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ML APPLICATIONS

Augmented

Reality

ﬂ Near-Sensor Speech

. Processing Recognition

Data set containing N input-target pairs: & = {(X,4),..., X, Iy)}



Training: ~ O(1018) OPs
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Artificial Neural Networks (ANNs) deliver state-of-the-art accuracy for many Al tasks

.. at the cost of extremely high computational complexity




(PUBLIC) DATASET OVERVIEW

Image size Classes Dataset size @ SOTA error

60,000 o - Trains on my wimpy
MNIST 28x28x1 10 + 10.000 0.21% laptop in ~10min
Variable 73,251
SVHN (32x32x3) 10 + 26,032 1.69% =
(+ 531,131)
50,000 96.53% 3
o | ANEER A 32X 323 10 + 10.000 (accuracy)
50,000 75.72% 4
CIFAR-100 pEeierse 100 + 10.000 (accuracy) o :
3 Trains in ~10min, 1
| B\ {elii ] 224x224x3 1000 14M 4.49% (1OP-0) you had 2k GPUs

19.38% (TOP-1) 5
( ) (ResNet-50, M40s)

"Wan, L., Zeiler, M. D., Zhang, S., LeCun, Y., and Fergus, R. (2013). Regularization of neural networks using dropconnect. ICML
2 |ee, C., Gallagher, P. W., and Tu, Z. (2015). Generalizing pooling functions in convolutional neural networks: Mixed, gated, and tree. CoRR, abs/ 1509.08985.
3 Graham, B. (2014). Fractional max-pooling. CoRR, abs/ 1412.6071.
4 Clevert, D., Unterthiner, T., and Hochreiter, S. (2015). Fast and accurate deep network learning by exponential linear units (elus). CoRR, abs/1511.07289. 4
5 He, K., Zhang, X., Ren, S., and Sun, J. (2015). Deep residual learning for image recognition. CoRR, abs/1512.03385.



ANN TRENDS

Overfeat GooglLeN ResNet ResNet

LeNet5 AlexNet VGG-16

Top-5 error [%]
# CONV layers
Weights
MACs

# FC layers
Weights
MACs

Total weights
Total MACs

n/a
2
2.0k
283K
2

58K
58K

60K
341k

16.4
o
2.3M
c66M

3
58.6M
58.6M

61 M
724M

fast
14.2
5
16M
2.67G
3

130M
130M

146M
2.8G

et v1
7.4 6.7
13 57
14.7M 6.0M
15.3G 1.43G
3
124M
124M

138M /M
15.5G 1.43G

90

5.3

53
23.5M
3.86G

25.5M
3.9G

152
4.5
155
58M
11.3G

o0M
11.3G

FORWARD PATH ONLY. ADDITIONAL LAYERS (POOLING, BATCH NORMALIZATION, ...) AND ACTIVATION FUNCTION NOT INCLUDED.



EXTREME MISMATCH BETWEEN ANN COMPLEXITY
AND MOBILE PROCESSOR CAPABILITY
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XILINX Zynq

NVIDIA Xavier Raspberry Pi 3 B+

Ultrascale+ ZU19EG

Wattage 30W ~10W oW

Peak GFLOP/s 1,300 (325 images/s?) difficult 5.6 (1.4 images/s')
Total memory 16GB 2GB 1GB

In-core memory 2.9MB (2.8%2) 4.3MB (4.2%2) 2.3MB (2.3%2)
! based on theoretical peak GFLOP/s performance, 2 weights only, both for ResNet-50/ImageNet




EMBEDDED MACHINE LEARNING

Embedded like S e

Embedded systems as resource-constrained
devices

(For reasonable ML tasks, basically any
computing system is resource-constrained)

Embedded in the real world and exposed to
uncertainties

What will we learn?

Some DNN basics - language, notations,
(few) intuitions

DNN compression methods




LINEAR AND POLYNOMIAL REGRESSION

Learning, generalization, model selection, regularization, overfitting

With material from Andrew Ng (C5229 lecture notes) and Christopher Bishop
(Pattern Recognition and Machine Learning)



SUPERVISED LEARNING

Given such housing data, how can we learn to Living area (feet?) | #bedrooms | Price (1000%s)
predict other house prices? 2104 3 400
“Unseen data” 1000 g U0l
2400 3 369
Notation 1416 2 232
Input features x 30.00 4 51.10

Target variable (or output variable or label) A

Training sample (or observation) (x, tV)
Training set: set of all training samples (size V) Training set

Supervised learning problem: find good prediction
function y = hy(x)

Learning algorithm

0 (theta) are the parameters (weights) of the model

Classification (discrete) vs. regression (continuous)
problem




LINEAR REGRESSION

#bedrooms

Price (1000%s)

X Living area (feet?)
— I 2 2104
X = (X{,X)) = € |
41,27) X) 1600

2400
Supervised learning: choose function A 1416

y = hy(X) = 6y + 0,x; + 0,x,

3000

3

kN W W

Simplification given D model parameters:

D
hy(X) = h(X) = Z 0.x, = 0'x (model intercept 6, by x, = 1)

d=1

400
330
369
232
540

Learning: make /(x) close to t for the N training samples we have

Cost (or error or loss) function “how close is that”: J(0) = —

2

N

n=1

: Z (B — t(n))z

Least-squares method to find the optimal parameters by minimizing this sum of squared residuals



GRADIENT DESCENT

Choose @ such that J(60) is minimal

Start with initial guess of @, repeatedly perform gradient descent:

0,:=0,— agJ(Q) simultaneously for all d = 1,...,D and learning rate «
d

P N
/0 = aed Z () — 1% = Z;{ (gx) = 1) - — (Z 0:x) — 1) Z (hg(x) = 1)

Hint: remember chain rule of calculus - for f(x) = u(v(x)) f(x) = U (v(x))v (x)

=> Update rule: 6, := 0, + « Z (£ = hy(x™))x ™

n
Magnitude of update is proportional to error term

Which set of the training samples (elements 7) to consider for one update?

