HighRR Lecture Week

11–15 September 2023 Ruprecht-Karls University, Heidelberg

Normalizing Flows

Roger Wolf (roger.wolf@kit.edu)

Backward ("normalizing") direction

The main building block of NNs ...

^{54/3} Fully connected feed-forward NN

- All nodes of consecutive layers are *connected* with each other.
- Inputs are propagated only in *forward* direction.

• An NN is called **deep** if it has ≥2 hidden layers.

Convolutional NN (CNN)

- Inspired by 2D image processing.
- Reduce complexity by convolutional layers and *filters* (\rightarrow subnets scanning full images).

Example: 3-fold 3x3 convolution by summing

• Supports 2D translation invariance of specific features (e.g. cats, eyes, noses) in images.

Recurrent NN (RNN)

- Inspired by **language processing** (\rightarrow sequential problem).
- Allow backward propagation and loops in the NN architecture (→ identify recurring features in sequences).

• Supports *translation invariance* of specific features (e.g. words) in sequences.

Graph NN (graphNN)

• Inspired by **unordered graph-like structures** with arbitrary number of nodes (→ particle clusters, traffic networks, molecules, ...). Allows node, edge, and graph classification.

Message passing/neighor aggregation:

$$\mathbf{h}_{i}^{t+1} = \sigma \left(\frac{1}{|N_{i}|} \mathbf{W}_{t} \mathbf{h}_{i}^{t} + \sum_{j \in N_{i}} \mathbf{W}_{t} \mathbf{h}_{j}^{t} \right), \quad N_{i} : \text{Neighborhood of } i.$$

• Supports *permutation invariance* and versatility of the data.

^{54/7} **Probabilistic generative NNs (PGNs)**

- Applications
- GAN, VAE, normalizing flow
- Normalizing flow in a nutshell

54/8 Cool applications ...

Create new examples based on (implicit) rules, learned from (unlabeled) training data (\rightarrow • prime example of unsupervised learning).

More useful applications ...

Examples-5: Error correction.

Example-3: (Lossless ^[1]) compression of data

Example-4: (Fast) simulation $(\rightarrow \text{ sampling of likelihoods}).$

Examples-6: Approximation of untractable likelihoods ^[2].

^[1] Properties which are exclusive for normalizing flows.

^[2] Either not analytically calculable or calculation generally unfeasible.

Example-7: Regularized unfolding ^[1].

• Generator NN competing with (adversarial) discriminator NN (D). Successful training, if D cannot distinguish between "Fake" and "True" outputs.

• MINIMAX problem \rightarrow convergence not quaranteed.

Variational Auto Encoder (VAE)

- Map samples of the input space (X) into a (high-dimensional) latent space (Z, Encoder) and back (Decoder).
- After training, the Decoder can be used to create new samples from \mathcal{Z} .

Normalizing flow

• Transform a (presumably simple) source distribution $p_{\mathcal{Z}}(\mathbf{z})^{[1]}$ into any arbitrary target distribution $p_{\mathcal{Y}}(\mathbf{y})$ by (repeated,) cleverly chosen *bijective variable transformation(s)* $\{g_i\}$.

 $\mathcal{Z}
ightarrow \mathcal{Y}$ [2]

[2] Originally \mathcal{Z} and \mathcal{Y} need to have same dimensionality (check also 1908.01686).

[1] This discussion is always with probability densities in mind.

For reasons that will become clear soon people usually choose a standard Normal $\mathcal{N}(\mathbf{z},0,1)$ ^[1] as source distribution.

 $\mathcal{N}(\mathbf{z},0,1) = \frac{1}{\sqrt{2\pi}^D} \exp (\mathbf{z},0,1)$

Math prerequisites

 $f(x,\theta)dx = M(T(\xi))$ $T(x) \cdot \left(\frac{\partial}{\partial \theta} \ln L(x,\theta)\right) \cdot f(x,\theta) dx = \int_{\mathbf{R}_{\bullet}} T(x) \cdot \left(\frac{\partial}{\partial \theta} \int_{\mathbf{R}_{\bullet}} T(x)\right) dx = \int_{\mathbf{R}_{\bullet}} \frac{\partial}{\partial \theta} \int_{\mathbf{R}_{\bullet}} T(x) f(x,\theta) dx = \int_{\mathbf{R}_{\bullet}} \frac{\partial}{\partial \theta} \int_{\mathbf{R}_{\bullet}} T(x) dx = \int_{\mathbf{R}_{\bullet}} \frac{\partial}{\partial \theta}$

 Change of variables and conservation of probability

- Composition of bijections
- Normalizing flow model & training strategy
- Overview of concrete implementations

