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Normalizing Flows
Roger Wolf (roger.wolf@kit.edu)

Source 
distribution

Target 
distribution

Forward direction

Backward („normalizing“) direction

„By the term Normalizing Flows people mean bijections 
which are convenient to compute, invert and calculate 
the determinant of their Jacobian.“ arxiv:1908.09257
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The main building block of NNs … 
54/2

Hidden layersInput layer Output layer

… the perceptron:
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● All nodes of consecutive layers are connected with each other.

Fully connected feed-forward NN
54/3

Hidden layersInput layer Output layer

● Inputs are propagated only in forward direction.

● An NN is called deep if it has ≥2 hidden layers.
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● Inspired by 2D image processing.

Convolutional NN (CNN)

● Reduce complexity by convolutional layers and filters (→ subnets scanning full images).

Cat filter

Nose filter

Eye filter

Example: 3-fold 3x3 convolution 
by summing

● Supports 2D translation invariance of specific features (e.g. cats, eyes, noses) in images.
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● Inspired by language processing (→ sequential problem).

Recurrent NN (RNN)

● Allow backward propagation and loops in the NN architecture (→ identify recurring features 
in sequences). 

● Supports translation invariance of specific features (e.g. words) in sequences.

From „Understanding LSTM Networks“ (visited 30.05.22)
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● Inspired by unordered graph-like structures with arbitrary number of nodes (→ particle 
clusters, traffic networks, molecules, … ). Allows node, edge, and graph classification.

Graph NN (graphNN)

● Supports permutation invariance and versatility of the data.

Node features in 
embedding space
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Probabilistic generative NNs (PGNs)

● Applications
● GAN, VAE, normalizing flow
● Normalizing flow – in a nutshell

54/7
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Cool applications … 
● Create new examples based on (implicit) rules, learned from (unlabeled) training data (→ 

prime example of unsupervised learning). 

Example-1: Creation of non-
existing faces

Example-2: Coloring of b/w pictures

D. Kingma & P. Dariwahl Glow: Generative Flow 
with invertible 1x1 convolutions, NIPS 2018.

arxiv:1907.02392 Guess which picture is the original one
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Example-3: (Lossless [1]) 
compression of data

More useful applications … 

[1] Properties which are exclusive for normalizing flows.
[2] Either not analytically calculable or calculation generally unfeasible.

Examples-5: 
Error correction.

Examples-6: Approximation 
of untractable likelihoods [2].

Example-4: 
(Fast) simulation 
(→ sampling of 
likelihoods).

Example-7: Regularized 
unfolding [1].
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● Generator NN competing with (adversarial) discriminator NN (    ). Successful training, if 
cannot distinguish between „Fake“ and „True“ outputs. 

Generative adversarial NN (GAN)

Training data (real images)

Random noise Fake image

Generator NN

Discriminator NN

Fake/ 
True?

Backpropagation

● MINIMAX problem → convergence not quaranteed. 
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● Map samples of the input space (    ) into a (high-dimensional) latent space (   , Encoder) and 
back (Decoder).

Variational Auto Encoder (VAE)

● After training, the Decoder can be used to create new samples from    . 

From „Understanding variational autoencoders (VAEs)“ (visited 31.05.22)

NN encoder

NN decoderRegularized 
latent space

Sampling 
from latent 
spaceLoss function:

[1]

[1]
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● Transform a (presumably simple) source distribution          [1] into any arbitrary target 
distribution           by (repeated,) cleverly chosen bijective variable transformation(s)       .

Normalizing flow

Source 
distribution

Target 
distribution

Bijection

[1] This discussion is always with probability 
densities in mind.

[2]

[2] Originally     and     need to have same 
dimensionality (check also 1908.01686). 
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Properties of

Properties/constraints of     :

●      must be a bijection, thus invertible (with               );

● The Jacobian determinant                     should be easily 
calculable;

● both,     and     should be differentiable (→ backpropagation);

● Transform a (presumably simple) source distribution           into any arbitrary target 
distribution           by (repeated,) cleverly chosen 

●    should have an analytically closed form;
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Properties of

Properties/constraints of     :

●      must be a bijection, thus invertible (with               );

● The Jacobian determinant                     should be easily 
calculable;

● both,     and     should be differentiable (→ backpropagation);

● Transform a (presumably simple) source distribution           into any arbitrary target 
distribution           by (repeated,) cleverly chosen 

●    should have an analytically closed form;

●     is referred to as (forward) 
flow.

