HighRR Lecture Week

11–15 September 2023 Ruprecht-Karls University, Heidelberg

Normalizing Flows

Roger Wolf (roger.wolf@kit.edu)

Backward ("normalizing") direction

The main building block of NNs … 54/2

Fully connected feed-forward NN 54/3

- All nodes of consecutive layers are *connected* with each other.
- Inputs are propagated only in *forward* direction.

● An NN is called **deep** if it has ≥2 hidden layers.

Convolutional NN (CNN) 54/4

- Inspired by 2D **image processing**.
- Reduce complexity by convolutional layers and *filters* (→ subnets scanning full images).

Example: 3-fold 3x3 convolution by summing

Supports 2D translation invariance of specific features (e.g. cats, eyes, noses) in images.

Recurrent NN (RNN) 54/5

- Inspired by **language processing** (\rightarrow sequential problem).
- Allow backward propagation and loops in the NN architecture $(\rightarrow$ identify recurring features in sequences).

Supports *translation invariance* of specific features (e.g. words) in sequences.

Graph NN (graphNN) 54/6

● Inspired by **unordered graph-like structures** with arbitrary number of nodes $(\rightarrow$ particle clusters, traffic networks, molecules, …). Allows node, edge, and graph classification.

Message passing/neighor aggregation:

$$
\mathbf{h}_{i}^{t+1} = \sigma \left(\frac{1}{|N_i|} \mathbf{W}_t \mathbf{h}_i^t + \sum_{j \in N_i} \mathbf{W}_t \mathbf{h}_j^t \right), \quad N_i : \text{Neighbourhood of } i.
$$

Supports *permutation invariance* and versatility of the data.

Probabilistic generative NNs (PGNs) 54/7

- Applications
- GAN, VAE, **normalizing flow**
- \cdot Normalizing flow $-$ in a nutshell

Cool applications … 54/8

• **Create new examples** based on (implicit) rules, learned from (unlabeled) training data (→ prime example of *unsupervised learning*).

More useful applications … 54/9

Examples-5: Error correction.

Example-3: (Lossless [1]) compression of data

Example-4: (Fast) simulation $(\rightarrow$ sampling of likelihoods).

Examples-6: Approximation of untractable likelihoods [2]

 $[1]$ Properties which are exclusive for normalizing flows.

 $^{[2]}$ Either not analytically calculable or calculation generally unfeasible.

Example-7: Regularized unfolding^[1]

• Generator NN **competing** with (adversarial) *discriminator* NN (D). Successful training, if D cannot distinguish between "Fake" and "True" outputs.

• MINIMAX problem \rightarrow convergence not quaranteed.

Variational Auto Encoder (VAE) 54/11

- Map samples of the input space (\mathcal{X}) into a (high-dimensional) *latent space* (\mathcal{Z} , Encoder) and back (Decoder).
- After training, the Decoder can be used to **create new samples from** \mathcal{Z} .

From "[Understanding variational autoencoders \(VAEs\)"](https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73) (visited 31.05.22)

Normalizing flow 54/12

• Transform a (presumably simple) **source distribution** $p_{\mathcal{Z}}(\mathbf{z})^{[1]}$ into any arbitrary target **distribution** $p_{\mathcal{Y}}(\mathbf{y})$ by (repeated,) cleverly chosen *bijective variable transformation(s)* $\{g_i\}$.

 $\mathcal{Z} \rightarrow \mathcal{V}$ [2]

[2] Originally Z and Y need to have same dimensionality (check also [1908.01686](https://arxiv.org/abs/1908.01686)). [1] This discussion is always with probability densities in mind.

soon people usually choose a standard Normal $\mathcal{N}(\mathbf{z},0,1)$ ^[1] as source distribution.

$$
\boxed{1} \quad \mathcal{N}(\mathbf{z}, 0, 1) = \frac{1}{\sqrt{2\pi}^D} \exp\left(-\frac{\mathbf{z}^2}{2}\right)
$$

Math prerequisites 54/16

 $f(x,\theta)dx = M(T(\xi))$ $\int_{\mathbb{R}_+} \mathbf{T}(\mathbf{x}) \cdot \left(\frac{\partial}{\partial \theta} \ln L(\mathbf{x}, \theta) \right) \cdot f(\mathbf{x}, \theta) d\mathbf{x} = \int_{\mathbb{R}_+} T(\mathbf{x}) \left(\frac{\frac{\partial}{\partial \theta} f(\mathbf{x}, \theta)}{f(\mathbf{x}, \theta)} \right) d\mathbf{x}$

