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Computers
47/2

● Since their invention in the 1940‘s computers take over tasks, which are:

● complex;

● (highly) repetitive.

● Man tells the computer what to do → rule-based operation.
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Machine learning (ML)
47/3

● The computer solves tasks w/o knowing the rules. The computer:

Z3 Deutsches Museum, München (@ Wikipedia)

● is rewarded when successful;

● implicitely learns the rules, by examples → ML-based operation.

● Biological learning.
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Crossover
47/4

● Since its origins in the 1960‘s ML has a vivid history, full of promisses, with many up’s and 
(even more) down’s.

● Crossover phenomenon combining and bringing together many disciplines of science.

Statistics

Computational 
science

Neurobiology

Mathematics

● ML is more than the few neural networks (NNs) which we will dwell on for this course.
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Neural networks (NNs)
46/5

● Historically, the concept of NNs originates from the neurobiological theory of (human) 
learning:

Schematic view of a nerve cell

Many occasionally small 
signals.

Sum of incoming signals 
exceeds a threshold → cell 
„fires“ an own signal along an 
axon.

https://etpwww.etp.kit.edu/~rwolf/
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Perceptron
47/6

● Corresponding mathematical model, introduced by Frank Rosenblatt (11.07.1928 – 
11.07.1971):

Logic → „fire“ if the sum of 
incoming signals exceeds a 
certain threshold.

Building block of any 
further development to 
be discussed next:

https://etpwww.etp.kit.edu/~rwolf/
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Logical operations
47/7

● Adapting the weights and thresholds the perceptron „can be used to implement any logical 
operation“:

?

?

?

NB: 
● The values on arrows represent the weights        ; 
● The values in circles represent the thresholds    ;
● The features         take the values 0 and 1. 

https://etpwww.etp.kit.edu/~rwolf/
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Logical operations
47/7.1

● Adapting the weights and thresholds the perceptron „can be used to implement any logical 
operation“:

NB: 
● The values on arrows represent the weights        ; 
● The values in circles represent the thresholds    ;
● The features         take the values 0 and 1. 

https://etpwww.etp.kit.edu/~rwolf/
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Echo in society
47/8

“Stories about the creation of machines having human qualities 
have long been a fascinating province in the realm of science fiction,” 
Rosenblatt wrote in 1958. “Yet we are about to witness the birth of 
such a machine – a machine capable of perceiving, recognizing 
and identifying its surroundings without any human training or 
control.”

(Melanie Lefkowitz, 25.09.2019 – Cornell Chonical)

https://etpwww.etp.kit.edu/~rwolf/
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47/9

Perceptron learning rule
● Historic example: Train a single Boolean perceptron to separate two classes with the help 

of labeled examples (here represented by points with different color)

● Task: Determine the weights        such that 
the red points (with values 1) and the blue 
points (with values 0) are separated.

https://etpwww.etp.kit.edu/~rwolf/
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47/10

Perceptron learning rule  
● Solution: Hyperplane in Hessian canonical form                       i.e.                   in the plane 

(i.e. on the boundary).

Algorithm: 

● Initialize weights randomly.

● Only update for examples w/ wrong predictions.

● For those, apply the following update rule:

https://etpwww.etp.kit.edu/~rwolf/
https://en.wikipedia.org/wiki/Jordan_normal_form
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47/11

Perceptron learning rule  

Step 0

Algorithm: 

● Initialize weights randomly.

● Only update for examples w/ wrong predictions.

● For those, apply the following update rule:

● Solution: Hyperplane in Hessian canonical form                       i.e.                   in the plane 
(i.e. on the boundary).

Step 0

https://etpwww.etp.kit.edu/~rwolf/
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47/12

Perceptron learning rule  

Step 1

Algorithm: 

● Initialize weights randomly.

● Only update for examples w/ wrong predictions.

● For those, apply the following update rule:

● Solution: Hyperplane in Hessian canonical form                       i.e.                   in the plane 
(i.e. on the boundary).