Change of variables

*p*_V(*y*) can be obtained from *p*_Z(*z*) via conservation of probability:

$$P(A) = \int_{A} p_{\mathcal{Y}}(y) \, \mathrm{d}y = \int_{A} p_{\mathcal{Z}}(z) \, \mathrm{d}z$$

 $p_{\mathcal{Y}}(y) \, \mathrm{d}y = p_{\mathcal{Z}}(z) \, \mathrm{d}z$

$$p_{\mathcal{Y}}(y) = p_{\mathcal{Z}}(z) \left| \frac{\mathrm{d}z}{\mathrm{d}y} \right| = p_{\mathcal{Z}}(z) \left| \frac{\mathrm{d}f(y)}{\mathrm{d}y} \right| = p_{\mathcal{Z}}(z) \left| \frac{\mathrm{d}y}{\mathrm{d}z} \right|^{-1} = p_{\mathcal{Z}}(z) \left| \frac{\mathrm{d}g(z)}{\mathrm{d}z} \right|^{-1}$$

Change of variables

*p*_V(*y*) can be obtained from *p*_Z(*z*) via conservation of probability:

$$P(A) = \int_{A} p_{\mathcal{Y}}(y) \, \mathrm{d}y = \int_{A} p_{\mathcal{Z}}(z) \, \mathrm{d}z$$

 $p_{\mathcal{Y}}(y) \, \mathrm{d}y = p_{\mathcal{Z}}(z) \, \mathrm{d}z$

(Jacobian determinant)

Example-1

Bijection (forward flow):

$$g: \mathbb{R}^2 \to \mathbb{R}^2; \quad \mathbf{z} \to g(\mathbf{z}) = 2\mathbf{z}; \quad \text{with: } \mathbf{z} \equiv \begin{pmatrix} z_1 \\ z_2 \end{pmatrix}.$$

Inverse (backward flow):

$$f: \mathbb{R}^2 \to \mathbb{R}^2; \quad \mathbf{y} \to f(\mathbf{y}) = \frac{\mathbf{y}}{2}; \quad \text{with: } \mathbf{y} \equiv \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}.$$

Transfomation of
$$p(\cdot)$$
:

$$p_{\mathcal{Z}}(\mathbf{z}) = \begin{cases} 1 & 0 \le x_{1,2} \le a \\ 0 & \text{else} \end{cases}; \quad \det(J_g) = \begin{vmatrix} 2 & 0 \\ 0 & 2 \end{vmatrix} = 4; \quad p_{\mathcal{Y}}(\mathbf{y}) = p_{\mathcal{Z}}(f(\mathbf{y})) \underbrace{|J_g|^{-1}}_{\equiv \frac{1}{4}} \\ \equiv \frac{1}{4} \end{cases}$$

$$p_{\mathcal{Y}}(\mathbf{y}) = \begin{cases} \frac{1}{4} & 0 \le y_{1,2} \le 2a\\ 0 & \text{else} \end{cases}$$

Here $p_{\mathcal{Z}}(\mathbf{z})$ is "streched" over a 4 times larger volume in variable space.

Example-2

Bijection (forward flow):

$$g: \mathbb{R}^2 \to \mathbb{R}^2; \quad \mathbf{z} \to g(\mathbf{z}) = \begin{pmatrix} z_1 \sin z_2 \\ z_1 \cos z_2 \end{pmatrix}; \text{ with: } \mathbf{z} \equiv \begin{pmatrix} r \\ \varphi \end{pmatrix}$$

$$f: \mathbb{R}^2 \to \mathbb{R}^2; \quad \mathbf{y} \to f(\mathbf{y}) = \begin{pmatrix} \sqrt{y_1^2 + y_2^2} \\ \arctan(y_2/y_1) \end{pmatrix}; \text{ with: } \mathbf{y} \equiv \begin{pmatrix} x \\ y \end{pmatrix}.$$

Transfomation of
$$p(\cdot)$$
:

$$p_{\mathcal{Z}}(\mathbf{z}) = \begin{cases} 1 & 0 \le x_{1,2} \le a \\ 0 & \text{else} \end{cases}; \quad \det(J_g) = \begin{vmatrix} \sin z_2 & z_1 \cos z_2 \\ \cos z_2 & -z_1 \sin z_2 \end{vmatrix} = z_1;$$

$$p_{\mathcal{Y}}(\mathbf{y}) = p_{\mathcal{Z}}(f(\mathbf{y})) \underbrace{\left|J_{g}\right|^{-1}}_{\equiv \frac{1}{\sqrt{y_{1}^{2} + y_{2}^{2}}}}$$

Q: Is this variable transform volume preserving/compressing/expanding?

