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OVERVIEW

m  [rackML Competition & Dataset m Better..
s TrackML Score & V-Score = Heterogeneity
= Hierarchy

m Extending GNN4ITKk: Faster, Better, Different
m  Checkpointing
m [Fgster..

m Different.
m  ConstructionUpgrades

m  Physics-motivated GNNs
» CONN Upgrades

. Opject condensation

= Oothers?
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TRACKML COMPETITION & DATASET
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TRACKML CHALLENGE

A Kaggle Competition launched in 2018 for
particle tracking with ML

m "Cenericdetector” was used — ATLAS-lIke, but
removed some of the complications: material
effects, secondary particles, much of the noise,
shared hits

= Accuracy and throughput phases

= \\Vinners of each:

Arxiv:1904.06778
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TRACKML CHALLENGE

.
- &

A Kaggle Competition launched in 2018 for
particle tracking with ML

m "Cenericdetector  was used — ATLAS-lIke, but
rermoved some of the complications: material

effects, secondary particles, much of the noise,
shared hits

m  Accuracy and throughput phases
m \Winners of each:

m  Accuracy: TopQuarks—Uses seeds and track following.
Conceptually similarto Kalman Filter

= Throuput: Arxiv:1904.06778
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TRACKML CHALLENGE

A Kaggle Competition launched in 2018 for
particle tracking with ML

m "Cenericdetector was used — ATLAS-lIke but
removed some of the complications: material
effects, secondary particles, much of the noise,
shared hits

m  Accuracy and throughput phases

= \Winners of each:

m  Accuracy: TopQuarks—Uses seeds and track following.
Conceptually similarto Kalman Filter

. [hrouput: Mikado—Also uses a similar concept to
orogress tracking, e.g. Kalman Filter

= VWhat's the takeaway here? [t's not
straightforward to beat the old ways!
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TRACKING MeTRICS
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TRACK MATCHING DeFRINTTTONS

Particle 2
= N(P,(;)is the number of spacepoints shared by particle i and candidate j
» Particle iis called “matched” if, for somej, %}ng') > firuth Particle 1
; : u no . N(Pl',Cj)
m Candidate jis called "matched’ if, for some LNy > freco
J

m Particle i and candidate j are called "double matched’ if, for someiand j,

N(P,C;) N(P;C;) Candidate 1

v=j Yj

N(P;) > feruen @Nd N(C)) > freco

. e f f _ Y i Pi(matching condition)y pur = % C j(matching condition)
ZiPi Z]CJ

Standard matching: single-matched particles with f¢,-,: = 0.5
Strict matching: double-matched particles with f,..., = 1.0
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TRACKML SCORE: WEIGHTED MATCHINC

def score_event(truth, submission):

"""Compute the TrackML event score for & single event.

1. Assign an importance to every hit in the

event, which all sum to | Parametars
m  |mportant hits: Fromlongtrack, innermost and truth : pandas.DataFrame
outermost hitg, h|gh pt Nits Truth information. Must have hit_id, particle_id, and weight columns.
submission : pandas.DataFrame
) A tra(:k |S Correct‘y “matc hed” TO a parUC‘e HC Proposed hit/track association. Must have hit_id and track_id columns.
u Strlctly g reater than 50% of hitsin the track b€|Oﬂg tracks = _analyze_tracks(truth, submission)
tothat parﬂc\e purity_rec = numpy.true_divide{tracks['major_nhits'], tracks['nhits']}
purity_maj = numpy.truse_divide(tracks[ 'major_nhits"], tracks['major_particle_nhits'])
m  Strictlygreater than50% of hitsin the particle good_track = (8.5 < purity_rec) & (8.5 < purity_maj)
b@‘@ﬂg tothattrack return tracks['major_weight' J[good_track].sum{}
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TRACKML SCORE: WEIGHTED MATCHINC