Step 1

https://etpwww.etp.kit.edu/~rwolf/
https://en.wikipedia.org/wiki/Jordan_normal_form
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47/12.1

Perceptron learning rule  

Step 1

Algorithm: 

● Initialize weights randomly.

● Only update for examples w/ wrong predictions.

● For those, apply the following update rule:

● Solution: Hyperplane in Hessian canonical form                       i.e.                   in the plane 
(i.e. on the boundary).

Step 1

https://etpwww.etp.kit.edu/~rwolf/
https://en.wikipedia.org/wiki/Jordan_normal_form
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47/13

Perceptron learning rule  

● Rosenblatt could show that a single logic perceptron for linearly separable tasks always 
converges to the correct solution after a finite number of steps.

Done

Algorithm: 

● Initialize weights randomly.

● Only update for examples w/ wrong predictions.

● For those, apply the following update rule:

● Solution: Hyperplane in Hessian canonical form                       i.e.                   in the plane 
(i.e. on the boundary).

https://etpwww.etp.kit.edu/~rwolf/
https://en.wikipedia.org/wiki/Jordan_normal_form
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Logical flaws
47/14

● Adapting the weights and thresholds the perceptron „can be used to implement any logical 
operation“?

Discussed in Marvin Minsky, Seymour Papert „Perceptrons: An Introduction to 
Computational Geometry“, 1968 (check review here).

● i.e. a single perceptron is not a universal 
computing unit.

NB: 
● The values on arrows represent the weights        ; 
● The values in circles represent the thresholds    ;
● The features         take the values 0 and 1. 
● Any but one: the „XOR“ was missing

https://etpwww.etp.kit.edu/~rwolf/
https://pdf.sciencedirectassets.com/273276/1-s2.0-S0019995800X01222/1-s2.0-S0019995870904092/main.pdf?X-Amz-Security-Token=IQoJb3JpZ2luX2VjEMX%2F%2F%2F%2F%2F%2F%2F%2F%2F%2FwEaCXVzLWVhc3QtMSJGMEQCICQvk8EiaiejJSYODGH6eCNuRqUKqYWQidtdsuFIxNLuAiAxqBYcsSH283y8h1vX4B7SPesDKTYLSvTaqQXK%2FmoI8Sq0AwhdEAMaDDA1OTAwMzU0Njg2NSIMcDnGTg7ruZLzM%2BOzKpEDpYhwPqiKvlVe87JpfuOpJRBJUeXDKmbeAlNbXO1l1oHirT2m4neksuhWyuWsF3t6sDjPNXyq5bccd5a%2FH8F7cSXzwUkcBokzV5qRXxOsAwJBR%2BvyVMwe9uFGSQYJC%2BTc%2F%2Fgp%2BAyMTM3LW4mZceZc2EiWhZLKAm9r8vYPx38xMr3b04QZNdbpG%2BWfpEQG24FrOdgGlnk9fyBpqOItrUq%2BatzyzlQGFOpR47ZMZ1Kq17Qk0aSx5i3a8b%2FP1EjCysxUtg5rAH4ID0EC5A76r7Yrh4e6ENAeqRb5Jlh%2Bz7SKtikgPxk%2FKCwIVkJqV2JPLHoo9OhItcwIz7L8JbPTq%2BfN98%2FReLICI56sQG2Aduc322RPOzEzTgj2uqYCbmByXTxyWxa91NF42OOTIszpL42QIjYqIdg1VAm7u66Y27D%2FLMVQHtcUA5tH727APozDBfUk5%2FuzPMaGCYu2gqMOVO8Q9FNG6EeEbRcmX3nAby924bIF1uaqno7asCZMFNfc51s2qGffuL4BOZMUBZZVPFhTLQQw76H39wU67AF8RUkBRI%2BAeZvmYM1AD2K%2Fj5DlxQ%2BRyhUPkPjs40t2yCWN5eUP74RIyKe%2F%2FquxAGOyjFYw7pWK2Jj6coV6KxxJAEIEES4MB4ICZWZFKCTFL7A6sHbNkv2gsApFaDk%2FkjkCQCII3r8ginTAtvc8p8o44Vh6YdGvows07RzuSoTLEZjdobgGPl73N%2F%2Fb8vivhBa7mXwsz9f7HG9%2FoEYpIv5MAWzY34lZJxMMQlh36l1gD3NWYDIWWohQLM9bSEjIGXIp%2BIfBGPqXEA6LAxOJxCjaKJIRta9k6GQoMoAV2i%2BgaRq70WUYQUg227GdFQ%3D%3D&X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Date=20200702T132444Z&X-Amz-SignedHeaders=host&X-Amz-Expires=300&X-Amz-Credential=ASIAQ3PHCVTY7JZRGIPV%2F20200702%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Signature=628934cb49f2a3de6be6ea9e17f43a3741ae7a151e0614c9f3ea49dcf9837658&hash=c5056b27dcadb8144351768c9bc3e37eb15a64f7e960a883f0d6b7980c405908&host=68042c943591013ac2b2430a89b270f6af2c76d8dfd086a07176afe7c76c2c61&pii=S0019995870904092&tid=spdf-84d36919-3f60-4d52-b3fa-48d3840e9014&sid=2b7ad8d04e45d142510b6523b003807d7a8fgxrqb&type=client
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Solution to the „XOR problem“
47/15