Change of variables and conservation of probability

- Composition of bijections
- Normalizing flow model & training strategy
- Overview of concrete implementations

Change of variables 54/17

● $p_{\mathcal{Y}}(y)$ can be obtained from $p_{\mathcal{Z}}(z)$ via **conservation of probability**:

$$
P(A) = \int_{A} p_{\mathcal{Y}}(y) dy = \int_{A} p_{\mathcal{Z}}(z) dz
$$

 $p_{\mathcal{Y}}(y) dy = p_{\mathcal{Z}}(z) dz$

$$
p_{\mathcal{Y}}(y) = p_{\mathcal{Z}}(z) \left| \frac{\mathrm{d}z}{\mathrm{d}y} \right| = p_{\mathcal{Z}}(z) \left| \frac{\mathrm{d}f(y)}{\mathrm{d}y} \right| = p_{\mathcal{Z}}(z) \left| \frac{\mathrm{d}y}{\mathrm{d}z} \right|^{-1} = p_{\mathcal{Z}}(z) \left| \frac{\mathrm{d}g(z)}{\mathrm{d}z} \right|^{-1}
$$

Change of variables 54/18

 \bullet $p_{\mathcal{Y}}(y)$ can be obtained from $p_{\mathcal{Z}}(z)$ via **conservation of probability**:

$$
P(A) = \int_{A} p_{\mathcal{Y}}(y) dy = \int_{A} p_{\mathcal{Z}}(z) dz
$$

 $p_{\mathcal{Y}}(y) dy = p_{\mathcal{Z}}(z) dz$

Priv.-Doz. Dr. Roger Wolf <https://etpwww.etp.kit.edu/~rwolf/>

(Jacobian determinant)

Example-1 54/19

Bijection (forward flow):

$$
g: \mathbb{R}^2 \to \mathbb{R}^2
$$
; $\mathbf{z} \to g(\mathbf{z}) = 2\mathbf{z}$; with: $\mathbf{z} \equiv \begin{pmatrix} z_1 \\ z_2 \end{pmatrix}$.

Inverse (backward flow):

$$
f : \mathbb{R}^2 \to \mathbb{R}^2
$$
; $\mathbf{y} \to f(\mathbf{y}) = \frac{\mathbf{y}}{2}$; with: $\mathbf{y} \equiv \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}$.

Transformation of
$$
p(\cdot)
$$
:

$$
p_{\mathcal{Z}}(\mathbf{z}) = \begin{cases} 1 & 0 \le x_{1,2} \le a \\ 0 & \text{else} \end{cases}; \qquad \det(J_g) = \begin{vmatrix} 2 & 0 \\ 0 & 2 \end{vmatrix} = 4; \qquad p_{\mathcal{Y}}(\mathbf{y}) = p_{\mathcal{Z}}(f(\mathbf{y})) \underbrace{\left|J_g\right|^{-1}}_{\equiv \frac{1}{4}}
$$

$$
p_{\mathcal{Y}}(\mathbf{y}) = \begin{cases} \frac{1}{4} & 0 \le y_{1,2} \le 2a \\ 0 & \text{else} \end{cases}
$$

Here $p_{\mathcal{Z}}(\mathbf{z})$ is "streched" over a 4 times larger volume in variable space.

Example-2 54/20

Bijection (forward flow):

$$
g: \mathbb{R}^2 \to \mathbb{R}^2
$$
; $\mathbf{z} \to g(\mathbf{z}) = \begin{pmatrix} z_1 \sin z_2 \\ z_1 \cos z_2 \end{pmatrix}$; with: $\mathbf{z} \equiv \begin{pmatrix} r \\ \varphi \end{pmatrix}$

$$
f : \mathbb{R}^2 \to \mathbb{R}^2
$$
; $\mathbf{y} \to f(\mathbf{y}) = \begin{pmatrix} \sqrt{y_1^2 + y_2^2} \\ arctan(y_2/y_1) \end{pmatrix}$; with: $\mathbf{y} \equiv \begin{pmatrix} x \\ y \end{pmatrix}$.

