the helix parameters, and the covariance matrix
 - Look at where this helix would intersect with the next layer(s)
 - Look for a nearby hit to this prediction
 - Use the most likely hit to update the model
- Repeat!
- We can also hypothesise a "hole" (missing hit) to handle a skipped layer

https://cds.cern.ch/record/1281363/files/ATLAS-CONF-2010-072.pdf

APPLICATION OF KALMAN FILTERING TO TRACK AND VERTEX FITTING

R. FRÜHWIRTH

Institut für Hochenergiephysik der Österreichischen Akademie der Wissenschaften, Vienna, Austria

Received 30 June 1987

COMBINATORIAL KALMAN FILTER

- Running the Kalman Filter naively leads to an exponential explosion *in time* of possible paths
- We can improve this in time (if not necessarily in memory) by recursively looking for combinations of hits that match a prediction
- If several candidate paths match a seed, then the value with the lowest χ² value and the most hits is considered the "winner"
- This still scales combinatorially in time-space, and can be very expensive if the number of seeds is high

https://www.researchgate.net/publication/344039130_Pattern_ Recognition_and_Reconstruction

TRACKING AS GRAPH SEGMENTATION

COMPUTE SCALING FOR HIGH LUMINOSITY

ERKELEY LAB

ATLAS Computing Requirements Over Time

ML Image Classification Efficiency Over Time

44x less compute required to get to AlexNet performance 7 years later (linear scale)

26

TEASER: GRAPH-BASED PIPELINE FOR TRACK RECONSTRUCTION

- Using graph-based ML, can perform track reconstruction on High Luminosity detector events
- Comparable efficiency and fake rates to traditional algorithms
- Scaling that is approximately linear in event size (on open-source TrackML dataset)

HOW SHOULD WE REPRESENT PARTICLE COLLISIONS?

Assuming we want to use deep learning, how can we represent a particle collision?

For event collision as point cloud, with relationships between points, this is a graph.

TrkX

BERKELEY LAB

NODE FEATURE e.g. "West Oakland"

EDGES CAN HAVE FEATURES

WHAT IS A GRAPH?

EDGE FEATURE e.g. "Under Maintenance – Single Track"

THE WHOLE GRAPH CAN HAVE FEATURES

GRAPH FEATURE e.g. "Sunday Timetable"

GRAPHS ARE A NATURAL WAY TO REPRESENT TRACKS

Given hits on layers of a detector

GRAPHS ARE A NATURAL WAY TO REPRESENT TRACKS

Connect the hits in some way

GRAPHS ARE A NATURAL WAY TO REPRESENT TRACKS

- Tracks should be found amongst the connected nodes.
- Note the trade-off: Rather than needing to classify or cluster nodes with many labels, we only need binary classification of edges
- However, introduce the extra step of building tracks from classified edges

INTRO TO GRAPH NEURAL NETWORKS

GRAPH NEURAL NETWORK APPLICATIONS

Molecular

Chemistry

GRAPH NEURAL NETWORK PROCEDURE

STEP 1: MESSAGE PASSING MECHANISM

Input channels Encoded channels

For each node neighborhood:

- a) Pass node channels through a multi-layer perceptron (MLP) encoder
- b) Pass encoded channels along each edge to the central node of the neighborhood

Note: This is quite inexpensive since we store N_{nodes} for backpropagation

Figure inspired by Koshi et. al.

STEP 2: AGGREGATION

Input channels Encoded channels

At each node:

Sum all messages

Note: Called *isotropic* message passing. Introduced as "Graph Convolution Network"

Figure inspired by Koshi et. al.

EDGE CHANNELS

- Isotropic message passing can't differentiate importance of neighbors
- Anisotropic message passing: encode a combination of node and neighbor along each edge
- Much more expensive now need to store N_{edges} for backpropagation
- But <u>much more powerful</u>

Found in "Graph Attention Network" and "Interaction Network"

Pre-encoded channels

https://github.com/murnanedaniel/GNN-as-Transformer-as-GNN/blob/main/O-Transformer_vs_GNN_Annotated.ipynb https://arxiv.org/pdf/2012.09699.pdf

GNNS IN TRACKING

- As mentioned in the introduction, the "HepTrkX" formulation of GNN tracking is the de facto standard
- A workshop last year on GNN Tracking \rightarrow
- Almost all contributions are affiliated with Exatrkx, or use a codebase forked from or motivated by the Exatrkx approach
- A variety of experiments are applying this **fully** supervised, edge-classification pipeline