● Solution to the „XOR problem“ → combine several perceptrons:

https://etpwww.etp.kit.edu/~rwolf/
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Solution to the „XOR problem“
47/15.1

● Solution to the „XOR problem“ → combine several perceptrons:

„hidden layer“. „input layer“. „output layer“. 

https://etpwww.etp.kit.edu/~rwolf/
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From Boolean to real-valued inputs
47/16

● The transition from Boolean to real-valued numbers is indicated below:

Different variations to express the 
activation logic:

https://etpwww.etp.kit.edu/~rwolf/
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From Boolean to real-valued inputs and outputs
47/16.1

● The transition from Boolean to real-valued numbers is indicated below:

Different variations to express the 
activation logic:

      could be any 
real-valued function

https://etpwww.etp.kit.edu/~rwolf/
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Common activation functions
47/17

Sigmoid: tanh:

ReLU (rectified linear unit):

Softplus:

● A few popular examples of activations functions:

https://etpwww.etp.kit.edu/~rwolf/
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Perceptron as classifier
47/18

● Assume two real-valued inputs      und     . Unit „fires“ above a certain threshold   . To what 
boundary does this correspond to, in the space that is spanned by     and    ? 

https://etpwww.etp.kit.edu/~rwolf/
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Perceptron as classifier
47/18.1

Here the perceptron fullfills the role 
of linear classifier.

● Assume two real-valued inputs      und     . Unit „fires“ above a certain threshold   . To what 
boundary does this correspond to, in the space that is spanned by     and    ? 

https://etpwww.etp.kit.edu/~rwolf/
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Boolean logic – revisited – 
47/19

● What Boolean functions are displayed below, according to this logic?

https://etpwww.etp.kit.edu/~rwolf/
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Boolean logic – revisited – 
47/19.1

● What Boolean functions are displayed below, according to this logic?

https://etpwww.etp.kit.edu/~rwolf/
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Boolean logic – revisited – 
47/20

● What Boolean functions are displayed below, according to this logic?

● How would you display 
the NOT operation (     )?

https://etpwww.etp.kit.edu/~rwolf/
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Boolean logic – revisited – 
47/20.1

● What Boolean functions are displayed below, according to this logic?

● How would you display 
the NOT operation (     )?

https://etpwww.etp.kit.edu/~rwolf/
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Boolean logic – revisited – 
47/21

● Why can you not express an „XOR“ based on the logic of a single perceptron?