Transformation of
$$
p(\cdot)
$$
:

$$
p_{\mathcal{Z}}(\mathbf{z}) = \begin{cases} 1 & 0 \leq x_{1,2} \leq a \\ 0 & \text{else} \end{cases}; \qquad \det(J_g) = \begin{vmatrix} \sin z_2 & z_1 \cos z_2 \\ \cos z_2 & -z_1 \sin z_2 \end{vmatrix} = z_1;
$$

$$
p_{\mathcal{Y}}(\mathbf{y}) = p_{\mathcal{Z}}(f(\mathbf{y})) \underbrace{|J_g|^{-1}}_{\mathbf{y}_1^2 + y_2^2}
$$

Q: Is this variable transform volume preserving/compressing/expanding?

 $\pi/2$

 $\mathbf 1$

 $p_{\mathcal{Z}}(\mathbf{z})$

 $\mathbf{1}$

 $p_{\mathcal{Y}}(\mathbf{y})$

Composition of bijections 54/21

• A composition of bijections

$$
\mathcal{Z} \to \mathcal{Y}
$$

$$
z \to y = g_N \circ g_{N-1} \circ \dots \circ g_1(z)
$$

$$
\equiv g
$$

is a bijection in itself, with the inverse $f = f_1 \circ \ldots \circ f_{N-1} \circ f_N(y)$ and the transformation formulas

$$
p_{\mathcal{Y}}(g(z)) = p_{\mathcal{Z}}(z) \prod_{i=1}^{N} \left| \frac{dg_i(z_i)}{dz_i} \right|^{-1}
$$

$$
p_{\mathcal{Y}}(y) = p_{\mathcal{Z}}(f(y)) \prod_{i=1}^{N} \left| \frac{df_i(y_i)}{dy_i} \right|
$$

NB: Simple application of the *chain rule*. **NNB**: One can omit the i in the derivatives.

Normalizing flow model 54/22

- A simple source distribution (e.g. $p_{\mathcal{Z}}(z) = \mathcal{N}(z, 0, 1)$) can be transformed into any arbitrary (potentially unknown) target distribution $p_{\mathcal{Y}}(\mathbf{y})$.
- The $\{q_i\}$ to do so, are a priori *unknown*, but they can be *approximated by any sufficiently expressive basic NN* ($p_{\mathcal{V}}(\mathbf{y}) \to \hat{p}_{\mathcal{V}}(\mathbf{y}, \boldsymbol{\omega})$.
- The objects to be learned are the bijections $\{q_i\}$ (resp. $\{f_i\}$). Knowing one implies knowledge of the other one.

Training objective 54/23

 $\hat{p}_{\mathcal{Y}}(\mathbf{y}, \omega)$ should match $p_{\mathcal{Y}}(\mathbf{y})$ as close as possible.

• Quantified by the **Kullback-Leibler** divergence $KL[\cdot]$:

$$
\begin{aligned} \text{KL}[p_{\mathcal{Y}}(\boldsymbol{y}), \hat{p}_{\mathcal{Y}}(\boldsymbol{y}, \boldsymbol{\omega})] &= \int p_{\mathcal{Y}}(\boldsymbol{y}) \ln \left(\frac{p_{\mathcal{Y}}(\boldsymbol{y})}{\hat{p}_{\mathcal{Y}}(\boldsymbol{y}, \boldsymbol{\omega})} \right) \mathrm{d}\boldsymbol{y} = \text{const.} - \underbrace{\int p_{\mathcal{Y}}(\boldsymbol{y}) \ln \left(\hat{p}_{\mathcal{Y}}(\boldsymbol{y}, \boldsymbol{\omega}) \right) \mathrm{d}\boldsymbol{y}}_{\equiv E \left[\ln \left(\hat{p}_{\mathcal{Y}}(\boldsymbol{\omega}) \right) \right]^{[1]}} \\ &= \text{const.} - E \left[\ln \left(p_{\mathcal{Z}}(\boldsymbol{z}) \prod_{i=1}^{N} \left| \frac{\partial g_i(\mathbf{z}_i, \boldsymbol{\omega})}{\partial \mathbf{z}_i} \right|^{-1} \right) \right] \\ &= \text{const.} - E \left[\ln \left(p_{\mathcal{Z}}(f(\mathbf{y})) \right) \right] - E \left[\sum_{i=1}^{N} \ln \left(\left| \frac{\partial f_i(\mathbf{y}_i, \boldsymbol{\omega})}{\partial \mathbf{y}_i} \right| \right) \right] \end{aligned}
$$

(Expected loss or risk)

Defining the log-likelihood ratio of the two distributions as loss.