1. Assign an importance to every hit in the

truth track

strip detector found track

. high weight
event, which all sum to | g J
= |mportant hi.ts: Ffom Iong track, innermost and mid weight
outermost hits, high pt hits .
low weight
2. Atrackiscorrectly "'matched” to a particleif: low weight
= Strictlygreater than 50% of hitsin the track belong low weight
to that particle mid weight
= Strictlygreater than 50% of hitsin the particle Pixet deloclor high weight
belongto that track highest weight
particle origin
K Tricx BERKELEY . HighRR Lecture Week - Heidelberg University - September13,2023 10



TRACKML SCORE! Particle 2 Particle 2 Particle 2
WEIGHTED MATCHING

Particle 1 Particle 1 Particle 1

1. Assign an importance to every
NIt in the event, which all sum
to 1
=  |mportanthits: Fromlongtrack, Candidate 1 Candidate 1

INnNnermost and outermost hits,
Nigh pt hits

Candidate 1

2. Atrackiscorrectly "'matched”
to a particleif:

m  Strictlygreater than 50% of hitsin
thetrack belongto that particle

m  Strictlygreater than 50% of hitsin

the particle belong to that track Candidate 1 No match No match

matched with
Particle 1
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TRACKML SCORE: WEIGHTED MATCHINC

1. Assign an importance to every hit in the
event, which all sum to |

m  |mportanthits: From longtrack, innermost and
outermost hits, high pt hits

2. Atrackiscorrectly "'matched” to a particleif:

m Strictlygreaterthan 50% of hitsin the track belong
to that particle

m  Strictlygreater than 50% of hitsin the particle
belongto thattrack

2. Allthe weights of the matched hits are
summed. A perfect matching of all tracks
givesa sum of 1

IV N ) m BERKELEY LAB

def score_event(truth, submission):

"""Compute the TrackML event score for & single event.

Parameters
truth : pandas.DataFrame

Truth information. Must have hit_id, particle_id, and weight columns.
submission : pandas.DataFrame

Proposed hitstrack association. Must have hit_id and track_id columns.

tracks = _analyze_tracks(truth, submission)

purity_rec = numpy.true_divide(tracks['major_nhits"'], tracks['nhits"])

purity_maj = numpy.truse_divide(tracks[ 'major_nhits"], tracks['major_particle_nhits'])
good_track = (8.5 < purity_rec) & (8.5 < purity_maj)

return tracks['major_weight' J[good_track].sumi)
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ITHE MATCHING PROBLEM

m ATLAS-style”? One-way? Two-way?
= \What percentage of hits matched?

. Minimum number of hitsin track and
particle?

m All particlesequally important? All hits
equally important?

= \What about shared hits? Can they be
matched?

n HIghRR Lecture Week - Heic

ATLAS Matching

Description: A particle is reconstructed if at
least one track is matched to it.
A track is matched if over MF% of
its hits belong to a single particle.

Performance: eff = 50%
FR=0%
DR = 0%

MF%: The given matching fraction
FR: Fake rate = 1 — purity
DR: Duplication rate

One-Way Matching

Description: A particle is reconstructed if over MF%
of its hits belong to a single track.
A track is matched if over MF% of its
hits belongto a single particle.

Performance: eff = 100%
FR =0%
DR = 0%

Two-Way Matching

Description: A particle is reconstructed, and a track is
matched, if over MF% of each of their
hits are shared by each other.
Therefore, a track is uniquely matched
to the particle it reconstructs.

Performance: eff =50%
FR = 0%
DR = 0%

° Particle 2 not reconstructed

|

|
@ ® Particle 1 reconstructed by Candidate 1
| /S

~

Particle 2 reconstructed by Candidate 1

—e

|
@ ® Particle 1 reconstructed by Candidate 1
/

@ Candidate 1 matched to Particle 1
|

¢
.