● An „XOR“ requires a representation with two 
lines, as shown above. 

● With a single Boolean perceptron this is not 
possible, since it represents only single lines 
in the space spanned by     and     .

https://etpwww.etp.kit.edu/~rwolf/
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Complex boundaries
47/22

● Representing the figure below with the help of Boolean perceptrons:

https://etpwww.etp.kit.edu/~rwolf/
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Complex boundaries
47/22.1

● Representing the figure below with the help of Boolean perceptrons:

https://etpwww.etp.kit.edu/~rwolf/
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Complex boundaries
● Representing the figure below with the help of Boolean perceptrons:

47/22.1

https://etpwww.etp.kit.edu/~rwolf/
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Complex boundaries
● Representing the figure below with the help of Boolean perceptrons:

47/22.1

https://etpwww.etp.kit.edu/~rwolf/


Priv.-Doz. Dr. Roger Wolf 
https://etpwww.etp.kit.edu/~rwolf/

Complex boundaries
● Representing the figure below with the help of Boolean perceptrons:

47/22.1

https://etpwww.etp.kit.edu/~rwolf/
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Complex boundaries
● Representing the figure below with the help of Boolean perceptrons:

47/22.1

https://etpwww.etp.kit.edu/~rwolf/
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● Normalize the output of each unit      to 1 and add.

● Choose threshold of ≥5.

AND

Complex boundaries
● Representing the figure below with the help of Boolean perceptrons:

47/22.1

https://etpwww.etp.kit.edu/~rwolf/
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More complex boundaries
47/23

● The figure below would require a third layer of perceptrons:

AND AND

OR

https://etpwww.etp.kit.edu/~rwolf/
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More complex boundaries
47/23.1

● The figure below would require a third layer of perceptrons:

AND AND

OR

● Since any abitrary boundary can be approximated by polygones it is possible to describe 
any abitrary figure with a sufficiently complex network of perceptrons.

https://etpwww.etp.kit.edu/~rwolf/
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More complex boundaries
● The figure below would require a third layer of perceptrons:

AND AND

OR

● Since any abitrary boundary can be approximated by polygones it is possible to describe 
any abitrary figure with a sufficiently complex network of perceptrons.

● NNs are universal contour approximaters!

47/23.2

https://etpwww.etp.kit.edu/~rwolf/
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Abitrary functions
47/24

● The following unit represents a step function:

● With a group of computing units as above it is possible to approximate any arbitrary function 
to abitrary precision.

https://etpwww.etp.kit.edu/~rwolf/
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Abitrary functions
47/24.1

● The following unit represents a step function:

● NNs are universal function approximators! (→ approximation theorem).

● With a group of computing units as above it is possible to approximate any arbitrary function 
to abitrary precision.

https://etpwww.etp.kit.edu/~rwolf/
https://en.wikipedia.org/wiki/Universal_approximation_theorem
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NN notation
47/25

Hidden layers 
(model)

Input layer 
(feature space)

Output layer

https://etpwww.etp.kit.edu/~rwolf/
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NN notation
47/25.1

Hidden layers 
(model)

Input layer 
(feature space)

Output layer

Building block:

https://etpwww.etp.kit.edu/~rwolf/
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Mathematical model (   )
47/26

Building block:

Input

Output

Hidden

https://etpwww.etp.kit.edu/~rwolf/
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47/27

Truth vs. prediction
● Assume the NN should represent the blue function 

shown on the right (→ truth).

https://etpwww.etp.kit.edu/~rwolf/
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47/27.1

Truth vs. prediction
● Assume the NN should represent the blue function 

shown on the right (→ truth).

● Random choice of the weights          might result 
in the red curve, shown on the right 
(→ prediction). 

https://etpwww.etp.kit.edu/~rwolf/
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Truth vs. prediction

● Adapt the weights such that the red curve 
approaches the blue one as closely as possible.