11



BATCH GRADIENT DESCENT

Only one global optima as J is a convex
quadratic function

Batch gradient descent: Vd € D

N
Hd — Hd -+ az (t(”) — he(x(n)))xcgn)

n=1 o 0-

Repeat until convergence

Looks at every training sample (Vn € N)
on every step

Number of steps depend on convergence
Guaranteed to be optimal, but expensive

Cost function
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STOCHASTIC (INCREMENTAL) GRADIENT DESCENT

Scanning the complete data set for every Cost function

step can be costly | /
Stochastic gradient descent is based on
randomly selecting training samples to | |

perform gradient descent '

for all nin N:

0, := 0+ a(t™ — hyx"))x";Vd € D | \
Repeat until convergence e
Makes progress for each training sample \

—4 -

Mini-batch Stochastic Gradient Descent considers

-
\l

a subset of the training set for each update (so- B 5 0 5 A
called mini-batch)



POLYNOMIAL CURVE FITTING

Training set: N observations of X = (x;,...,Xy)" and 10 -
T
t = (tl,...,tN)

Ground truth: ¢ = sin(2xx), but (Gaussian) noise present 0.5 -

SN (21X)
O training data

Many data sets have an underlying regularity, but observations
are corrupted by random noise

0.0 A

Objective: make good predictions y of new values X

Generalize from a finite data set o
Model: polynomial function of order of M

M
h(x, W) = Wy + WX + Wox” + ...+ wyxM = 2 w, x" o
m=0
Although Z(x, w) is a nonlinear function of x, it is a linear 15 - ©

function of the coefficients w => linear model 0.0 0.2 0.4 0.6 0.8 10



FITTING

SN[ 2rX)
O training data

Determine the coefficients w by fitting to NV Lo
training samples
N 0.5 -

1 2

Minimize error function E(w) = > Z (h(xn, W) —t )
n=1 00 -
Again: quadratic function of coefficients w

=> partial derivates (with respect to the coefficients) 0.5 -
are linear in the elements of w

=> unique solution w* -1.0 -

-1

M
But what about order M? hx, W) = Z WX
m=0

=> model selection 00 02 04 06 08 10
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MODEL SELECTION

O
0.0 0.2 0.4 0.6 0.8 10
M=3
O
O
] ] I ] OI I
0.0 0.2 0.4 0.6 0.8 10

M

1

15

0.0

0.2

10 -

0.5 -

0.0 -

0.0

0.2

0.4

0.6

0.8

10

= sin(2nx)
—— fitting
QO training data
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GENERALIZATION AND OVERFITTING

Good generalization: making accurate
predictions for new (unseen) data

Test set: here generated like the training set

Usually: split data set into training set and
test set, don’t show test set during training
time

RMSE

|ldentify overfitting
Training error: E(w*) for the training set

Test error: E(w™) for the test set

0.7 -

0.6 -

0.5 -

0.4 -

0.3 -

0.2 -

0.1 -

0.0 1

o)
‘l
>~
o—6—a
-~ Taining
-~ Test o)
0 2 4 b 8 10
degree
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MODEL SELECTION DEPENDS ON DATA SET SIZE

=
I

15 -

10 A

0.5 -

0.0 1

-1.0 -

-1.5

0.0 0.2 0.4 0.6 0.8 10

N=10

15

0.0 0.2 0.4 0.6 0.8 10

= sin(2mx)
= fitting

O

training data

18



REGULARIZATION

Regularization can control overfitting by adding 15 M=9
a penalty term to the error function
E(w) lﬁ‘,(m )= 1,) + 2wl
W) = — X,,W)—1, —||W
2 " 2
n=1
where ||w|| = w!w ”

/A governs the relative importance of the
regularization term

Such shrinkage methods reduce the value of the

0.0 -

coefficients U
Quadratic regularizer: ridge regression or 1o | — sinzm
. . . | —fitting (lambda=0)
weight decay or L2 regularization Binc Semstxie 00|
O training data

Validation set to optimize either M or A s L , . . , ,
0.0 0.2 04 0.6 0.8 10



REGULARIZATION

Regularization refers to a set of different methods that lower the complexity of a

neural network model during training to prevent overfitting

Many regularization approaches are based on limiting the capacity of models

Neural networks, linear regression, polynomial regression, etc.

A form of regression that shrinks (constrains, regularizes) the coefficient estimates
(weights, not biases) towards zero

Prevents the learning of complex models to avoid the risk of overfitting
Penalize the flexibility of a model

Trading increased bias for reduced variance

Profitable trade: reducing variance significantly while not overly increasing the bias

Regularizer examples: shrinkage methods (capacity reduction), early
stopping, dropout, weight initialization techniques, and batch normalization

20



-3.0E-02 7.8E-01 1.1E-02-3.2E+01 1.8E-01
-1.6E+00 9.3E+00 5.5E+02 5.3E+00
-2./E+01 -2.7E+03 -1.0E+01

1.7E+01 4.8E+03 -4.3E+00

2.0E+03 1.8E+00

-1.9E+04 4.5E+00

2.86+04 4.4E+00

-1.8E+04 2.4E+00

4.2E+03 -6.1E-01

-4 2E+00

Overfit (often?) correlates with large weights

15

10 -

05 -

0.0 -

MODEL PARAMETER ANALYSIS

M=9

\

/
O
| = sin(2nx)
- fitting (lambda=0)
fitting (lambda=0.001)
O training data
\)
0.0 0.2 0.4 0.6 0.8 10

21



AN INTUITION

& &
do do

Assume x; and X, are equal

Assume either one slightly changes

22



ARTIFICIAL NEURAL NETWORKS

Input data Convl Conv2 Conv3 Conv4 Convs FC6 FC7 FC8

P & & =9 =9 8

13 13 x 384 13x 13 x 384 13x 13 x 256
27x 27 x 256
§5% 55 X 96
1000

227% 227 x 3 4096 4096




ARTIFICIAL NEURAL NETWORKS (ANNS)

Kind of inspired by biology
Term “biologically inspired” is often a complaint
I= spiking neural networks

c.f. “non-differentiable”

More complex problems require more complex models

Informal term of “model capacity”

Curse of dimensionality: one pixel = one dimension

“Universal approximation theorems imply that neural
networks can represent a wide variety of interesting '&PYl; TTYDEE: OLliTYPEléT
functions when given appropriate weights”

Deep neural networks (DNNs) = increasing humber of hidden
layers

24



MULTI-LAYER PERCEPTRON (MLP)

E.g.: MNIST: 28x28 images in 10 classes => MLP with 28x28 inputs (X) & 10 outputs (y)

For neuron k of a given layer WEIGHTED EDGE

NEURON

f: non-linear function
(sigmoid, relLU, ...)
W: weight matrix

X: activation vector

b: bias vector (hidden)

Vector notation for layer /

x, = (W, - X INPUT  HIDDEN  OUTPUT
= JWi X)) LAYER  LAYER  LAYER

25



VECTOR AND MATRIX NOTATION

Matrix W, composed of elements w, i

Matrix = bold uppercase

Matrix element w; ; has row k, column j

Vector X, composed of elements X;