Mini-workshop	on Grap	oh Neural Networks for Tracking	
3 June 2022 Princeton University Europe/Copenhagen timezone		(Enter your search term Q
Overview	Timeta	ble	
Timetable			
Contribution List My Conference - My Contributions	< Fri 03/	B Print PDF Full sc	reen Detailed view Filter
	15:00	Welcome	Savannah Jennifer Thais 🥝
Registration		Princeton University	15:00 - 15:10
Participant List		Accelerated Graph Neural Network Inference	Javier Mauricio Duarte 🥔
		Princeton University	15:10 - 15:50
		A differentiable graph pooling method based on spatial clustering algorithm	s" Ryan Liu 🥝
	16:00	Princeton University	15:50 · 16:10
		BESIII track finding algorithm based on edge-classifying GNN	Xiaoqian Jia 🥔
		Princeton University	16:10 - 16:30
		Coffee Princeton University	16:30 · 16:50
		Heterogeneous GNN for tracking	Daniel Thomas Murnane 🥔
	17:00	Princeton University	16:50 - 17:10
		GNN Interpretability in HEP	Savannah Jennifer Thais 🖉
		Princeton University	17:10 - 17:50
		Pion reconstruction in the ATLAS detector using Graph Neural Networks	Piyush Karande 🥔
	18:00	Princeton University	17:50 - 18:10
		Lunch	
	19:00	Princeton University	18:10 - 19:10
		Graph generative networks	Thiago Tomei Fernandez 🥖
		Princeton University	19:10 · 19:40
		Towards Achieving Real-time GNN Inference	Alina Lazar et al. 🥔
		Princeton University	19:40 - 20:00
	20:00	Equivariant Graph Networks	Daniel Thomas Murnane 🥝
		Princeton University	20:00 - 20:30

GNNS IN TRACKING

- As mentioned in the introduction, the "HepTrkX" formulation of GNN tracking is the de facto standard
- A workshop last year on GNN Tracking \rightarrow
- Almost all contributions are affiliated with Exatrkx, or use a codebase forked from or motivated by the Exatrkx approach
- A variety of experiments are applying this fully supervised, edge-classification pipeline
- Another promising approach is reinforcement learning, which may or may not use deep geometric learning (i.e. graph techniques)

Tobias Kortus , Ralf Keidel and Nicolas R. Gauger, 2022

Våge, Liv CTD Proceedings 2022

GNNS ELSEWHERE IN PARTICLE PHYSICS

- Very large and active field of study!
- Comprehensive review of GNNs for Track Reconstruction <u>- arXiv:2012.01249</u>
- White paper on progress and future of the field <u>arXiv:2203.12852</u>

THE TOPOLOGY PROBLEM

TRACKING WITH GRAPHS VS. POINT CLOUD

- Could use a transformer this is now the stateof-the-art in jet tagging with GN2 tagger (<u>ATL-</u> <u>PHYS-PROC-2023-017</u>) and <u>ParticleTransformer</u>
- I.e. Treat as a point cloud with all-to-all connections, and compute attention between each pair
- This is tractable in a jet of O(1k) clusters = O(1m) attention weights
- A HL-LHC ATLAS event has *O*(100*k*) clusters = *O*(10*b*) attention weights...
 - Can discuss this later if there's interest!
- We thus want to impose some intuitive way of connecting hits much below $O(n^2)$

https://arxiv.org/pdf/2012.09164.pdf

TOPOLOGY FOR MESSAGE PASSING AND SEGMENTATION

- In tracking, the graph structure ("topology") has two purposes:
 - 1. To pass hidden features ("messages") from hit to hit, to minimise the loss, presumably solving an N-step combinatorial problem across tracklets
 - 2. As "possible connections" between hits, therefore the edges need to be classified as true of fake
- No inherent reason the two structures have to be the same. E.g. could pass messages totally randomly, but still try to classify the edges between likely hits
- For simplicity, we create a single graph that serves both purposes: Edges transmit messages, *and* they are the target of the classification model

THREE WAYS TO BUILD A GRAPH

GEOMETRIC HEURISTICS

- 1. Consider all connections on sequential layers
- 2. Apply some hard geometric cuts according to heuristic knowledge of particles of interest

BERKELEY LAB

https://arxiv.org/abs/2103.16701

MODULE MAP

- 1. Build a module-to-module map from data
- 2. Apply some hard geometric cuts *for each* module-to-module possible connection

METRIC LEARNING

THE GNN4ITK PIPELINE

WHO IS INVOLVED?