● Assume the NN should represent the blue function 
shown on the right (→ truth).

● Random choice of the weights          might result 
in the red curve, shown on the right 
(→ prediction). 

47/23.2

https://etpwww.etp.kit.edu/~rwolf/
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Truth vs. prediction

● Random choice of the weights          might result 
in the red curve, shown on the right 
(→ prediction). 

● Adapt the weights such that the red curve 
approaches the blue one as closely as possible.

● Quantify difference between the curves by loss or 
cost function.

● Assume the NN should represent the blue function 
shown on the right (→ truth).

47/23.2

https://etpwww.etp.kit.edu/~rwolf/
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Sample and training 
● In general we don‘t know the blue function (i.e. the truth) We have to infer it from a 

sample hoping that the sample is representative of the ground truth (→ learning by 
example).

47/24

https://etpwww.etp.kit.edu/~rwolf/
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Sample and training 

● Learning by example → training.

● In general we don‘t know the blue function (i.e. the truth) We have to infer it from a 
sample hoping that the sample is representative of the ground truth (→ learning by 
example).

47/24.1

https://etpwww.etp.kit.edu/~rwolf/
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Sample and training 

● Learning by example → training.

● To be representative the sample should catch all relevant characteristics of the truth. 
Individual properties of the sample (→ fluctuations) should not influence the training      
→ generalization. 

● In general we don‘t know the blue function (i.e. the truth) We have to infer it from a 
sample hoping that the sample is representative of the ground truth (→ learning by 
example).

47/24.2

https://etpwww.etp.kit.edu/~rwolf/
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● Using differentiable activation functions          turns              into a function that is 
differentiable in any variable. 

Training as optimization task
47/25
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Training as optimization task

● The adaptation of the     for the NN to match the target function          turns into the known 
problem of parameter optimization.

● Using differentiable activation functions          turns              into a function that is 
differentiable in any variable. 

47/25.1

https://etpwww.etp.kit.edu/~rwolf/
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Training as optimization task

● The dimension of this task may still be extraordinarily high, requiring robust numerical 
optimization algorithms. 

● Using differentiable activation functions          turns              into a function that is 
differentiable in any variable. 

● The adaptation of the     for the NN to match the target function          turns into the known 
problem of parameter optimization.

47/25.1

https://etpwww.etp.kit.edu/~rwolf/
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NN tasks
● NNs are designed to solve specific tasks:

● Classification;

● Multiclass-classification;

● Regression;

● Approximation;

● Density estimation;

● Interpolation;

● … 

47/26
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NN tasks
● Each concrete realization of a task requires:

47/27
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NN tasks

The formulation in a 
mathematical form 

Task

● Each concrete realization of a task requires:

47/27.1

https://etpwww.etp.kit.edu/~rwolf/
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NN tasks

A set of labeled 
samples

Task

The formulation in a 
mathematical form NB: Not a necessary 

prerequisite

● Each concrete realization of a task requires:

47/27.2

https://etpwww.etp.kit.edu/~rwolf/
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NN tasks

The choice of an NN 
model, suited to solve 
the task

Task

The formulation in a 
mathematical form 

A set of labeled 
samples

NB: Not a necessary 
prerequisite

● Each concrete realization of a task requires:

47/27.3

https://etpwww.etp.kit.edu/~rwolf/
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NN tasks

The definition of a 
suited loss function

Task

The formulation in a 
mathematical form 

A set of labeled 
samples

The choice of an NN 
model, suited to solve 
the task

NB: Not a necessary 
prerequisite

● Each concrete realization of a task requires:

47/27.4

https://etpwww.etp.kit.edu/~rwolf/
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● For supervised classification tasks labeling of the training data usually happens via one-hot 
encoding. We will call the labels          :

Labels for classification

● Binary classification:

● Multiclass-classification (with          classes/categories):

As a vector with         
          components.