Particle 2 not reconstructed

!

|
@ ® Particle 1 reconstructed by Candidate 1
/
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—VALUATING A CLUSTERING

= Assigning a single value to the "goodness of clustering” is non-trivial and non-obvious
m |Let'sconsideran example to see the trade-offs

m Consider a set of objectsof type A and B

B

A A B B
B A A
B
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—VALUATING A CLUSTERING

= Assigning a single value to the "goodness of clustering” is non-trivial and non-obvious

m |Let'sconsideran example to see the trade-offs
m Consider a set of objectsof type A and B

m [ et'sclusterthem into cluster 1 and cluster 2

B B
B A A

B B

1 2
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—VALUATING A CLUSTERING

= How should we measure our performance”

m \We can start by defining the entropy in each cluster

A A B
B A A
B . B
T 2
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—VALUATING A CLUSTERING

= How should we measure our performance”

m \We can start by defining the entropy in each cluster

= Entropy s = —);; P;log(P;) = _Zi%log(pﬁi)

where p; Is the number of objectsof typeiand N isthe A g
total number of objects. Then is obviously the -.1 B A -
orobability P; of selecting objecti at random. A
= This has the nice behavior that the more
nhomogeneous a cluster, as p; = N, entropy goes to zero o o
1 2
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—VALUATING A CLUSTERING

m SO, entropy in the two clusters is:

s1 = —(Pylog(P,) + Pglog(Pg)) L e

= 0.67 A B

_ (% (f) +110g(2

=05 [, [

m \We can see that the higher ratio of B's to A's in cluster 2 1 2
leads to lower entropy — it is more homogeneous
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—VALUATING A CLUSTERING

m \We can also calculate the entropy of each object type, relative to the cluster they have been labelled
With

sy, = —(P; log(P,) + P,log(P,)) L

= — Glog G) + % log G)) . ) | . |
= 0.56 B A A
Sp = — (% log (g) + %10g (g)) B B
—o73 e o

. 1
. \We can seethat the B's are more spread across clusters, so have higher entropy. We could Sayzthat,
since the A's are better captured by a single cluster, they are more complete
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V-Measure: A conditional entropy-based external cluster evaluation

HOMOGENEITY, _—

Andrew Rosenberg and Julia Hirschberg

COMPLETENESS AND V-5CORE D atumbia Unerety

New York, NY 10027

= e can extend these ideas to capture the homogeneity and completeness across all clusters and
all particles

= [he exactderivation is out-of-scope, but you should definitely look into mutual information to
understand this properly!

= At the end of the day:

=  Homogeneity isa measure of how well you've kept each cluster to a single particle type

= Completenessisa measure of how well you'veassigned all hitsin a particleto a single cluster

= [heseare the clustering analogy of purity and efficiency

= However, Kaggle allows a single score to capture performance..
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AHOMOGENEITY, COMPLETENESS AND V-5CORE

Enter the V-Score (the “validity score’), and analogy to the F-Score (from efficiency and purity)

v H-C
- "H+C

Thisisthe harmonic mean of homogeneity and completeness, and it is zero when either of those
Mmeasures Is zero

In general, there is a trade-off between H and C, and the V-score allows to smooth over that trade-
off

) m BERKELEY LAB
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X TENSION: WEICGHTING THE V-5CO

One final point: It is not equally important to cluster
all points in a particle

If a particle leaves several high-energy hits, they
should certainly be clustered together

T two particles have high energy hits, they should
certainly not be clustered together

These leads us to create a new V-Score definition:
the Weighted V-Score

The derivation is out-of-scope (the source code will
obe available at an upcoming version of scikit-learn)

Can deepdiveif you're interested

N

<> Code

%

= o scikit-learn / scikit-learn

Q Type [7]to search

( lssues 16k Il Pullrequests 684 U Discussions () Actions [ Projects 17 [0 Wiki @ Securi

MRG Weighted v_measure_score (and related functions: entrop
contingency matrix & mutual info score) #26923

j9%el-EUl murnanedaniel wants to merge 15 commits into scikit-learn:main from murnane daniel:weighted_v_measure. _score L‘,:\
Y Conversation 12 -0 Commits 15 [ Checks 22 Files changed 3

murnanedaniel commented on Jul 28

Reference Issues/PRs

Fixes #26880

‘What does this implement/fix? Explain your changes.