- Two groups worked on the results in this presentation, and both first tested methods on TrackML, based on the GNN-based reconstruction introduced in arxiv:1810.06111 and arxiv:2003.11603
- L2IT: Laboratoire des deux Infinis, institute based at the University of Toulouse, within the Institute of Nuclear Physics and Particle Physics
- Exa.Trkx: A DoE Office of Science-funded collaboration of LBNL, Caltech, FNAL, SLAC and a collaboration of US institutions including Cincinnati, Princeton, Urbana-Champaign, Youngstown State, and others
- Now, other groups have joined the effort, or are applying the R&D to particular applications, such as ATLAS trigger: Heidelberg University, Niels Bohr Institute, UC Irvine

GRAPH REPRESENTATION OF AN EVENT

The goal of track reconstruction:

Given set of hits in a detector from particles, assign label(s) to each hit.

Perfect classification: All hits from a particle (*and only those hits*) share the same label

- What does it mean to represent an event with a graph?
 - Treat each hit as a **node**
 - A node can have features (e.g. position, energy deposit, etc.)
 - Nodes can be connected by **edges**, that represent the possibility of belonging to the same track
- Goal: Use ML and/or graph techniques to segment or cluster the nodes to match particle tracks
- **Proof-of-concept:** TrackML community challenge dataset with simplified simulation

PIPELINE OVERVIEW

- Current pipeline of the L2IT-Exatrkx collaborative effort
- Each stage offers multiple independent choices, depending on hardware and time constraints

DATASETS

• Two datasets used to study this pipeline. For absolute clarity, when citing a result specific to one dataset, will place the badge of TrackML or ATLAS ITk on slide:

- Mean number of spacepoints: 110k
- Simplified simulation: No secondaries and optimistic
 charge information
 HighRR Lecture Wee

- Mean number of spacepoints: 310k
- Full simulation

ATLAS ITk

ATLAS ITK GEOMETRY

- <u>Generation script</u>* using Athena, $t\bar{t}$ at $\mu = \langle 200 \rangle$: with statistics dominated by soft interactions
- ITk consists of barrel and endcap, each with pixels and strips:

Spacepoints (3D representations of track hits) are

defined depending on strip on the lecture Week - Heidelberg University - Septerto and South Sout

ATLAS ITk

ATLAS ITK GEOMETRY

- Fiducial particles are charged, with η ∈
 [-4, 4], and production radius < 260mm
- Each event has O(15k) fiducial particles, O(300k) spacepoints
- We define background spacepoints as including:
 - Those left by non-fiducial or intermediate particles (i.e. any particle barcodes not retained during simulation), or
 - Those mis-constructed in the strip regions as ghost spacepoints
- An event has O(170k) background spacepoints

Ghost spacepoint: Incorrectly constructed from clusters left by different particles

Graph Construction

EDGETRUTH DEFINITIONS

Target particle:

- $p_T > 1$ GeV, and
- At least 3 SP on different modules, and
- Primary

Therefore, define efficiency and purity (note that we mask out sequential non-target) for a graph with edges e

$$\text{Efficiency} = \frac{|e \cap t_{Seq}|}{|t_{Seq}|}, \text{ Purity} = \frac{|e \cap t_{Seq} - \tilde{t}_{Seq}|}{|e - \tilde{t}_{Seq}|}$$

MODULE MAP - DOUBLETS

- The idea: Build a map of detector modules, where a connection *from* module A *to* module B means that at least one true track has passed sequentially through A to B
- Step 1: Build all combinations of sequential doublets for an event, register an A-to-B entry if a doublet passes through. O(90k) events used to build these combinations
- Step 2: For each A-to-B entry, also register/update the max and min values of a set of geometric observables. Apply these cuts when building the graph in inference

Graph Construction

Map

Metric Learning

Hits

Graph

MODULE MAP-TRIPLETS

 The idea: Build a map of detector modules, where a connection from module A Graph Construction to module B to module C means that at least one true track has passed sequentially through A to B to C