Training objective 54/24

 $\hat{p}_{\mathcal{Y}}(\mathbf{y}, \omega)$ should match $p_{\mathcal{Y}}(\mathbf{y})$ as close as possible.

• Quantified by the **Kullback-Leibler** divergence $KL[\cdot]$:

$$
\text{KL}[p_{\mathcal{Y}}(\boldsymbol{y}), \hat{p}_{\mathcal{Y}}(\boldsymbol{y}, \omega)] = \int p_{\mathcal{Y}}(\boldsymbol{y}) \ln \left(\frac{p_{\mathcal{Y}}(\boldsymbol{y})}{\hat{p}_{\mathcal{Y}}(\boldsymbol{y}, \omega)} \right) \mathrm{d}\boldsymbol{y} = \text{const.} - \underbrace{\int p_{\mathcal{Y}}(\boldsymbol{y}) \ln (\hat{p}_{\mathcal{Y}}(\boldsymbol{y}, \omega)) \mathrm{d}\boldsymbol{y}}_{\equiv E \left[\ln (\hat{p}_{\mathcal{Y}}(\omega)) \right]^{[1]}} \\
= \text{const.} - E \left[\ln \left(p_{\mathcal{Z}}(\boldsymbol{z}) \prod_{i=1}^{N} \left| \frac{\partial g_{i}(\mathbf{z}_{i}, \omega)}{\partial \mathbf{z}_{i}} \right|^{-1} \right) \right] \\
= \text{const.} - E \left[\ln (p_{\mathcal{Z}}(f(\mathbf{y}))) \right] - E \left[\sum_{i=1}^{N} \ln \left(\left| \frac{\partial f_{i}(\mathbf{y}_{i}, \omega)}{\partial \mathbf{y}_{i}} \right| \right) \right] \\
\propto E \left[\|\boldsymbol{f}(\mathbf{y})\|_{2}^{2} \right] = 0 \qquad \text{(Expected loss or risk)} \\
\text{with:} \quad p_{\mathcal{Z}}(\mathbf{z}) = \mathcal{N}(\mathbf{z}, 0, 1) \qquad \text{Defining the log-likelihood ratio of the two distributions as loss.}
$$

Training strategy 54/26

• Assume that we don't know $p_{\mathcal{Y}}(\mathbf{y})$, *but we can sample from it*, e.g., via the Monte Carlo method (ignoring the const.).

$$
L = E\left[\|f(\mathbf{y})\|_2^2\right] - E\left[\sum_{i=1}^N \ln\left(\left|\frac{\partial f_i(\mathbf{y}_i, \omega)}{\partial \mathbf{y}_i}\right|\right)\right]
$$
 (Risk functional)

$$
R = \frac{1}{2} \text{MSE}[\mathbf{y}] - \frac{1}{m} \sum_{k=1}^{m} \sum_{i=1}^{N} \ln \left(\left| \frac{\partial f_i(\mathbf{y}_i, \boldsymbol{\omega})}{\partial \mathbf{y}_i} \right| \right)
$$
 (Empirical risk functional)

• Train f_i in **reverse order**, in (mini-)batches of m simulated events, mapping \mathbf{y} to the trivially known source distribution $\mathcal{N}(\mathbf{z},0,1)$.

Training strategy 54/26.1

• Assume that we don't know $p_{\mathcal{Y}}(\mathbf{y})$, *but we can sample from it*, e.g., via the Monte Carlo method (ignoring the const.).

$$
L = E\left[\|f(\mathbf{y})\|_2^2\right] - E\left[\sum_{i=1}^N \ln\left(\left|\frac{\partial f_i(\mathbf{y}_i,\boldsymbol{\omega})}{\partial \mathbf{y}_i}\right|\right)\right]
$$
 (Risk functional)

$$
R = \frac{1}{2} \text{MSE}[\mathbf{y}] - \frac{1}{m} \sum_{k=1}^{m} \sum_{i=1}^{N} \ln \left(\left| \frac{\partial f_i(\mathbf{y}_i, \boldsymbol{\omega})}{\partial \mathbf{y}_i} \right| \right)
$$
 (Empirical risk functional)

- Train f_i in **reverse order**, in (mini-)batches of m simulated events, mapping \mathbf{y} to the trivially known source distribution $\mathcal{N}(\mathbf{z},0,1)$.
- The evaluation happens in **forward direction** sampling from $\mathcal{N}(\mathbf{z},0,1)$.