 $\pi/2$

1

 $p_{\mathcal{Z}}(\mathbf{z})$

1

 $p_{\mathcal{Y}}(\mathbf{y})$

Composition of bijections

• A composition of bijections

$$\begin{aligned} \mathcal{Z} \to \mathcal{Y} \\ z \to y = \underbrace{g_N \circ g_{N-1} \circ \ldots \circ g_1}_{\equiv g}(z) \\ \end{aligned}$$

is a bijection in itself, with the inverse $f = f_1 \circ \ldots \circ f_{N-1} \circ f_N(y)$ and the transformation formulas

$$p_{\mathcal{Y}}(g(z)) = p_{\mathcal{Z}}(z) \prod_{i=1}^{N} \left| \frac{\mathrm{d}g_i(z_i)}{\mathrm{d}z_i} \right|^{-1}$$
$$p_{\mathcal{Y}}(y) = p_{\mathcal{Z}}(f(y)) \prod_{i=1}^{N} \left| \frac{\mathrm{d}f_i(y_i)}{\mathrm{d}y_i} \right|$$

NB: Simple application of the *chain rule*. **NNB**: One can omit the *i* in the derivatives.

Normalizing flow model

- A simple source distribution (e.g. $p_{\mathcal{Z}}(\mathbf{z}) = \mathcal{N}(\mathbf{z}, 0, 1)$) can be transformed into any arbitrary (potentially unknown) target distribution $p_{\mathcal{Y}}(\mathbf{y})$.
- The $\{g_i\}$ to do so, are a priori *unknown*, but they can be *approximated by any sufficiently expressive basic NN* ($p_{\mathcal{Y}}(\mathbf{y}) \rightarrow \hat{p}_{\mathcal{Y}}(\mathbf{y}, \boldsymbol{\omega})$.
- The objects to be learned are the bijections $\{g_i\}$ (resp. $\{f_i\}$). Knowing one implies knowledge of the other one.

Training objective

 $\hat{p}_{\mathcal{Y}}(\mathbf{y}, \boldsymbol{\omega})$ should match $p_{\mathcal{Y}}(\mathbf{y})$ as close as possible.

• Quantified by the Kullback-Leibler divergence $KL[\cdot]$:

$$\begin{aligned} \operatorname{KL}[p_{\mathcal{Y}}(\boldsymbol{y}), \hat{p}_{\mathcal{Y}}(\boldsymbol{y}, \boldsymbol{\omega})] &= \int p_{\mathcal{Y}}(\boldsymbol{y}) \ln \left(\frac{p_{\mathcal{Y}}(\boldsymbol{y})}{\hat{p}_{\mathcal{Y}}(\boldsymbol{y}, \boldsymbol{\omega})} \right) \mathrm{d}\boldsymbol{y} = \operatorname{const.} - \underbrace{\int p_{\mathcal{Y}}(\boldsymbol{y}) \ln \left(\hat{p}_{\mathcal{Y}}(\boldsymbol{y}, \boldsymbol{\omega}) \right) \mathrm{d}\boldsymbol{y}}_{\equiv E \left[\ln \left(\hat{p}_{\mathcal{Y}}(\boldsymbol{\omega}) \right) \right]^{[1]}} \\ &= \operatorname{const.} - E \left[\ln \left(p_{\mathcal{Z}}(\mathbf{z}) \prod_{i=1}^{N} \left| \frac{\partial g_{i}(\mathbf{z}_{i}, \boldsymbol{\omega})}{\partial \mathbf{z}_{i}} \right|^{-1} \right) \right] \end{aligned}$$
$$\begin{aligned} &= \operatorname{const.} - E \left[\ln \left(p_{\mathcal{Z}}(f(\mathbf{y})) \right) \right] - E \left[\sum_{i=1}^{N} \ln \left(\left| \frac{\partial f_{i}(\mathbf{y}_{i}, \boldsymbol{\omega})}{\partial \mathbf{y}_{i}} \right| \right) \right] \end{aligned}$$

(Expected loss or risk)

Defining the log-likelihood ratio of the two distributions as loss.

Training objective

 $\hat{p}_{\mathcal{Y}}(\mathbf{y}, \boldsymbol{\omega})$ should match $p_{\mathcal{Y}}(\mathbf{y})$ as close as possible.