●     is referred to as (backward) 
normalizing flow.
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Properties of
● Transform a (presumably simple) source distribution           into any arbitrary target 

distribution           by (repeated,) cleverly chosen 

For reasons that will become clear 
soon people usually choose a 
standard Normal                 [1] as 
source distribution.

[1]

Properties/constraints of     :

●    should have an analytically closed form;

● The Jacobian determinant                     should be easily 
calculable;

●      must be a bijection, thus invertible (with               );

● both,     and     should be differentiable (→ backpropagation);

●     is referred to as (forward) 
flow.

●     is referred to as (backward) 
normalizing flow.
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Math prerequisites

● Change of variables and conservation of 
probability 

● Composition of bijections
● Normalizing flow model & training strategy
● Overview of concrete implementations
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Change of variables
●           can be obtained from           via conservation of 

probability:
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Change of variables
●           can be obtained from           via conservation of 

probability:

(Jacobian determinant)
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Example-1 

Here           is „streched“ over a 4 times 
larger volume in variable space.
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Example-2  

Q: Is this variable transform volume 
preserving/compressing/expanding?
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Composition of bijections
● A composition of bijections

is a bijection in itself, with the inverse                                             and the transformation 
formulas  

NB: Simple application of the chain 
rule. 
NNB: One can omit the   in the 
derivatives.
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Normalizing flow model

● The        to do so, are a priori unknown, but they can be approximated by any sufficiently 
expressive basic NN (                             .

● The objects to be learned are the bijections        (resp.       ). Knowing one implies knowledge 
of the other one. 

● A simple source distribution (e.g.                             ) can be transformed into any arbitrary 
(potentially unknown) target distribution          . 

Source 
distribution

Target 
distribution

54/22
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Training objective

               should match           as close as possible.

● Quantified by the Kullback-Leibler divergence           :

(Expected loss or risk)

[1]

[1]

Defining the log-likelihood 
ratio of the two distributions 
as loss.
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Training objective

               should match           as close as possible.

● Quantified by the Kullback-Leibler divergence           :

[1]

[1]

(Expected loss or risk)

Defining the log-likelihood 
ratio of the two distributions 
as loss.
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Training strategy
● Assume that we don‘t know          , but we can sample from it, e.g., via the Monte Carlo 

method (ignoring the          ).

Source 
distribution

Target 
distribution

● Train     in reverse order, in (mini-)batches of     simulated events, mapping     to the trivially 
known source distribution                .

(Risk functional)

(Empirical risk functional)
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Training strategy

Source 
distribution

Target 
distribution

● The evaluation happens in forward direction sampling from                .

(Risk functional)

(Empirical risk functional)

● Assume that we don‘t know          , but we can sample from it, e.g., via the Monte Carlo 
method (ignoring the          ).

● Train     in reverse order, in (mini-)batches of     simulated events, mapping     to the trivially 
known source distribution                .

54/26.1
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Inverse problem
● We use complex Monte Carlo simulations to obtain the likelihood            to observe    given 

the model parameters   .

●            is untractable; we can only sample from it.

● For measurements we are interested in the posterior            that can be obtained from 
Bayes theorem:

What we 
want to know

What we get 
from simulation 
(but we can only 
sample from it)
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Inverse problem ↔ normalizing flow
● The space of     can be high-dimensional and sampling from     tedious.

● The normalizing flow can be used to map               to           (during training). NB: This can still 
be tedious.

● In the forward pass (after training)           can be sampled with significantly reduced effort.

● Since the likelihood is never explicitly used, this procedure is referred to as „likelihood-free 
inference“.

What we 
want to know

What we get 
from simulation 
(but we can only 
sample from it)
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● Subject of research of normalizing flows: construct    such that the flow is expressive and         
    and               can be obtained at low computatonial cost. 

Concrete implementations

● We will focus on planar and coupling flows (viz. the RealNVP and cINN).