As pointed out in #26880, many evaluation metrics in sklearn have the ability to weight samples by some measure of
importance (usually included as a sample_weight ). This is also important to do when evaluating clustering. In particular, the

asure_score (and the metrics and functions it relies on), should have this ability.

This PR adds a sample_weight parameter to the homogeneity_completeness_v_measure function (upon which the homogeneity ,

completeness and v_measure_score functions rely on, and hence they alsc have a sample_ueight parameter included now).

This required empowering the entropy calculation to take 8 sample_weignt , which is straightforward with the current
implementation and required minimal changes.

It also required allowing the contingency matrix to take sample weight , which only means that entries are no longer integers:

again, a straightforward amendment.

Finally, the mutual_info_score , which relies on the contingency_matrix , needs to allow for floating point entries in the
contingsncy_metrix .

Any other comments?

While there appear to be quite a few changes made in this PR, it is fully backward compatible, as seen in the tests. Ample tests
have also been included for those functions which now take a sample_weignt ., and they are philosophically identical to the

current tests for these metrics.

Adding this functionality will be very useful for those machine learning methods that allow for different levels of importance in
contributions to the loss function from different samples (e.g. low and high energy points in a point cloud, as in the case linked
in #26830 )

@
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THROUGHPUT & LATENCY

= \VWhat is the goal?

. Once moved to "offline tracking” essentially infinite time to reconstruct (although compute
budgetis limited)

m N ATLAS HL-LHC trigger (aka “Event Filter"), have O(microseconds) time to reconstruct, maybe
with some dip in efficiency

B [N someexperiments (e.g. LHCD), aim to trigger on (essentially) all events, and perform on-the-fly
full event reconstruction. In that case, target O(milliseconds) reconstruction with high accuracy

' mBERKELEY . HighRR Lecture Week - Heidelberg University - September13,2023 24



SHORTCOMINGS OF GNN4AITK

HighRR Lecture Week - Heidelberg University

September 13,2023
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ACCURACY SHORTCOMINGS

€
E

Not perfect tracking efficiency

Poor performance in barrel strip modules

1400 — — . — 1
- ATLAS Slmulatlon Prellmlnary .
1200 T s=14Tev.tl, () = 200, primaries (tf and soft interactions) p,>1GeV ] 0.9
[ using Module Map ]
1000— Ep— —
- 15 =0.8
L ' —]
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THROUGHPUT SHORTCOMINGS

3.25+1

3.001

21D

Total time (s)
N N
N wul
w o

o
o
S

Baseline

Data Loading 0.0022 4+ 0.0003
Embedding 0.02 £ 0.003
Build Edges 124+ 2.64

Filtering 0.7£0.15
GNN 0.17£0.03
Labeling 2.2+0.3

Total time 15+ 3.

Number of spacepoints

m BERKELEY LAB

Physics is important, but GNNs shine in scaling behavior

When development began, graph-based pipeline started
required 15 sec for TrackML

Implemented custom Fixed Radius Nearest Neighbor (FRNN)
algo., cuGraph Connected Components algo., and Mixed
Precision inference

Now have sub-second TrackML inference on 16Gb VIOO GPU

INnference time scales approximately linearly across size of
event in TrackML

HighRR Lecture Week - Heidelberg University - September 13,2023

27



TRAINING COST SHORTCOMINGS

Process GPU Memory Allocated (%)
Showing first 10 runs

= hidden: 128 e =— hidden: 64 »
100

= Even with the largest - - ~
available GPUs (80GCDk
A100), still max out the »
memory with a
relatively "small” GNN - w0
100k-1Tm parameters
i Time (minutzs)

= VWhat about If we want to go from spacepoints to clusters (300k nodes to 400k nodes), or to the next
Nigher luminosity detector, or we want to train a very large GNN?
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—ASTER GNN TRACKING
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September 13,2023