Hits

- Step 1: Build all combinations of sequential triplets for an event, register an A-to-B-to-C entry if a triplet passes through
- Step 2: For each A-to-B-to-C entry, also register/update the max and min values of a set of geometric observables. Apply these cuts when building the graph in inference Step 1
 Step 2

Graph

Metric Learning

Module Map

METRIC LEARNING

- Encode / embed input into N-dimensional space
- Reward (low loss) matching pairs within unit distance
- Punish (high loss) mismatching pairs within unit distance
- Repeat for many pairs

"Contrastive" hinge loss

64

METRIC LEARNING

- The idea: Teach an MLP to embed spacepoint features (spatial and cell information)
- In this embedded space, all doublets in a given particle track are trained to be near each other (Euclidean distance x), using a contrastive loss function L:
- track bits $L = \begin{cases} x, \text{ if true pair} \\ max(0, r x), \text{ if false pair} \end{cases}$

Metric Learning

Module Map

Graph Construction

Graph

Hits

• A hit in a track is trained to be **closest** to its preceeding and succeeding track hits

METRIC LEARNING - FILTERING

- Output graph of metric learning is impure: 0.2%
- Can pass edges through a simple MLP filter to filter out the easy fakes
- Improves purity to 2%, so graph can be trained entirely on a single GPU

Metric Learning

Graph Construction

Metric Learning

Module Map

Hits

Graph

GRAPH CONSTRUCTION RESULTS

• Drop in efficiency at low η due to poor barrel strip resolution (will discuss further!)

• Drop in efficiency at high p_T due to low training statistics

Edge Labeling

EDGE CLASSIFICATION WITH GRAPH NEURAL NETWORK

- Node features (spatial position) are encoded
- 2. Encoded features are concatenated and encoded to create edge features
- 3. Edge features are aggregated around nodes to create next round of encoded node features (i.e. message passing)
- 4. Each iteration of message passing improves discrimination power

LOSS FUNCTION DESIGN

 Network

 Vietwork

 Vietwork

Graph

- The target of the GNN and track reconstruction is edges from primary particles with pT>1 GeV that have left at least 3 hits on different modules in the detector (see slide 12)
- Have very small set of target edges (1-2% of edges are true target t_{Seq})
- Solution: $t_{Seq} \ y = 1$ weighted up by $\times 10$, sequential background \tilde{t}_{Seq} masked, all others y = 0
 - Weighting gives much better performance at high-efficiency
 - Masking gives much better performance around the 1 GeV cutoff

Edge Scores

Graph Neural

GNN EDGE CLASSIFICATION RESULTS ROC CURVE & EDGEWISE PERFORMANCE VS. p_T

TrkX merkeley LAB Hig

GNN EDGE CLASSIFICATION RESULTS EDGEWISE PERFORMANCE VS. η

Graph Segmentation

HighRR Lecture Week - Heidelberg University - September 13, 2023

GRAPH PARTITIONING 101

- Graph: given a graph with expected "components" or "communities", how can we partition into those likely components
- Potentially a very (i.e. NP-hard) expensive step
- Typical partitioning approaches try to cut the fewest edges, to produce the most densely connected communities
- But this is not really aligned with track finding, since tracks ideally only have one incoming, one outgoing edge per node

Ratio cut=1/(4*1)=1/4

Connected

TRACK CANDIDATES CONSTRUCTION

- **Graph Segmentation**We now have labelled edges. Want to now label each *node* depending on connectivity.
- Two distinct approaches: **component-based** segmentation, or **path-based** segmentation.

Component-based

E.g. connected components algorithm:

- Pros: Fast $O(N_{nodes})$
- Cons: Can merge tracks into one candidate

Path-based

Edge Scores

- Pros: Handles hits as a sequence, as a track should be
- Cons: Potentially slow $O(N_{edges})$, needs a directed graph

Track Candidates

Connected Components Or Connected Components

+ Walkthrough

TRACK CANDIDATES CONSTRUCTION

Graph Segmentation

+ Walkthrough

Connected Components Or Connected Components **Track Candidates**

Edge Scores

- We now have labelled edges. Want to now label each node depending on connectivity.
- Two distinct approaches: **component-based** segmentation, or **path-based** segmentation.