Vector = bold lowercase

Vectors are vertical, use x! for horizontal vectors

Matrix-vector multiplication

Length of the vector equals the number of columns of the o
matrix
y W X

Yk = Z(Wk,]x])) resp. y = W -x

J
Vector-vector multiplication (dot product)

a=2(bj-cj), resp.a=b-c' =c b’

J

26



MULTI-LAYER PERCEPTRON (MLP)

E.g.: MNIST: 28x28 images in 10 classes => MLP with 28x28 inputs (X) & 10 outputs (y)

WEIGHTED EDGES

EURON
PER NEURON NEURO

J
f: non-linear function
(sigmoid, relLU, ...) — =
W: weight matrix
X: activation vector
b: bias vector (hidden)
XO Wl Xl W2 y
Vector notation for layer [/

————r —> «—

x, = f(W, - X INPUT HIDDEN  OUTPUT  INPUT HIDDEN OUTPUT
l Iy l l_l) LAYER LAYER LAYER  LAYER LAYER LAYER

27



FORWARD PROP ON ONE SLIDE

(Deep) Neural Networks: L stacked processing units, where each unit
computes an activation function

x; =f(W,® x,_; + b,), for nonlinear activation function f( - ), linear operation &,
and weight matrix W, input activations X, and bias b of layer /

Bias vector b is usually encoded in the weight matrix W by introducing another
activation element which is fixed to (e.g., x, = 1)

Then a complete MLP with L layers is

YW, xp) =%x; =f(W, ©f(W,_,DS(... DWW, DXp))...)

Reminder: “Universal approximation theorems imply that neural
networks can represent a wide variety of interesting functions when
given appropriate weights”

28



EXAMPLE NONLINEARITIES

1 x;x >0
sigmoid: f(x) = => output in range [0,1] LeakyReLU: f(x) =<~~~ =~ ~ _=> no clamping to
1 + e ax,x < (
et —e™™ zero for negative inputs
tanh: f(x) = - — => output in range [—1,1] . Z 0
et + e~ X, X Z .
T ELU: f(x) = 4 => smoother gradient
ReLU: f(x) = max(x,0) => no negative output e —1x<0
sigmoid tanh RELU LeakyRELU
2 -
1- ./—_ /’\ -----
0 .____-r"/'i"‘~._.._ e’ b S
-1 -
-2 -
-5 0 5 -5 0 5 -5 0 5 -5 0 5 -5 0 :

Basically any non-linear function can be used

29



TRAINING OF DEEP NEURAL NETWORKS

training dataset

S L —
shuffle
I I I I 111 dataparallelism

mini-batch

forward prop forward prop

back prop back prop model parallelism

optimizer optimizer

sequential dependence

Greg Diamos, HPC Opportunities in Deep Learning, Stanford Computer Systems Colloquium, October 5, 2016

30



BACK PROP ON ONE SLIDE

Data set containing NV input-target pairs: 2 = {(X{, 1), ..., Xy, Iy)}

Training ANNs: adjust randomly initialized weights W to solve a given task by
minimizing a loss function &£ using gradient-based optimization

N
LW; D) = ) IW,x,),1,) + Ar(W);
n=1

based on a data term [/ that penalizes wrong prediction (error function); and
for a regularizer (W) such as Z1—norm or £2—norm and a trade-off hyperparameter A

Backpropagation: compute gradient for input-target pair and minimize the loss
function by iteratively calculating

0 0
W =W -y VwZ(W;9), for V, = (— . ) and learning rate 7

9 e 09
0X1 ox,

Key operations: chain rule of calculus, partial derivative and all-reduce

31



EXAMPLE LOSS LANDSCAPES IN MODERN ANNS

Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein. 2018. Visualizing the loss landscape
of neural nets. In 32nd International Conference on Neural Information Processing Systems (NIPS'18)

32



CONVOLUTIONAL LAYERS



CONVOLUTIONAL LAYERS

//

Fully- connected layer Convolutional layer

Receptive field: spatially local correlation (patches)
Shared weights: as each filter is applied to all patches of the input

3D layers: “depth” of one layer is the number of filters (kernels)
learned



CONVOLUTION OPERATION

Filter  Input  Output
“WEIGHTS” “INPUT ACTIVATIONS” “OUTPUT ACTIVATIONS”

Input Fmaps N 1
Filters Output Fmaps 4
. +* ..0 7

CHANNEL 1 CHANNEL 2 TOeplitZ CHANNEL 1

FILTER 1 + 2

CHANNEL 2

CHANNEL 1

© 0 6 O © OO O O

CHANNEL 2

Convolutions increase data reuse, but are usually still mapped to matrix operations

V. Sze, T.-J. Yang, Y.-H. Chen, J. Emer, "Efficient Processing of Deep Neural Networks: A 35
Tutorial and Survey,"” Proceedings of the IEEE, vol. 105, no. 12, pp. 2295-2329, 2017.



CONVOLUTION EXAMPLES

No padding, Padding, No padding,
No strides No strides Strides

36



-
N
-

N _-
A
- N

-
N

Transposed,
No padding,

NoO strides

CONVOLUTION

Transposed,
No padding,
Strides

Dilated,
No padding,
No strides

37



CONVOLUTION

C—-15-1R-1
O[]yl = ), ) ) MZIKI[Ux + il[Uy + j1 - WLal[KI[i1[/] + B[u]
k=0 i=0 j=0
ofmap O, ifmap I, filters (weights) W, and biases B E=H-R+U)/U
ofmap = output filter map (output activations) F=W-=S+U)/U

ifmap = input filter map (input activations)

N Batch size (3D tmaps) O0<=z<=N
M number of 3D filters / number of ofmaps O<=u<=M
C number of ifmap/filter channels
H/W ifmap plane height/width
R/S filter plane height/width
E/F ofmap plane height/width O<=x<=F0<=y<=E
U stride

V. Sze, T.-J. Yang, Y.-H. Chen, J. Emer, "Efficient Processing of Deep Neural Networks: A
Tutorial and Survey,” Proceedings of the IEEE, vol. 105, no. 12, pp. 2295-2329, 2017.