47/28
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Loss function 
● The match of                  with       is quantified by the loss function                               , which 

should be chosen differentiable in each variable. 
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Loss function 

● Note that                                is evaluated on a single 
example   .

● The match of                  with       is quantified by the loss function                               , which 
should be chosen differentiable in each variable. 

47/29.1
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Loss function 

●           can be chosen arbitrarily. Very common (likelihood-
based) choices are:

● Cross entropy (CE, binary or categorical);

● L2-norm squared (         ).

● The match of                  with       is quantified by the loss function                               , which 
should be chosen differentiable in each variable. 

● Note that                                is evaluated on a single 
example   .

47/29.2
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● The (categorical) CE for a (multiclass-)classification task with          categories for a 
single example    is defined as: 

Cross entropy (CE)
47/30
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● The L2-norm is a natural choice for regression tasks. 

L2-norm 
47/31

https://etpwww.etp.kit.edu/~rwolf/


Priv.-Doz. Dr. Roger Wolf 
https://etpwww.etp.kit.edu/~rwolf/

Risk minimization 
● With           as the conditional PDF to obtain label    for given prediction               and fixed 

values of    , in decision theory one calls the expectation of           over     the risk functional: 

● Examples:

● CE:

● L2 norm:

● Statistical classification tasks are addressed by minimizing the risk (i.e. the expected 
loss).
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Risk minimization 
● Question: What is this discussion about if I do not know          ?

47/32
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Risk minimization 

● Answer: There is a huge class of tasks, where           might not be known analytically (→ 
untractable), BUT it can be sampled from an i.i.d. source of           (→ training sample, 
Monte Carlo methods).

● Question: What is this discussion about if I do not know          ?

47/32.1
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Empirical risk minimization 

● Examples:

● CE:

● L2-norm:

● NN training → minimization of an estimate of           , which is obtained from a batch of     
individual examples from the training sample.

(Empirical risk)
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Bayesian statistics
● You might have realized           as the Bayesian posterior:

Posterior

Likelihood Prior

Evidence

47/34
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Bayesian statistics
● You might have realized           as the Bayesian posterior:

Posterior

Likelihood Prior

Evidence
Measurement

MC Simulation ● Flat (Bayesian prior);
● Output of the generator step.

47/34.1
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Loss and likelihood

● CE:

● L2-norm:

If the                 are normal distributed   
        is the NLL to correctly identify   .

If the                  are multinomial 
distributed the CE is the NLL to 
correctly identify    . 
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Cross entropy and multiclass-classification
● Probability for a signal in category   , as obtained from ground truth:

● NN prediction for      , softmax as probability estimate:

● Probability of a Bernoulli process for example    to be identified as belonging to category    : 
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Binomial distribution
● Likelihood for     Bernoulli processes:

This is the term of CE, and the log likelihood of a multinomial distribution, 
which quantifies the probability of the NN to classify     examples correctly.

(*)
Dropping constant terms in .         that relate to the evidence.

(*)
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● All nodes of consecutive layers are connected with each other.

Fully connected feed-forward NN

Hidden layersInput layer Output layer

● Inputs are propagated only in forward direction.

● An NN is called deep if it has ≥2 hidden layers.
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● Inspired by 2D image processing.

Convolutional NN (CNN)

● Reduce complexity by convolutional layers and filters (→ subnets scanning full images).

Cat filter

Nose filter

Eye filter

Example: 3-fold 3x3 convolution 
by summing

● Supports 2D translation invariance of specific features (e.g. cats, eyes, noses) in images.
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● Inspired by language processing (→ sequential problem).

Recurrent NN (RNN)

● Allow backward propagation and loops in the NN architecture (→ identify recurring features 
in sequences). 

● Supports translation invariance of specific features (e.g. words) in sequences.

From „Understanding LSTM Networks“ (visited 30.05.22)
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● Inspired by unordered graph-like structures with arbitrary number of nodes (→ particle 
clusters, traffic networks, molecules, … ). Allows node, edge, and graph classification.