HighRR Lecture Week - Heidelberg University - September 13, 2023

TRACK CANDIDATES CONSTR

One can combine the good features of each approach:

Edge Scores

Connected

Components or Connected Components

+ Walkthrough

Graph Segmentation

Track Candidates

FINDING & FITTING PERFORMANCE

HighRR Lecture Week - Heidelberg University - September 13, 2023

TRACK MATCHING DEFINITIONS

- N(P_i, C_j) is the number of spacepoints shared by particle *i* and candidate *j*
- Particle *i* is called "matched" if, for some j, $\frac{N(P_i,C_j)}{N(P_i)} > f_{truth}$
- Candidate *j* is called "matched" if, for some $i, \frac{N(P_i, C_j)}{N(C_i)} > f_{reco}$
- Particle *i* and candidate *j* are called "double matched" if, for some *i* and *j*, $\frac{N(P_i,C_j)}{N(P_i)} > f_{truth} \text{ and } \frac{N(P_i,C_j)}{N(C_j)} > f_{reco}$

•
$$eff = \frac{\sum_{i} P_{i}(matching \ condition)}{\sum_{i} P_{i}}, \ pur = \frac{\sum_{j} C_{j}(matching \ condition)}{\sum_{j} C_{j}}$$

Standard matching: single-matched particles with $f_{truth} = 0.5$ **Strict matching:** double-matched particles with $f_{reco} = 1.0$

TRACK RECONSTRUCTION RESULTS

Standard matching: single-matched particles with $f_{truth} = 0.5$ **Strict matching:** double-matched particles with $f_{reco} = 1.0$ • Fake rate is $O(10^{-3})$ using standard truth matching

TRACK RECONSTRUCTION RESULTS

Observe that the GNN track candidates have fewer hits than CKF. Will return to this!

TRACK FITTING 101

- Why do we fit?
- Many downstream tasks need the momentum and "impact parameters"
- Can use the fitted parameters to "tidy up" the track finding

 A trajectory of a charged particle in a magnetic field requires five track parameters (q)

$$\mathbf{q} = (d_0, z_0, \phi, \theta, q/p)$$

· Uncertainties encoded in a covariance matrix

$$\mathbf{C} = \begin{pmatrix} \sigma^2(d_0) & cov(d_0, z_0) & cov(d_0, \phi) & cov(d_0, \theta) & cov(d_0, q/p) \\ \vdots & \sigma^2(z_0) & cov(z_0, \phi) & cov(z_0, \theta) & cov(z_0, q/p) \\ \vdots & \vdots & \sigma^2(\phi) & cov(\phi, \theta) & cov(\phi, q/p) \\ \vdots & \vdots & \vdots & \sigma^2(\theta) & cov(\theta, q/p) \\ \vdots & \vdots & \vdots & \vdots & \sigma^2(q/p) \end{pmatrix}$$

- Right handed coordinate system
- Azimuthal angle, φ, measured in transverse plane in [-π,+π)
- Polar angle, θ measured from z axis in [0,π]
- Pseudorapidity, $\eta = -\ln\left(an heta/2
 ight)$

FAST CIRCLE FIT WITH THE CONFORMAL MAPPING METHOD

M. Hansroul, CERN/DD H. Jeremie and D. Savard, Université de Montréal

TRACK FITTING 101: FITTING WITH GLOBAL χ^2

- We can propose a shape of the track a helix
- We can then simply minimise the sum of the square of the residuals of the measurements to produce the set of five track parameters
- This can be done *very* efficiently by:
- 1. Mapping to the conformal plane \rightarrow
- 2. Making the assumption that the impact parameters (the point of closest approach of the helix to the origin) is very small

TRACK FITTING 101: FITTING WITH KALMAN FILTER

- Recall that the Kalman Filter track finding produces a prediction of the helical parameters in order to find the next hit
- We can thus use the same model to fit to a track
- However, to get good performance: First run KF forwards to build the model, then run it back from outto-in: called "smoothing"

http://physik.uibk.ac.at/hephy/theses/diss_as.pdf

FITTING PERFORMANCE OF TRACK CANDIDATES

- We see that the tracks found by the GNN are within 30% of the "quality" of the tracks found by the CKF
- Quite promising, given that the CKF assumes helicity, while the GNN makes no such assumption

Relative track p_T resolution is measured as the multiplication of p_T^{true} and the RMS of the pull distribution of $(q/p_T^{reco} - q/p_T^{true}) / q/p_T^{true}$.