Taken from arxiv:1908.09257
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The planar flow

● Planar flow definition
● Jacobian determinant
● Backward flow

arxiv:1505.0577054/30
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Forward flow
● One of the simplest transformations one could think 

of is of the form:

● The argument                      of        defines a hyperplane in       perpendicular to    . The 
function         scales the shift along    depending on the distance of    from this hyperplane 
(→ planar flow).

● NB: If    is stretched depending on the distance from a fixed point this defines a radial flow.

●          shifts every point             parallel to    .

Taken from stackexchange (visited 04.06.22)
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Jacobian determinant
● The Jacobian determinant can be easily obtained (with complexity         ) from the 

matrix determinant lemma (MDL):

MDL
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Backward flow
● A peculiarity of the planar flow is that the existence of         depends on the choice of        and 

the parameters         .

● For                        the condition                  is sufficient for         to exist, as shown in 
1505.05770 (Appendix A.1).
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The RealNVP
arxiv:1605.08803

● Coupling layer definition
● Backward flow
● Jacobian determinant
● Permutation layer
● Conditional invertible NN (cINN) 

RealNVP = real-valued non-volume 
preserving
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● The main component of the RealNVP is the coupling layer: 

Forward flow 

● We assume the splitting of             to be arranged in the following way:                                  
(in python slicing notation).

● We assume the input to the coupling layer to be split in                    and apply the following 
transformation:

where     refers to an elementwise product, and        and        are abitrary neural NNs, called 
scaling and transition NNs. 
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Backward flow
● The inverse of        in this case can be easily obtained: 

●                   is just the identity. 

●          is just an affine function that can be easily inverted. 

● The use of            prevents division by 0.
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●      is a triangular matrix of which the determinant again is easy to calculate (with complexity    
        ) as the product of the diagonal elements:

Jacobian determinant 
54/37
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Training objective – revisited – 

Second reason to choose           for 
the scale in the affine transformation. 

               should match           as close as possible.

● Quantified by the Kullback-Leibler divergence           :
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Permutation layer
● The coupling layer transforms only      and leaves      untouched.

● This issue can be easily addressed by a subsequent permutation layer.

● Since permuations are volume preserving their Jacobian determinant is       .

Coupling layer Permutation 
layer

Forward direction:

Normalizing direction:

Coupling layer Permutation 
layer
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Conditional invertable NN (cINN)
arxiv:1808.04730 arxiv:2003.06281arxiv:1907.02392

Condition

● Assume            to be a pair of true (→   ) and observable (→   ) parameters from simulation.

Normalizing direction 
(for training)

Sample           from simulation and 
augment    with   . 
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Conditional invertable NN (cINN)

Condition

● Assume            to be a pair of true (→   ) and observable (→   ) parameters from simulation.

Forward direction 
(for application)

Sample    and augment with 
measured observables    . 
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Conditional invertable NN (cINN)

Conditioning 
NN

● Assume            to be a pair of true (→   ) and observable (→   ) parameters from simulation.

Forward direction 
(for application)

Sample    and augment with 
measured observables    . If the conditions are more complex, 

they can be run through a condition-
ing NN first. 

54/41.1
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● Inference of air shower properties from 
Pierre Auger

● Inference of full neutrino momentum for 
leptonic top quark decays at the LHC
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                                          Inference with air showers
54/43

● When detected on Earth charged cosmic rays carry 
a rich convolution of information:

● original source;
● path through the universe; 
● detection environment on Earth.

●             secondary particles;
Pierre Auger

Inference task
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Data model
● Assumed flux and spectrum of primary cosmic ray particles at their cosmic source:

@ cosmic source

Observed 
flux on Earth

Flux @ source

Forward simulation

[1]

[1] Pseudo data with statistical power as expected by Pierre Auger.

arxiv:2110.0949354/44
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Inference task

Task: infer                                                                           from the observable air shower 
properties    on Earth (→ 7D value space).

● Traditional approach: 

● Vary    until                   matches the observation    (of the pseudo data). 

● Propagation DB from forward simulation with varied assumptions for   .

● Estimate            with the help of Markov Chain Monte Carlo (MCMC).
● 4–6 h per Markov chain.
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Inference task

Task: infer                                                                           from the observable air shower 
properties    on Earth (→ 7D value space).