Graph NN (graphNN)

● Supports permutation invariance and versatility of the data.

Node features in 
embedding space
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ML → particle physics                    

Distinction of b/c- from uds/gluon-jets: Distinction of hadronic tau decays (    )   
from quark/gluon-jets(, e or μ). 

Well established since many years.

● Classic application: detector related object ID esp. for difficult & ambiguous signatures:
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    -Identification (DeepTau)

GNN based    -discrimination 
against jets, electrons and 
muons:

● 105‘703 inputs (1.7% 
inner, 7.1% outer cell 
occupancy).

● 1‘155‘353 TPs

● 1 epoch required several 
days of training on GPU. 

JINST 17 (2022) P07023
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https://doi.org/10.1088/1748-0221/17/07/P07023
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Multiclas-classification

… ● Trained to differentiate btw. signal & background 
processes.

● Output → tuple of scores (~Bayesian probabilities) 
for the event to belong to a given process.

● Highest score defines the class the event is 
associated to.
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0.15
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qcd
0.02

Depending on signal 
extraction model btw. 
7 … 20(!) event classes.

Input

Hidden layers
Output
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Signal extraction

qcd qqH 

● Signal derived from maximum likelihood fit to NN output of each event class.

Within each class, transition btw.
ambiguous & clear signature

Find most-signal 
like events here

● Pure background classes help to constrain backgrounds in signal classes.

NB: NN output is a probability estimate of the event to 
belong of the given category (→ built-in S/(S+B) plot).
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Why is this a cool thing to do?
● Multiclass-classification:

● NN trained to ideally separate event classes from each other (→ guaranteed by 
minimization of loss function).

● Using the NN output function as discriminating variable for signal extraction:

● Turns measurement effectively into a counting experiment with a bunch of high purity 
control regions (CRs) and a soft transition between CRs and signal region(s). 

● When working with a blind analysis basically 90% of all bins of the discriminators can be 
controlled before unblinding. 

https://etpwww.etp.kit.edu/~rwolf/
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Search for                                                   

● Relevant      final states:                        .

Constraints on NMSSM 
Higgs sector

● NN multi-classification 
for signal extraction.

I
n
p
u
t

O
u
t
p
u
t

● Process:
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Backup 
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Open for discussion
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The sigmoid function
● The sigmoid function (a.k.a. logistic function) is a common activation function for 

perceptrons:

● Maps     to         . 

● Resembles a continuous threshold behavior. 

● Is used to model saturation processes in 
statistics. 

● Provides an interpretation as conditional 
PDF.
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Weights, thresholds, biases
● The MLP is a well-defined multi-dimensional function of the input features        , weights        

         , and thresholds        :

● Often you can see the thresholds         called biases and abbreviated by       .

https://etpwww.etp.kit.edu/~rwolf/


Priv.-Doz. Dr. Roger Wolf 
https://etpwww.etp.kit.edu/~rwolf/

Weights, thresholds, biases 

● We will use this fully equivalent notation for clarity of fomulars, in the following. 

● The MLP is a well-defined multi-dimensional function of the input features        , weights        
         , and thresholds        :

https://etpwww.etp.kit.edu/~rwolf/
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Depth

Example 1:

Depth? Depth?

Example 2:

● A feed-forward NN can be understood as a directed graph of depth   .

● A directed graph has sources and drains. The depth of a graph is the longest path between 
a source and a drain.

https://etpwww.etp.kit.edu/~rwolf/
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Depth

Example 1:

Depth? – 2 Depth? – 3

Example 2:

● An NN with a depth of            (i.e. an ANN with more than 2 hidden layers) we call deep. 

● A feed-forward NN can be understood as a directed graph of depth   .

● A directed graph has sources and drains. The depth of a graph is the longest path between 
a source and a drain.

https://etpwww.etp.kit.edu/~rwolf/
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