29



—FAST OGRAPH CONSTRUCTION

Nearest neighbor search is a

bottleneck of the graph
construction stage

finding K=500 for
N=100,000 ~ 700ms

KNN is overkill - we don’t need
explicit list of K sorted neighbours

Built on Fixed
Radius Nearest Neighbour (FRNN)
search algorithm

Cell-by-cell grid search is much

faster: [The complexity of finding fixed-
radius near neighbors. Bentley, et al

1977]

HIghRR

Fast fixed-radius nearest neighbors: Interactive
Million-particle Fluids, Hoetzlein (NVIDIA), 2014

Fixed Radius NN Search vs Pytorch3D’s KNN

Y

L¥o | -

N > i

‘ J ’ iy
172974 points 543652 points 437645 points 100000 points
~16x speed up ~12x speed up ~15x speed up ~30x speed up

-/ ~Accelerating NN-Search on CUDA for, Leatning oint Clougs, Xue 2020



https://github.com/facebookresearch/faiss
https://github.com/lxxue/FRNN/tree/larged

—FASTER SEGMENTATION

= Many graph operations can be parallelised, and therefore are well-suited to GRPU implementation
m  Connected componentsis one algorithm, which can be parallelised
m Scipy has CRPU version, which loops over each node with "Depth-first Search’

m CuCraphsearches many “frontiers” simultaneously

Baseline Faiss cuGraph AMP FRNN

Data Loading 0.0022 £ 0.0003 0.0021 £ 0.0003  0.0023 = 0.0003  0.0022 £ 0.0003  0.0022 +£ 0.0003
Embedding 0.02 = 0.003 0.02 £ 0.003 0.02 £ 0.003 0.0067 = 0.0007  0.0067 £ 0.0007

Build Edges 12 +2.64 0.54 £ 0.07 0.53 £ 0.07 0.53 =0.07 0.04 = 0.01
Filtering 0.7£0.15 0.7£0.15 0.7+ 0.15 0.37 = 0.08 0.37 = 0.08
GNN 0.17 £ 0.03 0.17 £ 0.03 0.17 £ 0.03 0.17 = 0.03 0.17+0.03
Labeling 2.2x0.3 2.1+=0.3 0.11 £0.01 0.09 = 0.008 0.09 &= 0.008
Total time 15 = 3. 3.6 0.6 1.6 £0.3 1.24+0.2 0.7£0.1
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FASTER HARDWARE
; in3
= GPUsare used by defaultinour ML pipeline for o in4
training and inference out
m But FPCAs are a very low-latency option in1 out
. Field Programmable Gate Array are able to compile a
orogram to hardware, using Logic Elements and 10 —
essentially Look-up Tables (LUTs) that can capture any | faros
- lens v. Co-processing kernel
Z-input Boolean operators | "8 his(@mi
m [ypically need to write functions from scratch, but g d 4 4{
HLS4ML is an effort to automatically compile Python it B —> —
ML frameworksto HLS (High Level Synthesis) Usuol moching learning 7 design

tune configuration

language, then to the hardware language

precision
reuse/pipeline
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P RUNING

0.5
—o— pruned QAT MLP, b, (1,2-4,51 = [5, 3, 4] bit, b, (1,2-3,4) = [7, 5, 6] bit
—&— pruned QAT MLP, b, (1,2-4,5 = [4, 4, 4] bit, b; (1,2 -3,4) = [8, 8, 8] bit
044 — % pruned QAT MLP, b, (1,2-4,5 = [4, 2, 4] bit, b; (1,2 -3,4) = [8, 8, 8] bit
> ~&- PyTorch reference
S ~4— PyTorch MLP pruned
‘©
£ 0.3
Q
2 f,=94.7% f,=90.2%
DI = eocirigtion Nacobsio w3t 5 e St e 508 S i o S o i G Rt S5 3y
© 021, _
g f,=92.8 % f,=92.8%
5
o
0.1
0.0 = T S = 2
10° 10° 107 108
BOPs / cluster

m BERKELEY LAB

10°

Hard to beat CPUs for big matrix
multiplication—can be very efficiently
multi-threaded

But large models typically only have a small
supset of "important” weights (c.f. Lottery
Ticket Hypothesis)

We can simply set those weights ~O to
exactly O, but on GPU one still needsto run
the full matrix multiplication

On FPCA, since the multiplicationisin
series, we can skip those O entries, and get
a speed-up!