38



FC AS SIMPLIFIED CONV LAYER

C—-15-1R-1

OLI[ulX]y] = ), Y ) MZIkI[Ux + il[Uy + j1 - WL[KI[i1[/] + B[u]

k=0 i=0 j=0
withH=R W=S8E=F=1andU =1

(read: filter size = input size, output per “filter” is a single element, no stride)

CHW

filters ifmaps ofmaps

39



EXAMPLE MODEL ARCHITECTURE

Input data Convl Conv2 Conv3 Conv4 Convs FC6 FC7 FC8

=p =9 -

13x 13 x 384 13x 13 x 384 13x% 13 x 256

27x 27 x 256

55X 55 x 96

1000

227% 227 x 3 4096 4096

AlexNet: Alex Krizhevsky et al., “ImageNet Classification with Deep Convolutional Neural Networks”, NIPS 2012.



EFFICIENCY METRICS

Parameters Units

(weight state) (activation state)

MAC; = WHCO W, = WHCO Ug= 0O
Convolution MAC. = (EF - RSC) - M W, = RSCM U.= EFM
Grouped MAC,, = MAC. W = e U., = EFM
convolution g g cg g c8
Depthwise
separable MAC_.,, = EF - (RSC + CM) W_.; = RSC+ CM U, =EFC+EFM

convolution

41



QUANTIZATION AS UNSAFE
OPTIMIZATION

42



DNN REQUIREMENTS

| pickup jelly fungus elderberry titi T T T
beach wagon gill fungus |ffordshire bullterrier indri 0 2 4
fire engine ad-man's-fingers currant howler monkey

78 -
S DNNs are extremely compute
> 76 , and memory intensive
— “m".'a:::ﬁ: cooter Gpard © <;i/ ResNet50: 3.87 GFLOPs
. —— Example ImageNet task with
i Ty Restiext. 224x224 pixels
8- - Mob?leNetVl ]
= 72 —9—thobacncna Accuracy scales with
' gvertible agaric e:lym-tl-h : 'c:‘::kaet; ¢ COmPUtationS and memory
| grmoi:{ mushroom grape spider monkey 70 -

8 10 ResNet50: 76% accuracy at

FLOF’6 G
(o] 3.9 GFLOPs, 102MB

parameter and 18/MB

~
0
1

Topl accuracy [%]

~l
N

70 A

~J
(o))
1

ResNet50: 102 MB

~
NN
1

—&— ResNet
-0~ ResNext

—&— DenseNet
—&— MobileNetV1
—&— MobileNetV2

Topl accuracy [%]

200

Parameter [M]

78

74 A

70 -

—&— ResNet
—&— ResNext
—&— DenseNet
—&— MobileNetV1
—&— MobileNetV2

350 400

Activations [MB]

activation

Objective: reduce
computations and memory
while maintaining prediction
quality



DNNS SIMPLICITY WALL

Simplicity wall: DNNs spend most of their time in matrix multiplications

Predictability, static loop-trip counts, little control overhead

Safe optimizations: use without restraints, no
implication towards model’s/workload’s accuracy

Shorter communication paths

Data reuse to minimize data volume being transferred

=> Dedicated architectures
Unsafe optimizations: potential implications towards model’s/
workload’s accuracy

Reduce number of operations & model size: compression, pruning

Reduce precision of operations and operands: quantization (fixed point, binarization)

Brandon Reagen; Robert Adolf; Paul Whatmough; Gu-Yeon Wei; David Brooks; Margaret Martonosi, "Deep Learning for Computer 44
Architects”, Morgan & Claypool, 2017, doi:10.2200/500783ED1V01Y201706CAC041



QUANTIZED NEURAL NETWORKS

18 l
] ] ] a .
' ' ' Weight distribution

16 - : , , - = |Interval thresholds |-
Vo A

14 + 1 1 1 ! ! !
' ' ' ' ' '
1 1 1 1 1 1

12+ ! ! ! ! ! 1
. 51 ol T 5! ol gl

10 j—Sj—Q : Hj +Qj +3

81 ' ' ' ' |
1 1 1 1

ol - L —
1 1 1 1
' ! - !

41 | | 1 7
1 1
! - '

2} 1 DI -
1

0 T'ﬂTE‘- ! l L:[[H:D:III&DID:

-0.10 —-0.05 0.00 0.05

Binary
Ternary

Quaternary-

Quaternary+

N-Ary quantization [1]

Uniform

{-1,+1}
-1, 0, +1}
Na

Na

Non-Uniform

{Wp, Wnj
{We, 0, Wnl
{\/\/p, O, V\/n,O, V\/n,1}

(Wp.0 We.1, 0, Wnl

Bits

2

2

[1] Schindler, G., Roth W., Pernkopf, F., Froning, H.: N-Ary Quantization for CNN Model Compression and Inference Acceleration.

45



UNIFORM QUANTIZATION

Quantizer Q: piece-wise constant function

Input values in given quantization interval mapped to Ox) =g, Ifx e @, 1,]
corresponding quantization level

Apply to activations/weights(/gradients) quantization s quantization

, L o level | intervals
Uniform quantization if all levels are equidistant ERIEGIEN

9.1 — ¢; = A, Vi, where A is a constant quantization
step

Limited model capacity O(x) = {

Easy to store & compute (log,(L) bits without the
quantization levels)

+1:x>0

—1:x<0
Example for binary quantization

(sign function)
Easy to compute if A & W quantized identically

Keep activation function in mind when quantizing

46



EXAMPLE (UNIFORM) QUANTIZATION USING K BITS

O 1 2 4 O 8

Real number 00
a; € |0,1] p :;
K-bit fixed-point integer 0.75 /
al.q e [0,1] 7
Quantizer [1] 0.50 /
1 A
al = - : round((Zk — 1)ai) Z
28 =1 0.25 /
Assuming e.g. 10 possible input 7
values (X-axis), one can reason é
- - 0.00
about quantization error 0 01 0.2 03 0.4 05 0.6 0.7 0.8 09 1
[1] Shuchang Zhou, Zekun Ni, Xinyu Zhou, He Wen, Yuxin Wu, and Yuheng Zou. Dorefa-net: Training low bitwidth convolutional A7

neural networks with low bitwidth gradients. CoRR, abs/ 1606.06160, 2016. URL http://arxiv.org/abs/ 1606.06160.