• Quantified by the Kullback-Leibler divergence $KL[\cdot]$:

$$\operatorname{KL}[p_{\mathcal{Y}}(\boldsymbol{y}), \hat{p}_{\mathcal{Y}}(\boldsymbol{y}, \boldsymbol{\omega})] = \int p_{\mathcal{Y}}(\boldsymbol{y}) \ln\left(\frac{p_{\mathcal{Y}}(\boldsymbol{y})}{\hat{p}_{\mathcal{Y}}(\boldsymbol{y}, \boldsymbol{\omega})}\right) d\boldsymbol{y} = \operatorname{const.} - \int p_{\mathcal{Y}}(\boldsymbol{y}) \ln\left(\hat{p}_{\mathcal{Y}}(\boldsymbol{y}, \boldsymbol{\omega})\right) d\boldsymbol{y}$$
$$\equiv E\left[\ln\left(\hat{p}_{\mathcal{Y}}(\boldsymbol{\omega})\right)\right]^{[1]}$$
$$= \operatorname{const.} - E\left[\ln\left(p_{\mathcal{Z}}(\mathbf{z})\prod_{i=1}^{N} \left|\frac{\partial g_{i}(\mathbf{z}_{i}, \boldsymbol{\omega})}{\partial \mathbf{z}_{i}}\right|^{-1}\right)\right]$$
$$= \operatorname{const.} - E\left[\ln\left(p_{\mathcal{Z}}(f(\mathbf{y}))\right)\right] - E\left[\sum_{i=1}^{N} \ln\left(\left|\frac{\partial f_{i}(\mathbf{y}_{i}, \boldsymbol{\omega})}{\partial \mathbf{y}_{i}}\right|\right)\right]$$
$$\propto E\left[\|f(\mathbf{y})\|_{2}^{2}\right] = 0$$
 (Expected loss or risk) with: $p_{\mathcal{Z}}(\mathbf{z}) = \mathcal{N}(\mathbf{z}, 0, 1)$ Defining the log-likelihood ratio of the two distributions as loss.

Training strategy

• Assume that we don't know $p_{\mathcal{Y}}(\mathbf{y})$, <u>but we can sample from it</u>, e.g., via the Monte Carlo method (ignoring the const.).

$$L = E\left[\|f(\mathbf{y})\|_{2}^{2}\right] - E\left[\sum_{i=1}^{N} \ln\left(\left|\frac{\partial f_{i}(\mathbf{y}_{i}, \boldsymbol{\omega})}{\partial \mathbf{y}_{i}}\right|\right)\right] \quad \text{(Risk functional)}$$

$$R = \frac{1}{2} \text{MSE}[\mathbf{y}] - \frac{1}{m} \sum_{k=1}^{m} \sum_{i=1}^{N} \ln \left(\left| \frac{\partial f_i(\mathbf{y}_i, \boldsymbol{\omega})}{\partial \mathbf{y}_i} \right| \right) \quad \text{(Empirical risk functional)}$$

• Train f_i in **reverse order**, in (mini-)batches of m simulated events, mapping y to the trivially known source distribution $\mathcal{N}(\mathbf{z}, 0, 1)$.

Training strategy

• Assume that we don't know $p_{\mathcal{Y}}(\mathbf{y})$, <u>but we can sample from it</u>, e.g., via the Monte Carlo method (ignoring the const.).

$$L = E\left[\|f(\mathbf{y})\|_{2}^{2}\right] - E\left[\sum_{i=1}^{N} \ln\left(\left|\frac{\partial f_{i}(\mathbf{y}_{i}, \boldsymbol{\omega})}{\partial \mathbf{y}_{i}}\right|\right)\right] \quad \text{(Risk functional)}$$

$$R = \frac{1}{2} \text{MSE}[\mathbf{y}] - \frac{1}{m} \sum_{k=1}^{m} \sum_{i=1}^{N} \ln\left(\left|\frac{\partial f_i(\mathbf{y}_i, \boldsymbol{\omega})}{\partial \mathbf{y}_i}\right|\right) \quad \text{(Empirical risk functional)}$$

- Train f_i in **reverse order**, in (mini-)batches of m simulated events, mapping y to the trivially known source distribution $\mathcal{N}(\mathbf{z}, 0, 1)$.
- The evaluation happens in forward direction sampling from $\mathcal{N}(\mathbf{z}, 0, 1)$.