HighRR Lecture Week - Heidelberg University - September 13,2023
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QUANTIZATION

= Similar to pruning, since everything is done
manually on FPCA we can choose how much
orecisionwe use to speed up

m Cansimply reduce precision of weights and
operations after training

m Howeverthere is significant improvement in
performance using "Quantisation-aware Training”

(QAT)

Quantization-aware Training (QAT)

Fig 5. Steps in Quantization-Aware Training

K Trkx BERKELEY " HighRR Lecture Week - Heidelberg University - September13,2023
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QUANTIZATION

0.5
—— pl’UOEd QAT MLP, bw,[1,2_4, 5] = [5, 3, 4] bit, b¢.[1,2_3,4) =[7, 5, 6] bit
—&— pruned QAT MLP, b, (1,2-4,51 = [4, 4, 4] bit, b; (1,2 -3,4; = [8, 8, 8] bit
. . ) . . . 0.44 % pruned QAT MLP, by, (1,2-4.51 = [4, 2, 4] bit, b, (1,2 -3,4) = [8, 8, 8] bit
= Similar to pruning, since everything is done > & DyTorch rafaraisn
manually on FPCA we can choose how 5 —— PyTorch MLP pruned
R O
mMuch precisionwe use to speed up €03
. . _ R =94.7 % =90.2 %
. Cansimply reduce precision of weights < I 2 {*‘___________________fi’__
and operations after training go-z'fu=92.8% f=928%
= Howeverthereissignificantimprovement & -
N performance using "Quantisation-aware ' t
Training” (QAT)
0.0 o~ e = =
10° 108 107 108 10°
BOPs / cluster -
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MORE ACCURATE GNN TRACKING
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CHECKPOINTING

m Graph construction leads to very large
graphs O(Im) edges, cannot fit training
on A100 GPU with 32Gb memory

= Should not split the graphs up (leads to
lower GNN accuracy)

= Solution A: Were previously using a
compromising form of “gradient
checkpointing” —reduced memory by 4x

= Now using maximal checkpointing,
reduce memory further by 2x — just fits on
A100

m SERKELEY LAR HiIghRR Lecture Week

Graph Graph Neural Edge S
I 7 Network R
. ‘\\‘* jﬁ"f‘ s ko @k _»sf: &_\X 3
Ry b T
‘e ok o o
No checkpointing Edge Labeling
) ) ) '
N N N N
) Y Y Y Y
N N N N N
Partial checkpointing
N N N
| = e = |
N NS N
N 7N N N
| | |— | |— |
N N N N
Maximal checkpointing
( } ) ' N )
\I/’ N N
' 4 O O 4
N N o/ N/ N
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TRAINING SOLUTIONS

= Solution B: Model offloading

= Each layer of GNN placed on
CPU for forward and backward
0ass, but held on CPU otherwise

m \Works well with TensorFlow,
enabling training of O(ImM) edge
grapns

= Unable tointegrate with Pytorch
oipeline

m BERKELEY LAB
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Graph Graph Neural Edge Scores
[ w® o
R 1& - Network R %
k e o | T
f> e —> @ — 55 .
Vé“ v{‘f -‘.m
Edge Labeling
activation 16 meemmmmm s 2= (DI cmmmmemmeem— e —— e —————
2M GPU f’ FWD-BWD  activation 16 ‘\ AM
| Super Node :
activation 16 ! i
i i parameter 16
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ZeRO-Offload: Democratizing Billion-Scale Model Training
arXiv: 2101.06840
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Number of edges