Inverse problem 54/27

- We use complex Monte Carlo simulations to obtain the **likelihood** $p(\mathbf{x}|\mathbf{y})$ to observe x given the model parameters *.*
- $p(x|y)$ is *untractable*; we can only sample from it.
- For measurements we are interested in the **posterior** $p(y|x)$ that can be obtained from [Bayes theorem](https://en.wikipedia.org/wiki/Bayes%27_theorem):

Inverse problem ↔ normalizing flow 54/28

- The space of $\mathcal Y$ can be high-dimensional and sampling from $\mathcal Y$ tedious.
- The normalizing flow can be used to map $p_{\mathcal{Y}}(\mathbf{y}|\mathbf{x})$ to $p_{\mathcal{Z}}(\mathbf{z})$ (during training). **NB**: This can still be tedious.
- In the forward pass (after training) $p_{\mathcal{Z}}(z)$ can be sampled with **significantly reduced effort**.
- Since the likelihood is never explicitly used, this procedure is referred to as "*likelihood-free inference*".

• Subject of research of normalizing flows: construct g such that the flow is expressive and f and $\det(J_{q_i})$ can be obtained at low computatonial cost.

● We will focus on **planar** and **coupling flows** (viz. the RealNVP and cINN).

The planar flow 54/30 [arxiv:1505.05770](https://arxiv.org/abs/1505.05770)

- Planar flow definition
- Jacobian determinant
- Backward flow

Forward flow $g(z)$ 54/31

One of the simplest transformations one could think of is of the form:

$$
g(\mathbf{z}) = \mathbf{z} + \mathbf{u} h(\mathbf{w}^\mathsf{T} \mathbf{z} + b)
$$

with: $\mathbf{u}, \mathbf{w} \in \mathbb{R}^D, b \in \mathbb{R}$

 $h(\cdot)$: non-linearity, e.g. $\tanh(\cdot)$.

Taken from [stackexchange](https://stats.stackexchange.com/questions/465184/planar-flow-in-normalizing-flows) (visited 04.06.22)

- $g(\mathbf{z})$ shifts every point $\mathbf{z} \in \mathbb{R}^D$ parallel to \mathbf{u} .
- The argument $\mathbf{w}^T\mathbf{z} b = 0$ of $h(\cdot)$ defines a hyperplane in \mathbb{R}^D perpendicular to w. The function $h(\cdot)$ scales the shift along u depending on the distance of z from this hyperplane $(\rightarrow$ planar flow).
- **NB:** If z is stretched depending on the distance from a fixed point this defines a **radial flow**.

• The Jacobian determinant can be easily obtained (with complexity $\mathcal{O}(D)$) from the [matrix determinant lemma](https://en.wikipedia.org/wiki/Matrix_determinant_lemma) (MDL):

$$
g(\mathbf{z}) = \mathbf{z} + \mathbf{u} h(\mathbf{w}^\mathsf{T} \mathbf{z} + b)
$$

with: $\mathbf{u}, \mathbf{w} \in \mathbb{R}^D, b \in \mathbb{R}$

MDL det $(\mathbf{A} + \mathbf{u}\mathbf{w}^{\mathsf{T}}) = (1 + \mathbf{w}^{\mathsf{T}}\mathbf{A}^{-1}\mathbf{u}) \det(\mathbf{A})$

with:
$$
\mathbf{A} \equiv \mathbb{I}_D
$$
; $\mathbf{z}' = \mathbf{w}^\mathsf{T} \mathbf{z} + b$; $\frac{\partial}{\partial \mathbf{z}} h(\mathbf{z}') = \frac{\partial}{\partial \mathbf{z}'} h(\mathbf{z}') \mathbf{w}^\mathsf{T} \equiv h'(\mathbf{z}') \mathbf{w}^\mathsf{T}$

$$
\det (J_g) = \det \left(\underbrace{\mathbb{I}_D + \mathbf{u} h'(\mathbf{z}') \mathbf{w}^\mathsf{T}}_{= \frac{\partial}{\partial \mathbf{z}} g(\mathbf{z})} \right) = \left(1 + h'(\mathbf{z}') \mathbf{w}^\mathsf{T} \mathbf{u} \right)
$$

Backward flow $f(y)$ 54/33

- A peculiarity of the planar flow is that the existence of $f(\mathbf{y})$ depends on the choice of $h(\cdot)$ and the parameters \mathbf{u}, \mathbf{w} .
- For $h(\cdot) = \tanh(\cdot)$ the condition $\mathbf{w}^\mathsf{T} \mathbf{u} \ge -1$ is sufficient for $f(\mathbf{y})$ to exist, as shown in [1505.05770](https://arxiv.org/abs/1505.05770) (Appendix A.1).