Inverse problem

- We use complex Monte Carlo simulations to obtain the **likelihood** $p(\mathbf{x}|\mathbf{y})$ to observe \mathbf{x} given the model parameters \mathbf{y} .
- $p(\mathbf{x}|\mathbf{y})$ is *untractable*; we can only sample from it.
- For measurements we are interested in the **posterior** $p(\mathbf{y}|\mathbf{x})$ that can be obtained from Bayes theorem:

Inverse problem \leftrightarrow normalizing flow

- The space of \mathcal{Y} can be high-dimensional and sampling from \mathcal{Y} tedious.
- The normalizing flow can be used to map $p_{\mathcal{Y}}(\mathbf{y}|\mathbf{x})$ to $p_{\mathcal{Z}}(\mathbf{z})$ (during training). **NB**: This can still be tedious.
- In the forward pass (after training) $p_{\mathcal{Z}}(\mathbf{z})$ can be sampled with significantly reduced effort.
- Since the likelihood is never explicitly used, this procedure is referred to as *"likelihood-free inference*".

What we want to know
$$p(\mathbf{y}|\mathbf{x}) = \frac{p(\mathbf{x}|\mathbf{y}) p(\mathbf{y})}{p(\mathbf{x})} \propto p(\mathbf{x}|\mathbf{y}) p(\mathbf{y})$$
 What we get from simulation (but we can only sample from it)
$$\mathbf{y} : \text{Model parameters} \\ \mathbf{x} : \text{Observations}$$

• Subject of research of normalizing flows: construct g such that the flow is expressive and f and $det(J_{q_i})$ can be obtained at low computatonial cost.

Implementation	Characteristic	Comments
Elementswise	Non-linear elementwise transform	No mixing of variables
Linear	Affine combination of variables	Limited representional power
Planar and radial flows	Non-linear transformations	Hard to compute inverse
Coupling flows	Architectures that allow invertible	Soveral couplings
Autoregressive flows	non-linear transformations	Several couplings
Residual flows	Invertible residual flows	
Infinitesimal flows	Continuous flows based ODEs or SDEs	
		Taken from arxiv:1908.09257

• We will focus on planar and coupling flows (viz. the RealNVP and cINN).

The planar flow

- Planar flow definition
- Jacobian determinant
- Backward flow

Forward flow $g(\mathbf{z})$

• One of the simplest transformations one could think of is of the form:

$$g(\mathbf{z}) = \mathbf{z} + \mathbf{u} h(\mathbf{w}^{\mathsf{T}} \mathbf{z} + b)$$

with: $\mathbf{u}, \mathbf{w} \in \mathbb{R}^D, b \in \mathbb{R}$

 $h(\cdot)$: non-linearity, e.g. $tanh(\cdot)$.

Taken from stackexchange (visited 04.06.22)

- $g(\mathbf{z})$ shifts every point $\mathbf{z} \in \mathbb{R}^D$ parallel to \mathbf{u} .
- The argument w^Tz − b = 0 of h(·) defines a hyperplane in ℝ^D perpendicular to w. The function h(·) scales the shift along u depending on the distance of z from this hyperplane (→ planar flow).
- **NB**: If z is stretched depending on the distance from a fixed point this defines a **radial flow**.

Jacobian determinant $\det(J_g)$

• The Jacobian determinant can be easily obtained (with complexity $\mathcal{O}(D)$) from the matrix determinant lemma (MDL):

$$g(\mathbf{z}) = \mathbf{z} + \mathbf{u} h(\mathbf{w}^{\mathsf{T}} \mathbf{z} + b)$$

with: $\mathbf{u}, \mathbf{w} \in \mathbb{R}^{D}, b \in \mathbb{R}$

	MDL
$\det \left(\mathbf{A} + \mathbf{u}\mathbf{w}^{T} \right) = \left(1 + \mathbf{w}^{T}\mathbf{A}^{-1}\mathbf{u} \right) \det$	(\mathbf{A})

with:
$$\mathbf{A} \equiv \mathbb{I}_D$$
; $\mathbf{z}' = \mathbf{w}^\mathsf{T} \mathbf{z} + b$; $\frac{\partial}{\partial \mathbf{z}} h(\mathbf{z}') = \frac{\partial}{\partial \mathbf{z}'} h(\mathbf{z}') \mathbf{w}^\mathsf{T} \equiv h'(\mathbf{z}') \mathbf{w}^\mathsf{T}$

$$\det (J_g) = \det \left(\underbrace{\mathbb{I}_D + \mathbf{u} \, h'(\mathbf{z}') \mathbf{w}^{\mathsf{T}}}_{= \frac{\partial}{\partial \mathbf{z}} g(\mathbf{z})} \right) = \left(1 + h'(\mathbf{z}') \mathbf{w}^{\mathsf{T}} \mathbf{u} \right)$$

Backward flow $f(\mathbf{y})$

- A peculiarity of the planar flow is that the existence of $f(\mathbf{y})$ depends on the choice of $h(\cdot)$ and the parameters \mathbf{u} , \mathbf{w} .
- For $h(\cdot) = \tanh(\cdot)$ the condition $\mathbf{w}^{\mathsf{T}}\mathbf{u} \ge -1$ is sufficient for $f(\mathbf{y})$ to exist, as shown in 1505.05770 (Appendix A.1).