NON-UNIFORM QUANTIZATION

Non-uniform quantization improves model
capacity

Storage: log,(L) bits plus the levels

Computation: requires quantization level g,

Trainable quantization levels (scaling
factors) to adapt to weights/activations

Ox) =gq; Itx e (t, 1]

quantization quantization

level | intervals
(L total)

WP :w, > A

A, =1t-max(|w|);t € [0,1]
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RELATED WORK QUANTIZATION

SW quantization concepts AlexNet/ImageNet accuracy (%) for state-of-the-art quantization

A-Ww D€eP NN XNOR DoReFa TWN TTQ HWGQ 2€eP
Cmpr. Chip

Weights Activations

=1+ =1+1) cvrev) 803 802 802 803 803 803 815
{-S,+5} {-1,+1} 32-8/ Ik
{-S,+S} 0,41} 32-2 768 797 |
(-S,0,+S}  float3?2 8-2 190
32-1
{-Sn,0,+Sp}  float32 5.1
XNOR 2bit 1-1 504 692 693

Key observation: DNNs contain plenty of redundancy

Nonuniform quantization outperforms uniform quantization

Wolfgang Roth, Gunther Schindler, Bernhard Klein, Robert Peharz, Sebastian Tschiatschek, Holger
Froning, Franz Pernkopf, Zoubin Ghahramani, Resource-Efficient Neural Networks for Embedded Systems.
ArXiv:2001.03048 [stat.ML], Dec. 2022. http://arxiv.org/abs/2001.03048


http://arxiv.org/abs/2001.03048

QUANTIZED NEURAL NETWORKS

Improvement of QNNS [1]

5
2 I O S Memory FOOtprlnt
i ~— Latency: integer logic
~— Latency: bit-serial
T 23 L NN NG e S
O E
S ?
(0] 2 < ...............
4= z
'E 7 .
> |
O 20 L K e T N .............
> 5
8 O b o e e e e e i in ok e X i i m i 2 ,_5;; ..............
Q |
g p 2 PO SR AUSR S SU ...............
2 S A N .............
2'4 .. Lo e e e e e I P oo e e e e e e e e ...............
24

20 2 22 23
Bit width of operands

[1] Schindler, G., Mlcke, M., Froning, H. Linking Application Description with Efficient SIMD Code Generation for Low-Precision Signed-
Integer GEMM, 10th Workshop on UnConventional High Performance Computing 2017 (UCHPC 2017), in conjunction with EuroPAR 2017.

[2] Roth, W., Schindler, G., Zohrer, M., Pfeifenberger, L., Peharz, R., Tschiatschek, S., Froning, H., Pernkopf, F., Ghahramani, Z.

Test error [%]

34

32

W
o

N
(0 0)

N
(o)}

24

22

Degradation of QNNs [2]

|
s —— Baseline
"\Eg‘_"\\"et ¢ Activations
' ¢ Weights
e e e e . . ... .- R g A P ‘ Weights+ACtivatiOnS
o— Lg-Net
o BWN
L et resrs e eeEesEs s e e Lqut .........................................................................
I .,\Lqut ......................................
TTQ
DoReFa__,  Lg-Net o—La-Net
o L o . UUREhd_¢ LEgeNeR L e La:Net-
>—
| |g-Net DoReFa th -Net
1 2 3
Bits

Resource-Efficient Neural Networks for Embedded Systems. https://arxiv.org/abs/2001.03048
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DEEPCHIP’S REDUCE-AND-SCALE

Quantization (and pruning) for mobile ARM processors
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DEEPCHIP: MODEL COMPRESSION FOR DEEP LEARNING
ON RESOURCE-CONSTRAINED DEVICES (2016-)

DL-based speech & image processing for resource-constrained devices

Trading among precision, model size and accuracy

Preferred: no accuracy loss compared to state-of-the-art

Reduced precision (quantization), sparsity and asynchrony

1. Inference architecture suitable for various
embedded processors

K o

,f»x;—a"#iwe—‘

.::'_.‘ st

S et

'é,l;’ Ft‘?‘

‘ ‘. . > i “ 3
w- Ao s .;"~‘

T ¥l o I Bibaret

2. New neural networks concepts with partlcular o e

low requirements = - —
4 PREDICTION EFFICIENT

| REPRESENTATION_

-
\°§A
~Nx

3. Software inference architecture oU ALITY
based on quantization and pruning e

4 COr’IPUTATlONAL
EFFICIENCY

4. Exploring applicability to various processors '

Collaboration with SPSC group @ TU Graz

http://www.deepchip.org 52
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DEEPCHIP: SW ARCHITECTURE FOR
QUANTIZATION

System/User System Information

Quantizer :
Constraints

Parameter

. Converter
TensorFlow e, ..

Parameter

..................................

Compiler/
Synthesizer

GPU 0O

ydeus elay

Model

GPU 1
. Converter

System Information

GPU n

Glnther Schindler, Matthias Zohrer, Franz Pernkopf, and Holger Froning, Towards Efficient Forward Propagation on Resource-Constrained 53
Systems, European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML-PKDD 2018).



TRAINED TERNARY QUANTIZATION

Train full-precision weights & train scale factors for ternary

D .
weights (hyperparameter f) Vvl LW >4,
1. Normalization: weights in range [—1, + 1] w; =14 0wl <A
2. Quantization by thresholding: {—17,0, + 7} -W'iw, <=4

3. Learning ternary assignments: gradient to full-precision weights

4. Learning ternary values: gradient to scaling factors Al t-max(jw));t € [0,1]

Normalized Trained
Full Precision Weight Full Precision Weight Intermediate Ternary Weight Quantization Final Ternary Weight
. ' I I Scale l I

-1 0 1 . . ‘Wn 0 % Wp

gradient1 gradientz “*-.0:.

— Feed Forward «+---- Back Propagate Inference Time

Chenzhuo Zhu, Song Han, Huizi Mao, and William J. Dally. Trained ternary quantization. CoRR, abs/
1612.01064, 2016. URL http://arxiv.org/abs/1612.01064
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REDUCE-AND-SCALE QUANTIZATION

Weight quantization to ternary values W w> A
according to TTQ w =4 0:|w| <A
Scale factors { W,, W, }: independent + -Wiiw <=4

asymmetric, trained using SGD
4 > A, =t-max(|w]);t € [0,1]
Hyperparameter t => trading among

accuracy and space

Bounding activations, quantization to 0 -

i, <0
fixed point (flexible bit-width &, a=19d:0<d <1
DoReFa) 1:a,>1
Bounded ReLU => () < a. < 1 1
oundea REEE = U =4 = al = round ((2% — 1)al-)
cf. TTQ using floating point L 2k—1]