The RealNVP 54/34

RealNVP = real-valued non-volume preserving

- Coupling layer definition
- Backward flow
- Jacobian determinant
- Permutation layer
- Conditional invertible NN (cINN)

Forward flow 54/35

- The main component of the RealNVP is the **coupling layer**:
- We assume the input to the coupling layer to be split in $z = [z_a, z_b]$ and apply the following transformation:

$$
g: \mathbb{R}^D \to \mathbb{R}^D \quad \begin{pmatrix} \mathbf{z_a} \\ \mathbf{z_b} \end{pmatrix} \to \begin{pmatrix} \mathbf{y_a} \\ \mathbf{y_b} \end{pmatrix} = \begin{pmatrix} \mathbf{z_a} \\ \exp(s(\mathbf{z_a})) \odot \mathbf{z_b} + t(\mathbf{z_a}) \end{pmatrix},
$$

where \odot refers to an elementwise product, and $s(\cdot)$ and $t(\cdot)$ are abitrary neural NNs, called *scaling* and *transition* NNs.

We assume the splitting of $[z_{a}, z_{b}]$ to be arranged in the following way: $z_{a}: z_{1:d}, z_{b}: z_{d+1:D}$ (in *python* slicing notation).

Backward flow $f(y)$ 54/36

• The **inverse** of $g(\cdot)$ in this case can be easily obtained:

$$
g: \mathbb{R}^D \to \mathbb{R}^D \qquad \begin{pmatrix} \mathbf{z_a} \\ \mathbf{z_b} \end{pmatrix} \to \begin{pmatrix} \mathbf{y_a} \\ \mathbf{y_b} \end{pmatrix} = \begin{pmatrix} \mathbf{z_a} \\ \exp(s(\mathbf{z_a})) \odot \mathbf{z_b} + t(\mathbf{z_a}) \end{pmatrix},
$$

$$
f: \mathbb{R}^D \to \mathbb{R}^D \qquad \begin{pmatrix} \mathbf{y_a} \\ \mathbf{y_b} \end{pmatrix} \to \begin{pmatrix} \mathbf{z_a} \\ \mathbf{z_b} \end{pmatrix} = \begin{pmatrix} \mathbf{y_a} \\ (\mathbf{y_b} - t(\mathbf{z_a})) \odot \exp(-s(\mathbf{z_a})) \end{pmatrix},
$$

- $g(\mathbf{z}_a) = \mathbf{z}_a$ is just the identity.
- $q(\mathbf{z}_b)$ is just an affine function that can be easily inverted.
- The use of $\exp(\cdot)$ prevents division by 0.

 \bullet J_g is a *triangular matrix* of which the determinant again is easy to calculate (with complexity $\mathcal{O}(D)$ as the product of the diagonal elements:

 $\sum_{j=d+1}$

$$
|\det(J_g)| = \begin{vmatrix}\n1 & \cdots & 0 & 0 & \cdots & 0 \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
\frac{\partial g_{d+1}}{\partial z_1} & \cdots & \frac{\partial g_{d+1}}{\partial z_d} & \exp(s(\mathbf{z_a})) & 0 & 0 \\
\vdots & \ddots & \vdots & 0 & \ddots & 0 \\
\frac{\partial y_D}{\partial z_1} & \cdots & \frac{\partial y_D}{\partial z_d} & 0 & 0 & \exp(s(\mathbf{z_a}))\n\end{vmatrix}
$$
\n
$$
= \prod_{i=1}^{D} \exp(s(\mathbf{z_a}))_j = \exp\left(\sum_{i=1}^{D} s(\mathbf{z_a})_j\right)
$$

 $j = d + 1$

Training objective – revisited – 54/38

 $\hat{p}_{\mathcal{Y}}(\mathbf{y}, \boldsymbol{\omega})$ should match $p_{\mathcal{Y}}(\mathbf{y})$ as close as possible.