The RealNVP

RealNVP = real-valued non-volume preserving

- Coupling layer definition
- Backward flow
- Jacobian determinant
- Permutation layer
- Conditional invertible NN (cINN)

Forward flow g(z)

- The main component of the RealNVP is the **coupling layer**:
- We assume the input to the coupling layer to be split in $z = [z_a, z_b]$ and apply the following transformation:

$$g: \mathbb{R}^D \to \mathbb{R}^D \quad \begin{pmatrix} \mathbf{z_a} \\ \mathbf{z_b} \end{pmatrix} \to \begin{pmatrix} \mathbf{y_a} \\ \mathbf{y_b} \end{pmatrix} = \begin{pmatrix} \mathbf{z_a} \\ \exp(s(\mathbf{z_a})) \odot \mathbf{z_b} + t(\mathbf{z_a}) \end{pmatrix},$$

where \odot refers to an elementwise product, and $s(\cdot)$ and $t(\cdot)$ are abitrary neural NNs, called *scaling* and *transition* NNs.

• We assume the splitting of $[\mathbf{z}_{\mathbf{a}}, \mathbf{z}_{\mathbf{b}}]$ to be arranged in the following way: $\mathbf{z}_{\mathbf{a}} : z_{1:d}, \mathbf{z}_{\mathbf{b}} : z_{d+1:D}$ (in *python* slicing notation).

Backward flow $f(\mathbf{y})$

• The **inverse** of $g(\cdot)$ in this case can be easily obtained:

$$g: \mathbb{R}^{D} \to \mathbb{R}^{D} \quad \begin{pmatrix} \mathbf{z}_{\mathbf{a}} \\ \mathbf{z}_{\mathbf{b}} \end{pmatrix} \to \begin{pmatrix} \mathbf{y}_{\mathbf{a}} \\ \mathbf{y}_{\mathbf{b}} \end{pmatrix} = \begin{pmatrix} \mathbf{z}_{\mathbf{a}} \\ \exp(s(\mathbf{z}_{\mathbf{a}})) \odot \mathbf{z}_{\mathbf{b}} + t(\mathbf{z}_{\mathbf{a}}) \end{pmatrix},$$
$$f: \mathbb{R}^{D} \to \mathbb{R}^{D} \quad \begin{pmatrix} \mathbf{y}_{\mathbf{a}} \\ \mathbf{y}_{\mathbf{b}} \end{pmatrix} \to \begin{pmatrix} \mathbf{z}_{\mathbf{a}} \\ \mathbf{z}_{\mathbf{b}} \end{pmatrix} = \begin{pmatrix} \mathbf{y}_{\mathbf{a}} \\ (\mathbf{y}_{\mathbf{b}} - t(\mathbf{z}_{\mathbf{a}})) \odot \exp(-s(\mathbf{z}_{\mathbf{a}})) \end{pmatrix},$$

- $g(\mathbf{z}_{\mathbf{a}}) = \mathbf{z}_{\mathbf{a}}$ is just the identity.
- $g(\mathbf{z}_{\mathbf{b}})$ is just an affine function that can be easily inverted.
- The use of $\exp(\cdot)$ prevents division by 0.

Jacobian determinant $\det{(J_g)}$

• J_g is a *triangular matrix* of which the determinant again is easy to calculate (with complexity O(D)) as the product of the diagonal elements:

$$|\det(J_g)| = \begin{vmatrix} 1 & \cdots & 0 & 0 & \cdots & 0\\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots\\ \frac{0}{\partial y_{d+1}} & \cdots & \frac{\partial y_{d+1}}{\partial z_1} & \exp(s(\mathbf{z_a})) & 0 & 0\\ \vdots & \ddots & \vdots & 0 & \ddots & 0\\ \frac{\partial y_D}{\partial z_1} & \cdots & \frac{\partial y_D}{\partial z_d} & 0 & 0 & \exp(s(\mathbf{z_a})) \end{vmatrix}$$
$$= \prod_{j=d+1}^{D} \exp(s(\mathbf{z_a}))_j = \exp\left(\sum_{j=d+1}^{D} s(\mathbf{z_a})_j\right)$$

Training objective – revisited –

 $\hat{p}_{\mathcal{Y}}(\mathbf{y}, \boldsymbol{\omega})$ should match $p_{\mathcal{Y}}(\mathbf{y})$ as close as possible.