PARAMETER CONVERTER

Space-efficient data structures . o w/ w/ o wp
_ n p
Intermediate matrices I;’ and [ Wi = 3229 W%” 8 Ilj[‘//ll” I/I%”
Indices vector 1; based on WZT
Run-length encoding of weight 1 9 _ 14— _
matrix =3 — - — o = ~—
Non-zero values + signs 0O — — 1 3 5
Only sign and distance vector
stored
=> Reduced cardinality Signs S; = (O 0 1 1 0 0 1 1 1)
Compression using Huffman  Indices 1; = (1 2 4 5 8 10 11 13 14)
coding (not shown) Distanced; = (1 1 2 1 3 2 1 2 1)
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OPERATOR LIBRARY - REDUCE & SCALE

. . N
Saving complexity o — E ( Wi aq, Wi, a cR Vi
1=

1. Reduced precision '

2. Sparsity
3. Only partial sums and two D
multiplications C — Wl ‘ Z a; 1 Wzn ‘ Z a;, where
More general: one multiplication L€l =t
per quantization level (n-ary) iy = {i|b; =W;} and i = {i|b; =W}
MULT vs. ADD AlexNet/ImageNet

Cycles [ARM] Energy (pJ)
(normalized) [Horowitz]

Baseline BNN INT8 DeepChip

Top-5 Accuracy [%] /8.3 56.4
Sparsity [%] 0.0 0.0 0.0 63.0
Inference Rate [FPS] 4 22 / 8
Memory [MB] 244 24 061 25

Instruction

float32 FMA
int16 FMA
int16 ADD

" Authors claim no change in accuracy 57



N-ARY QUANTIZATION (NAQ)

Up to now: all good for ConvNet+SVHN, AlexNet+ImageNet,
ResNet-44+C|FAR-10

l.e., complex model + simple data, or simple model + complex data

But: quantization depends on complexity(data) & complexity(model)

Non-uniform n-ary weight representations

Multiple scale factors, cost-effective nested-means clustering

18

16

14

12

10

SO N & o ™

I Weight distribution

- = |nterval thresholds

hisl el ipl
10, 110,940 3

R

-0.05

:
0.00

LQNet
RaS - ternary

LQNet

Ra$S - quinary

ResNet-18/ImageNet

Weights Activations
[bit] [bit]

Training

Top-5

[%]
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PRUNING

Basics and structured pruning



MODEL COMPRESSION

Quantization Pruning
Data type Unstructured vs. Structured
Number format, representation, bit width? Magnitude based, magnitude+x, regularization?
Homogeneous or heterogeneous Homogeneous or heterogeneous
Layer, filter, neuron, weight Layer, filter, neuron, weight
Efficiency depends on HW Efficiency depends on HW

pruning
synapses

- - >

pruning
neurons

-—>

Song Han, Jeff Pool, John Tran, William J. Dally, Learning both Weights and Connections for
Efficient Neural Networks, NIPS 2015, https://arxiv.org/abs/ 1506.02626
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UNSTRUCTURED MAGNITUDE-BASED PRUNING

Many parameters, so pruning methods have to be computationally cheap

Early work considers second- and first-order Taylor expansions on the Hessian of the loss function, which is
not cheap at all

1. Pruning granularity: fine-grained pruning (individual weights) is most accurate

Possibly difficult to exploit sparsity on massively-parallel processors

2. Pruning procedure: when to remove weights

Neurons can also be removed if all associated weights are pruned

2a. One-shot pruning  2b. Iterative pruning 2c. Automated Gradual Pruning [1]

Training Training Training I

10x

Pruning Pruning Pruning

Fine-tuning

[1] Michael Zhu, Suyog Gupta, To prune, or not to prune: exploring the efficacy of pruning
for model compression, https://arxiv.org/abs/1710.01878

0 20 40 60 80 100
Pruning step
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UNSTRUCTURED MAGNITUDE-BASED PRUNING

3. Pruning criteria: which connections to remove, i.e., which weights
to set to zero

3a. Weight fraction pruning

Remove smallest weights among all weights, e.g. based on a certain
percentage

Sparsity in percent is known a-priori

3b. Weight magnitude pruning
Remove weights below a certain threshold: |x;| < ¢
Sparsity in percent is not known a-priori

3c. Gradient magnitude pruning

Multiple weights by their gradient before thresholding: |x; - g;| < ¢
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RECAP: L1 VS L2 NORM FOR LOSS FUNCTION

31— L1 gradient
20 - L2 gradient
2 -
15 A 1 -
\ / 0 -
10 - '
-] -
0.5 -
-7 -
= L1 norm
0.0 - L2 norm _3 -
-1.5 -1.0 -0.5 0.0 0.5 10 15 =15 1.0 -0.5 0.0 0.5 10 15

Rpw) = llwll, =) [w]
J

1 1
I _ 2
Rr(W) = ) Wil = 2 zj Wi



VALUE OF PRUNING

-O-2 regularization w/o retrain
L1 regularization w/ retrain
~®-L2 regularization w/ iterative prune and retrain

-A-L1 regularization w/o retrain
-O-L2 regularization w/ retrain

Top-5 accuracy for
AlexNet/ImageNET

0.5% % Without retraining, L1
0.0% [reerwwseeedyrrr regularization is the
05% [ T e " best option
o -1.0% o | -
2 With retraining, L2
— '1.50/0 *S . : 3
2 0o regularization is the
£ 0 best option
8 -2.5% \‘
<C o A Y 3
-3.0% Retraining is
-3.5% | mandatory to recover
-4.0% : from accuracy loss
-4.5% =
40% 50% 60% 70% 80% 90% 100%
Parametes Pruned Away
Song Han, Jeff Pool, John Tran, William J. Dally, Learning both Weights and Connections for 65

Efficient Neural Networks, NIPS 2015, https://arxiv.org/abs/1506.02626
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RETRAINING CHANGES WEIGHT DISTRIBUTIONS

X 1{ 0° | | Weight (Iiistributi?n before]pruning | | | X 104I | Weighlt distribultion afte]r pruning]; and retrIaining | |
10 - 10 n
9 . 9 .
8 . 8 .
7 - 7 -
§ 6 . ‘5 6 -
O 5F - O 5f 2
4+ . 4t -
3| . 31 .
21 . 2 .
1+ . 1+ -

0—0.&)4 —0.[03 —0.62 -0.01 Weigh% Valus 0.01 0.62 0.I03 O.IO4 0 -O.IO4 -O.IOS -0.02 -0.01 Weigh(: Valueo-m 0.02 0.103 0.64
Song Han, Jeff Pool, John Tran, William J. Dally, Learning both Weights and Connections for 66

Efficient Neural Networks, NIPS 2015, https://arxiv.org/abs/ 1506.02626
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PRUNING GRANULARITY