• Quantified by the **Kullback-Leibler** divergence $KL[\cdot]$:

$$
\begin{aligned}\n\text{KL}[p_{\mathcal{Y}}(\boldsymbol{y}), \hat{p}_{\mathcal{Y}}(\boldsymbol{y}, \omega)] &= \int p_{\mathcal{Y}}(\boldsymbol{y}) \ln \left(\frac{p_{\mathcal{Y}}(\boldsymbol{y})}{\hat{p}_{\mathcal{Y}}(\boldsymbol{y}, \omega)} \right) \mathrm{d}\boldsymbol{y} = \text{const.} - \underbrace{\int p_{\mathcal{Y}}(\boldsymbol{y}) \ln \left(\hat{p}_{\mathcal{Y}}(\boldsymbol{y}, \omega) \right) \mathrm{d}\boldsymbol{y}}_{\equiv E \left[\ln \left(\hat{p}_{\mathcal{Y}}(\omega) \right) \right]} \\
&= \text{const.} - E \left[\ln \left(p_{\mathcal{Z}}(\boldsymbol{z}) \prod_{i=1}^{N} \left| \frac{\partial g_{i}(\mathbf{z}_{i}, \omega)}{\partial \mathbf{z}_{i}} \right|^{-1} \right) \right] \\
&= \text{const.} - E \underbrace{\left[\ln \left(p_{\mathcal{Z}}(\boldsymbol{f}(\mathbf{y})) \right) \right] - E \underbrace{\left[\sum_{i=1}^{N} \ln \left(\left| \frac{\partial f_{i}(\mathbf{y}_{i}, \omega)}{\partial \mathbf{y}_{i}} \right| \right) \right]}_{\propto E \left[\left\| \boldsymbol{f}(\mathbf{y}) \right\|_{2}^{2} \right]} \\
&= \underbrace{E \left[\sum_{i=1}^{N} \sum_{j=d+1}^{D} s(\mathbf{z_{a}})_{j} \right]}_{\text{Dovard to the plane to the plane (a) for each point.} (a) for each point.} \n\end{aligned}
$$

Second reason to choose $\exp(\cdot)$ for the scale in the affine transformation.

Permutation layer 54/39

- The coupling layer transforms only z_b and leaves z_a untouched.
- This issue can be easily addressed by a subsequent **permutation** layer.
- Since permuations are volume preserving their Jacobian determinant is $\equiv 1$.

Forward direction:

Conditional invertable NN (cINN) 54/40

• Assume (y, x) to be a pair of true $(\rightarrow y)$ and observable $(\rightarrow x)$ parameters from **simulation**.

Conditional invertable NN (cINN) 54/41

• Assume (y, x) to be a pair of true $(\rightarrow y)$ and observable $(\rightarrow x)$ parameters from **simulation**.

Sample z and augment with *measured* observables $\hat{\mathbf{x}}$.

Conditional invertable NN (cINN) 54/41.1

• Assume (y, x) to be a pair of true $(\rightarrow y)$ and observable $(\rightarrow x)$ parameters from **simulation**.

Inference with air showers

• When detected on Earth *charged* cosmic rays carry a rich convolution of information:

Inference task

- **original source**;
- path through the universe;
- detection environment on Earth.

Data model

• Assumed flux and spectrum of **primary cosmic ray particles** at their cosmic source:

$$
J_0(E_i, A_i) = J_0 \, a(A_i) \left(\frac{E_i}{10^{18} \, \text{eV}}\right)^{-\gamma} \begin{cases} 1 & Z_i R_{\text{cut}} < E_i \\ \exp\left(1 - \frac{E_i}{Z_i R_{\text{cut}}}\right) 1 & Z_i R_{\text{cut}} \ge E_i \end{cases}
$$

Inference task 54/45

Task: infer $y = \{\gamma, R_{\text{cut}}, a(H), a(He), a(N), a(Si), a(Fe)\}\$ from the observable air shower properties x on Earth (\rightarrow 7D value space).