• Quantified by the Kullback-Leibler divergence $KL[\cdot]$:

$$\begin{aligned} \operatorname{KL}[p_{\mathcal{Y}}(\boldsymbol{y}), \hat{p}_{\mathcal{Y}}(\boldsymbol{y}, \boldsymbol{\omega})] &= \int p_{\mathcal{Y}}(\boldsymbol{y}) \ln \left(\frac{p_{\mathcal{Y}}(\boldsymbol{y})}{\hat{p}_{\mathcal{Y}}(\boldsymbol{y}, \boldsymbol{\omega})} \right) \mathrm{d}\boldsymbol{y} = \operatorname{const.} - \underbrace{\int p_{\mathcal{Y}}(\boldsymbol{y}) \ln \left(\hat{p}_{\mathcal{Y}}(\boldsymbol{y}, \boldsymbol{\omega}) \right) \mathrm{d}\boldsymbol{y}}_{\equiv E\left[\ln \left(\hat{p}_{\mathcal{Y}}(\boldsymbol{\omega}) \right) \right]} \\ &= \operatorname{const.} - E\left[\ln \left(p_{\mathcal{Z}}(\mathbf{z}) \prod_{i=1}^{N} \left| \frac{\partial g_{i}(\mathbf{z}_{i}, \boldsymbol{\omega})}{\partial \mathbf{z}_{i}} \right|^{-1} \right) \right] \end{aligned}$$
$$\begin{aligned} &= \operatorname{const.} - E\left[\ln \left(p_{\mathcal{Z}}(f(\mathbf{y})) \right) \right] - E\left[\sum_{i=1}^{N} \ln \left(\left| \frac{\partial f_{i}(\mathbf{y}_{i}, \boldsymbol{\omega})}{\partial \mathbf{y}_{i}} \right| \right) \right] \right] \\ &\propto E\left[\| f(\mathbf{y}) \|_{2}^{2} \right] \qquad E\left[\sum_{i=1}^{N} \sum_{j=d+1}^{D} s(\mathbf{z}_{\mathbf{a}})_{j} \right] \end{aligned}$$

the scale in the affine transformation.

Priv.-Doz. Dr. Roger Wolf https://etpwww.etp.kit.edu/~rwolf/

Permutation layer

- The coupling layer transforms only $\mathbf{z}_{\mathbf{b}}$ and leaves $\mathbf{z}_{\mathbf{a}}$ untouched.
- This issue can be easily addressed by a subsequent **permutation** layer.
- Since permuations are volume preserving their Jacobian determinant is $\equiv 1$.

Forward direction:

^{54/40} Conditional invertable NN (cINN)

• Assume (y, x) to be a pair of true $(\rightarrow y)$ and observable $(\rightarrow x)$ parameters from simulation.

Conditional invertable NN (cINN)

• Assume (y, x) to be a pair of true $(\rightarrow y)$ and observable $(\rightarrow x)$ parameters from simulation.

Sample \mathbf{z} and augment with measured observables $\hat{\mathbf{x}}$.

Conditional invertable NN (cINN)

• Assume (y, x) to be a pair of true $(\rightarrow y)$ and observable $(\rightarrow x)$ parameters from simulation.

Inference with air showers

- When detected on Earth *charged* cosmic rays carry a rich convolution of information:
 - original source; 🖡
 - path through the universe;
 - detection environment on Earth.

• $\mathcal{O}(10^6)$ secondary particles;

Inference task

Pierre Auger

Data model

• Assumed flux and spectrum of **primary cosmic ray particles** at their cosmic source:

$$J_0(E_i, A_i) = J_0 a(A_i) \left(\frac{E_i}{10^{18} \,\mathrm{eV}}\right)^{-\gamma} \begin{cases} 1 & Z_i R_{\mathrm{cut}} < E_i \\ \exp\left(1 - \frac{E_i}{Z_i R_{\mathrm{cut}}}\right) 1 & Z_i R_{\mathrm{cut}} \ge E_i \end{cases}$$

Inference task

Task: infer $y = \{\gamma, R_{cut}, a(H), a(He), a(N), a(Si), a(Fe)\}$ from the observable air shower properties x on Earth (\rightarrow 7D value space).

- Propagation DB from forward simulation with varied assumptions for y.
- Vary y until $p(\mathbf{x}|\mathbf{y}) p(\mathbf{y})$ matches the observation $\hat{\mathbf{x}}$ (of the pseudo data).
- Traditional approach:
 - Estimate $p(\mathbf{y}|\hat{\mathbf{x}})$ with the help of Markov Chain Monte Carlo (MCMC).
 - 4–6 h per Markov chain.