● Vary    until                   matches the observation    (of the pseudo data). 

● Propagation DB from forward simulation with varied assumptions for   .

● cINN approach:

● Using 6 cINN layers connected via the GLOW approach[1];
●         and         chosen as NNs with 3 layers of width 256 and ReLU activation each; 
● Augmented with 420 observables     (counts in bins of shower energy and shower maxima);
● Training (on 1M samples) 30h (on single GPU), evaluation O(sec).

[1] arxiv:1807.03039
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MCMC vs. cINN
MCMC cINN

Red line is the truth of the pseudo data.
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MCMC vs. cINN
54/48
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Top quark pair production at the LHC
● The CERN LHC is a top quark pair factory. 

54/49
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Top quark pair production at the LHC
● The CERN LHC is a top quark pair factory. 

Kinematic properties 
of the decay fully 
determined by 
measurement.
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Top quark pair production at the LHC
● The CERN LHC is a top quark pair factory. 

Infer kin. properties 
of the     from prior 
knowledge.

Kinematic properties 
of the decay fully 
determined by 
measurement.
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Top quark pair production at the LHC
● The CERN LHC is a top quark pair factory. 

Infer kin. properties 
of the     from prior 
knowledge.

Kinematic properties 
of the decay fully 
determined by 
measurement.
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Top quark pair production at the LHC
● The CERN LHC is a top quark pair factory. 

Infer kin. properties 
of the     from prior 
knowledge.

Two solutions w/o preference. 
Depending on exp. resolution 
cases with no real solution.

Kinematic properties 
of the decay fully 
determined by 
measurement.
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Top quark pair production at the LHC
● The CERN LHC is a top quark pair factory. 

Infer kin. properties 
of the     from prior 
knowledge.

Two solutions w/o preference. 
Depending on exp. resolution 
cases with no real solution.

Bias in view of 
experimental 
resolution.

Kinematic properties 
of the decay fully 
determined by 
measurement.
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cINN approach
● Conditioning observables (   ). 

● Targets (   ). 

[1]

[1] from previous 
slide

Conditional invertable network for neutrino regression (5th IML Workshop, CERN 2022)

[2]

[2]
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Comparison of inference methods

NN-based inference models are able 
to identify the correct solution (w/ high 
probability).

Flow-based inference model provides 
equal spread of probability where 
feed-forward NN „fails“.

● Individual case studies (                                            ,                                                  ):

Unambiguous event Ambiguous event
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Comparison of inference methods
● Ensemble study (                                            ,                                                  , ignore the 

red):

● Best reproduction of kinematic   -properties by flow-based model.
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Summary
● Normalizing-flow models are very interesting and promising for our field.

● They are mathematically clear, with many good properties in turn, and easy to understand.

● Most prominent features:

● Conservation of probability;
● Lossless compression;
● Applicability for unfolding.

● Most obvious and useful applications (presented here with two very good examples from 
Pierre Auger and LHC), both based on classical Monte Carlo techniques for training and 
exploiting cINNs:

● Sampling from untractable likelihoods/posteriors;
● Regularized unfolding („likelihood-free inference“). 
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Literature
● Literature you can use to get an overiew of the matter:

● J. M. Tomczak Deep generative modeling (Springer 2022).

● I. Kobyev et al, Normalizing flows: An introduction and review of current methods 
(arxiv:1908.09257). 

● U. Koethe, Solving inverse problems with invertable neural networks, (4th IML Workshop, 
CERN 2020). 

● Literature referred to on the slides. 

https://etpwww.etp.kit.edu/~rwolf/
https://link.springer.com/content/pdf/10.1007%2F978-3-030-93158-2.pdf
https://arxiv.org/abs/1908.09257
https://indico.cern.ch/event/852553/timetable/
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Backup

https://etpwww.etp.kit.edu/~rwolf/
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● What has been discussed so far, has been with real-valued inputs in mind.

Discrete inputs

● Discrete can be transformed into real-valued inputs by adding uniform random noise.  

● The following example is given for integer-valued inputs:

discrete continuous

https://etpwww.etp.kit.edu/~rwolf/
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