- Propagation DB from forward simulation with varied assumptions for y .
- Vary y until $p(\mathbf{x}|\mathbf{y}) p(\mathbf{y})$ matches the observation $\hat{\mathbf{x}}$ (of the pseudo data).
- **Traditional approach**:
	- Estimate $p(\mathbf{y}|\hat{\mathbf{x}})$ with the help of [Markov Chain Monte Carlo](https://en.wikipedia.org/wiki/Markov_chain_Monte_Carlo) (MCMC).
	- 4–6 h per Markov chain.

Inference task 54/46

Task: infer $y = \{\gamma, R_{\text{cut}}, a(H), a(He), a(N), a(Si), a(Fe)\}\$ from the observable air shower properties x on Earth (\rightarrow 7D value space).

- Propagation DB from forward simulation with varied assumptions for \bf{v} .
- Vary y until $p(\mathbf{x}|\mathbf{y})p(\mathbf{y})$ matches the observation $\hat{\mathbf{x}}$ (of the pseudo data).
- **cINN approach**:
	- Using 6 cINN layers connected via the GLOW approach $[1]$;
	- $s_i(\cdot)$ and $t_i(\cdot)$ chosen as NNs with 3 layers of width 256 and ReLU activation each;
	- Augmented with 420 observables \bf{x} (counts in bins of shower energy and shower maxima);
	- Training (on 1M samples) 30h (on single GPU), evaluation O(sec).

MCMC vs. cINN 54/47

Red line is the truth of the pseudo data.

MCMC vs. cINN 54/48

Top quark pair production at the LHC 54/49

Top quark pair production at the LHC 54/49.1

• The CERN LHC is a top quark pair factory.

Priv.-Doz. Dr. Roger Wolf <https://etpwww.etp.kit.edu/~rwolf/>

Top quark pair production at the LHC 54/49.2

Top quark pair production at the LHC 54/50

Top quark pair production at the LHC 54/50.1

Top quark pair production at the LHC 54/50.2

cINN approach 54/51

• Conditioning observables (x) .

 $p_x^{\text{miss}}, p_y^{\text{miss}}$

 p_T^{miss}

• Targets (y) .

[1]

[2]

[1] $C_1 = \frac{-b}{2a}$; $C_2 = \frac{b^2 - 4ac}{2a}$ from previous

slide

Comparison of inference methods 54/52

● Individual case studies $($ - ν -FF: feed-forward NN, \blacktriangleright ν -Flow: norm.-flow model):

NN-based inference models are able to identify the correct solution (w/ high probability).

Flow-based inference model provides equal spread of probability where feed-forward NN "fails".

Comparison of inference methods 54/53

• Ensemble study ($\longrightarrow \nu$ -FF: feed-forward NN, $\longrightarrow \nu$ -Flow: norm.-flow model, ignore the red):

• Best reproduction of kinematic ν -properties by flow-based model.

54/54 **Summary**

- Normalizing-flow models are very interesting and promising for our field.
- They are mathematically clear, with many good properties in turn, and easy to understand.
- Most prominent features:
	- Conservation of probability;
	- Lossless compression;
	- Applicability for unfolding.
- Most obvious and useful applications (presented here with two very good examples from Pierre Auger and LHC), both based on classical Monte Carlo techniques for training and exploiting cINNs:
	- Sampling from untractable likelihoods/posteriors;
	- Regularized unfolding ("likelihood-free inference").

Literature

- **Literature you can use to get an overiew of the matter:**
	- J. M. Tomczak *[Deep generative modeling](https://link.springer.com/content/pdf/10.1007%2F978-3-030-93158-2.pdf)* (Springer 2022).
	- \bullet I. Kobyev et al, *Normalizing flows: An introduction and review of current methods* ([arxiv:1908.09257](https://arxiv.org/abs/1908.09257)).
	- U. Koethe, *[Solving inverse problems with invertable neural networks](https://indico.cern.ch/event/852553/timetable/)*, (4th IML Workshop, CERN 2020).
	- Literature referred to on the slides.

Backup

Discrete inputs

- What has been discussed so far, has been with **real-valued inputs** in mind.
- *Discrete* can be transformed into *real-valued inputs* by adding uniform random noise.
- The following example is given for integer-valued inputs:

For $x_i \in [1, 2, 3, ..., I]$ and $u \in [-0.5; 0.5]$ apply: $[1, 2, 3, \ldots, I] \rightarrow [0.5; I + 0.5] : x_i \rightarrow x'_i = x_i + u$

Priv.-Doz. Dr. Roger Wolf <https://etpwww.etp.kit.edu/~rwolf/>