Fine-grained pruning is most accurate

Possibly difficult to exploit sparsity on massively-parallel processors

Coarse-grained pruning is fastest/most effective on processors

Massive parallelization requires structure in the computation (see performance bugs
for GPUs such as memory coalescing, branch divergence, vectorization for CPUs)

Overhead on the example of compressed sparse row (CSR) coding

Directly addressable in dense format Indirect addressing in CSR format
05 30 Row pointerr e Rl = 2 5 5 §)

DelRMXNg (1) 8 g ColumnindexieR'=(1 2 01 3 0 2 3)

2 0 1 4 Dataarrayd € R”=(5 3 6 1 4 2 1 4)

Space complexity: I and D are data-dependent

16 vs 21 elements
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STRUCTURED PRUNING

| "Rt EiEE N ..l |
aE et S M. .. N |
ma e EEEE M. .. N |

(a) Weights  (b) Columns (c) Channels (d) Shapes (e) Layers

Consider z = g(W @ Xx)

For nonlinearity g(), weight tensor W, input activation vector X, linear operation @ (e.g., convolution, fully-connected)

Divide tensor W into sub-tensors {w;}
So that each w; = (w; ;)'_, constitutes the /m weights of structure i

Structures can be of arbitrary shape

Desired: learnable structured sparsity in W => parametrization of sub-tensors

Make parametrization part of back propagation



PARAMETRIZED STRUCTURED PRUNING (PSP)

| "Rt EiEE N ..l |
aE et S M. .. N |
ma= e A M. ...l

(a) Weights  (b) Columns (c) Channels (d) Shapes (e) Layers

During forward propagation, substitute sub-tensors w; with structure-sparse subtensor (; = W; - .

Gradient of structure parameter ¢; is calculated using chain rule, thus descends towards the predominant direction of the weights

O:|v:| <e€
Pruning for L2 regularization based on thresholding function a,(v;) = { | l > for tunable threshold €
v, |v;| 2 €
As v;() is not differentiable, use STE instead: 0E/0dv; = dE/oa;

Backprop updates dense parameters v;, so improperly pruned structures can reappear during training

Forward path uses sparse parameters a;() instead

Glnther Schindler, et al., Parameterized Structured Pruning for Deep Neural Networks, 6th International
Conference on Machine Learning, Optimization, and Data Science (LOD 2020). Best paper finalist.
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PARAMETRIZED STRUCTURED PRUNING (PSP)

Thus, gradient of ¢, is calculated following the chain
rule

Trained together with weights using gradient descent based

on loss J, but regularized and pruned independently "

ResNet-56/CIFAR10 (column pruning)

Update rule #1: = Jaseine
d] v—v PSP (fixed sparsity)
Aa. r + 1) := ula(t) — An - a(t ,_, =—a PSP (|1 regularization)
l( ) H l( ) m aai(t) 4 ’( ) § 9 «—& PSP (weight decay)
Update rule #2: E sl
Aa(t+ 1) ;== uAa(t) —n An - sign(a,(1)) s e
oa;(1) T LS § —
o . ) © 6 , b S :
Surprisingly, option #1 performs better than option #2 -~ S |
Different learning dynamics, seen in weight distributions o .
L2 produces unimodal, bimodal and trimodal distributions A J , 1 J L J o
with clear distinctions, while L1 lacks those distinctions o 20 50 4050 60 7080 90
Col-wise sparsity [%]
Glnther Schindler, et al., Parameterized Structured Pruning for Deep Neural Networks, 6th International 70

Conference on Machine Learning, Optimization, and Data Science (LOD 2020). Best paper finalist.



MORE READING

Jonathan Frankle and Michael Carbin, ‘The lottery ticket hypothesis:
Finding sparse, trainable neural networks’, in ICLR2018

Hypothesis: inside a large network, only a sub-network together with its
initialization makes the training effective (combination == “winning ticket”)

Then: training the winning ticket in isolation is equal to the large network

Example for unstructured pruning

Zhuang Liu, Mingjie Sun, Tinghui Zhou, Gao Huang, and Trevor
Darrell, ‘Rethinking the value of network pruning’, ICLR2019, https://

openreview.net/forum?id=rJInB3C5Ym
Contradicts the lottery ticket hypothesis

Main differences: structured pruning, model architectures, rather large learning
rate, data set complexity (from MNIST/CIFAR-10 to ImageNET)
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WRAPPING UP
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HARDWARE LOTTERY HYPOTH ESIS

\ ,,‘ \¢ w x r‘\‘»/,: \
. (LN L “\ é

“Tooling [...] has played a disproportionately large role in
deciding which ideas succeed and which fail”

HW determines which ideas succeed

ANNs == matrix-matrix ops == excellent performance of GPUs

Most ML researchers ignore hardware

Recent trends

Convolutions and transformers (attention heads, based on softmax)
GPT-3: 175B parameters (800GB of state); Alphafold-2: 23TB of training data

What if another processor was existing, e.g. excelling in processing large graphs?

Probabilistic graphical models, sum-product networks, graph neural networks, etc.?

Datasheets for Datasets * Q&A with ScottA ooooooo
Digital Agriculture « Speculative Taint Tra

e —— s
= — _— - P ——— B . . — ——#‘

@CESSOR SPECIAlem'lON 5 CONS!DERARmFUL FOR INNOV ATIC j,

— — s —™T™ ——

Sara Hooker. 2021. The hardware lottery Commun ACM 64, 12 (December 2021), 58 65. https [/ dm org/ 10 1145/3467017 73
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Recommended textbooks

Goodfellow et al. - Deep Learning (https://www.deeplearningbook.org)

Bishop - Pattern Recognition and Machine Learning (https://
www.microsoft.com/en-us/research/uploads/prod/2006/01/Bishop-
Pattern-Recognition-and-Machine-Learning-2006.pdf)

Reagan et al. - Deep Learning for Computer Architects (https:// = _._:” > g mm" E—
doi.org/10.2200/S00783ED1V01Y201706CAC041) ‘

Wolfgang Roth, Gunther Schindler, Bernhard Klein, Robert
Peharz, Sebastian Tschiatschek, Holger Froning, Franz e

Pernkopf, Zoubin Ghahramani, Resource-Efficient Neural
Networks for Embedded Systems. ArXiv:2001.03048 [stat.ML],

‘Wolfgang Roth ROTH@TUGRAZ.AT
Graz University of Technology, Austria

° Laboratory of Signal P and Speech Ct
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More information sources
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Abstract