Inference task

Task: infer $y = \{\gamma, R_{\text{cut}}, a(\text{H}), a(\text{He}), a(\text{N}), a(\text{Si}), a(\text{Fe})\}$ from the observable air shower properties x on Earth (\rightarrow 7D value space).

- Propagation DB from forward simulation with varied assumptions for y.
- Vary y until $p(\mathbf{x}|\mathbf{y}) p(\mathbf{y})$ matches the observation $\hat{\mathbf{x}}$ (of the pseudo data).
- cINN approach:
 - Using 6 cINN layers connected via the GLOW approach^[1];
 - $s_i(\cdot)$ and $t_i(\cdot)$ chosen as NNs with 3 layers of width 256 and ReLU activation each;
 - Augmented with 420 observables \mathbf{x} (counts in bins of shower energy and shower maxima);
 - Training (on 1M samples) 30h (on single GPU), evaluation O(sec).

MCMC vs. cINN

Red line is the truth of the pseudo data.

MCMC vs. cINN

• The CERN LHC is a top quark pair factory.

Priv.-Doz. Dr. Roger Wolf https://etpwww.etp.kit.edu/~rwolf/

54/51 **cINN** approach

Conditioning observables (x). •

: $p_x^{\text{miss}}, p_y^{\text{miss}}$

 $p_{\rm T}^{\rm miss}$ $\begin{array}{l} p_{\mathrm{T}}^{\mathrm{miss}} \\ \mathrm{Lepton}\left(\ell\right) \\ \mathrm{Misc} \end{array} \stackrel{:}{\stackrel{p_x}{:}} \stackrel{, p_y}{, p_y^{\ell}, \eta^{\ell}, \log\left(E^{\ell}\right), \mathrm{ID}^{[2]}} \\ \stackrel{:}{\stackrel{p_x^{\ell}}{, p_y^{\ell}, \eta^{\ell}, \log\left(E^{\ell}\right), \mathrm{ID}^{[2]}} \\ \stackrel{:}{\stackrel{:}{\stackrel{N_{\mathrm{Jet}}}{, N_{\mathrm{b}} \mathrm{Jet}, C_1, C_2^{[1]}}} \end{array}$ Uo to 10 jets $: p_x^j, p_y^j, \eta^j, \log(E^j), b_{tag}^j$

Targets (y).

 $p_x^{\nu}, p_y^{\nu}, \eta^{\nu}$

^[1] $C_1 = \frac{-b}{2a}; \quad C_2 = \frac{b^2 - 4ac}{2a}$

from previous slide

Comparison of inference methods

• Individual case studies (— ν -FF: feed-forward NN, — ν -Flow: norm.-flow model):

NN-based inference models are able to identify the correct solution (w/ high probability).

Flow-based inference model provides equal spread of probability where feed-forward NN "fails".

^{54/53} Comparison of inference methods

Ensemble study (*ν*-FF: feed-forward NN, *ν*-Flow: norm.-flow model, ignore the red):

• Best reproduction of kinematic ν -properties by flow-based model.

Summary

- Normalizing-flow models are very interesting and promising for our field.
- They are mathematically clear, with many good properties in turn, and easy to understand.
- Most prominent features:
 - Conservation of probability;
 - Lossless compression;
 - Applicability for unfolding.
- Most obvious and useful applications (presented here with two very good examples from Pierre Auger and LHC), both based on classical Monte Carlo techniques for training and exploiting cINNs:
 - Sampling from untractable likelihoods/posteriors;
 - Regularized unfolding ("likelihood-free inference").

Literature

- Literature you can use to get an overiew of the matter:
 - J. M. Tomczak *Deep generative modeling* (Springer 2022).
 - I. Kobyev et al, Normalizing flows: An introduction and review of current methods (arxiv:1908.09257).
 - U. Koethe, *Solving inverse problems with invertable neural networks*, (4th IML Workshop, CERN 2020).
 - Literature referred to on the slides.

Backup

Discrete inputs

- What has been discussed so far, has been with **real-valued inputs** in mind.
- Discrete can be transformed into real-valued inputs by adding uniform random noise.
- The following example is given for integer-valued inputs:

For $x_i \in [1, 2, 3, ..., I]$ and $u \in [-0.5; 0.5]$ apply: $[1, 2, 3, ..., I] \rightarrow [0.5; I + 0.5] : x_i \rightarrow x'_i = x_i + u$