‘While machine learning is traditionally a resource intensive task, embedded systems, au-
tonomous navigation, and the vision of the Internet of Things fuel the interest in resource-
efficient approaches. These approaches aim for a carefully chosen trade-off between perfor-
mance and resource ion in terms of ion and energy. The development
of such approaches is among the major challenges in current machine learning research
and key to ensure a smooth transition of machine learning technology from a scientific
environment with virtually unlimited computing resources into everyday’s applications. In

® this article, we provide an overview of the current state of the art of machine learning tech-
niques facilitating these real-world requirements. In particular, we focus on deep neural
° networks (DNNs), the predominant machine learning models of the past decade. We give

openreview.net

arXiv:2001.03048v2 [stat.ML] 9 Dec 2022

a comprehensive overview of the vast literature that can be mainly split into three non-
mutually exclusive categories: (i) quantized neural networks, (ii) network pruning, and (iii)
structural efficiency. These techniques can be applied during training or as post-processing,
and they are widely used to reduce the computational demands in terms of memory foot-
print, inference speed, and energy efficiency. We also briefly discuss different concepts of
embedded hardware for DNNs and their compatibility with machine learning techniques as

1
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SUMMARY

Artificial NNs are universal function approximators

Deep (many layers), thin (few parameters per layer), multi-branch
(Inception, ResNet, DenseNet)

Pervasively used, important for society

Playground for safe and unsafe optimizations

Simplicity wall - plenty of structure and regularity (applies at least for NPUT . Hiopen OUTPUT
most models as of today) LAYER LAYER  LAYER
Quantization and pruning as main methods for model compression, further Wp . A
include network architecture search and knowledge distillation ] - Wl > /

Native support in PyTorch for (basic) pruning & quantization Wli — 0 : ‘Wl‘ S Al

Main pitfalls

Model compression should always include re-training

Accuracy is often only repeatable within a +/-1% interval

Everything depends on model & data & HW

Open questions: uncertainty, truthworthiness, interpretability, EFA
democratization, continuous learning, .... DEEPCHIP

s

http://www.deepchip.org 75
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NEED TO ADDRESS UNCERTAINTY
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PERFORMANCE SCALING

Perf Instgyzicl?:ons frequency CLASSICAL DENNARD
:r—/ ﬁ: SCALING
x PipelineCount - PipelineDepth scales with feature size
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i Specialization —> heterogeneity and asymmetry ‘}
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l e = P— = = — . —— > —— B — —— ————— —————— = P— = —_— —_— . ——.— - — ——
—_———— L — —_— —_——— —— —_—— L A e — —————— —_ e = =
—— ——— —— . — — — — = —_— — B _ — — == —= o _ = —_— — —_— _—— _

Partly by Bill Dally, Sudha Yalamanchlll (UCAA Workshop, 2012) -
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DISCUSSION: LEARN TO LOVE THE PICOJOULE

Integer

Computations: reducing precision, number format, ADD instead of MULT
ADD scales with 7, MULT with n? (n=bit width)
Memory exploit locallty

- e —— N — R — e
— e —— ———— —_— e — —_— - ,E"———h,&"—(‘f—’
—_——
‘ |

| NEED FOR REDUCED PRECISION AVOID r’lEr’IORY ACCESSES

— 4 e — | — - . -

table data: M. Horowitz, "1.1 Computing's energy problem (and what we can do about it),” 2014 IEEE International Solid-State
Circuits Conference Digest of Technical Papers (ISSCC). doi: 10.1109/1SSCC.2014.675732 32



BOPS: BIT OPERATIONS

Wanted: abstract metric to compare
different model compression
techniques

MACs not appropriate for custom data
types

For a convolutional layer with

b,, bit weights, b, bit activations, n input
channels, m output channels, k X k filters

Maximum output value is then about
2ba+bwnk2

Accumulator: b, = b, + b, + log,(nk?)
BOPScony = mnk*(b,b, +b,)

Disclaimer: only for fixed point, floating
point requires additional extensions

Accuracy [%]

{ B ResNet-18 ®
751 4 ResNet-34 P

1 @ ResNet-50

o 2
» 2xResNet-18 0" *® >

| @ AlexNet ¢ ¢

704 ® MobileNet C - >
"I °
"
I
65
]

60: = Full-precision

j = |QN (Zhou et al., 2017a)

P Apprentice (Mishra & Marr, 2018)

55 + . .

| = Djstillation (Polino et al., 2018)

= QNN (Hubara et al., 2016Db)
= MLQ (Xu et al., 2018)

- = UNIQ (Ours)

50- LA | LI L | ! ! L L L | ! ! L L | ! ! L L L |
100 101 102 103 104 10°

# Bit operations (billions)

C. Baskin, N. Liss, E. Schwartz, E. Zheltonozhskii, R. Giryes, A. M. Bronstein, and A. Mendelson. UNIQ: Uniform Noise Injection
for Non-Uniform Quantization of Neural Networks. ACM Trans. Comput. Syst., 2019, https://arxiv.org/abs/ 1804. 10969
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ANALOG (ELECTRONIC) COMPUTATIONS

SCALING OF ANALOG AND DIGITAL ARITHMETIC

Energy efficiency

Computations very efficient if thermal
noise is non-dominant

Data movements extremely cheap as often
as simple as flow of electrons (current)

Noise

Accumulation of noise

Additive & multiplicative noise

Possibly even better for analog optical
computing

MAC ENERGY

—— DIGITAL ( ~ B, B?)

ANALOG ( 1, B, 458) =

Thermal noise
becoming the
dominant

Neurobiology,” in Neural Computation, vol. 10, no. 7, pp. 1601-1638, 1 Oct.

R. Sarpeshkar, "Analog Versus Digital: Extrapolating from Electronics to
1998, https://ieeexplore.ieee.org/document/ 6790538

nonideality
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Digital Analog

Compute with discrete values of physical variables

continuous quantities of physical variables

Physics of computing devices (transistors,
capacitors, resistors), Kirchhoff’s current and
voltage laws

Boolean logic (easily automated, amount of

Primitives . |
computation per transistor low)

1bit of information per time unit Possibly many bits per time unit

Computation is not offset prone, insensitive to  Computation is offset prone, sensitive to
Ol el REEIEN[ER  mismatches (physical device parameters), pohysical device parameters, graceful

single bit error with catastrophic failures degradation wrt errors
Noise due to round-off error due to thermal tluctuations
Signal restoration to {O,1} after each stage custom, but frequently mandatory

Noise accumulation No, thus complex systems easy to build Accumulates with cascading stages