— o

SARREL STRIP MISCLASSIFICATION

Nature of false positive edges Location of false positive edges
150&1 T T T T 'g‘1400_""|""|""|"'I"" ] 2>
160F- ATLAS Simulation Preliminary = £ -~ ATLAS Simulation Preliminary ] 3
140 :_ {5 = 14 ToV. 11, () = 200, primaries {f and soft infleractions) b, > 1 GaV _':,' = 1200 :_ E,: 14 TeV, tf, (1) = 200, primaries (tf and soft interactions) p,>1GeV _: GCIJ,'J
E using Moduls Map E 1 000 - using Module Map . I = -03
1201 = - o O ]
100:_—I— E 800[— E I ! I'erllﬂlmﬂmmllﬂllﬂﬁumdm I E E i ] %

= 3 600} A ————c—— | —

60:— — H ' I | l 1

40 :_ _: 400 :— I U ATEARAL S SR AR R ' —:

- - 1 T D E N i e— A LT DR

20 — Do A I A I R AR (] S LA AT I N I B i

- . . . [ = O0ET 7 1 1 B 1R TRITR 4 PP et 14 1 ¢ AEILRD LR T B §TD

i e oy S Py i, 1

“Ohingt Pace,  Melgy, Ssig . Ssig %000 2000 _ -1000 0 1000 2000 3000
%f%% Ong ‘?-ﬂac;,ﬂm %%n -
%Pam Natg, nm%la,r%! r&%%hﬂ% z [mm]

43%: “True” 37%: Fakes
ghosts
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Fake edges: 37%

SARREL STRIP MISCLASSIFICATION

“True” ghost edges: 43%

Edges between SP from
particle A, and a ghost
SP of clusters from
particle A and particle B.
l.e. The GNN is “right”,
the construction is
“‘wrong”

Edges between SP from particle A and particle
B.i.e. The GNN is “wrong”

HighRR Lecture Week

r [mm]

Heidelberg University

1400 — —_ .
- ATLAS Slmulatlon Prellmlnary =
1200 [ (5=14TeV, t, {u) = 200, primaries (T and soft interactions) p,>1GeV -
[ using Module Map ]
1000 _— - FATA Y e A R A L S, P ]
N A [ | -
800[— | | i E man catmattad e el Eta i et L : 1 i I ]
— 1 1 | H
— { | ]
600 [ ' I I b e s NS A 2 | I l l I ]
400 :— H ! T AL . T o AR —:
T BN Ry e AR T I I T I T T by

200 | I L1an I””"——-““HJ ML r L n i |
T 1 F TRl ey p fBITRRTI 0T B T
— 1 |,|'|‘||||||||¥| |".I—l.||| |||||||||||||,I I I L
. Coy o e I —— . —

—QOOO —2000 —-1000 0 1000 2000 3000

Location of false positive edges

September 13,2023

— o

GNN per-edge purity

40



— Ty

-ESES -EBO[.‘::
SIRIP MODULES: GHOS TS AN =« Sk Cluster A
553;— ,,.—? 79[);—
Z— Q E S O L U—H O N 552— 785;— Constructed spacepoint
est- 7 |deal spacepoint
EE(];— X 7?52—
m Since spacepoints are constructed from pairs
of clusters in the strip, could mis-construct o e 3 :
657 760
and form a ghost .3 3
= These ghosts can be cleaned up in later ss.aég':a'g'g;gg;".‘s;;:35'2':'59'1':'3;;;:'33'9':3533':%(;"';".13'}35 L TR T ;%'?nln,
stages of the reconstruction chain
-EBDG: -_22.1‘.
m  However, even for correctly matched clusters, < rosf- z.ms;E
there remains low z-resolution 3 o
785 2107
= Considerthis example F 21eep :>.<><
= [asily confuses GNN! i "X 21
765[- 5 2103}
m Could fix by including underlying cluster 3 3
. . 7551 2101
information somehow... (e.g. heterogeneous o S I | P ST
: . . : . pHi =100 -80 -60 -40 -20 0 zz(?nm}

node features)
Image courtesy of Jan Stark - thanks!
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CURRENT PIPELINE
PERFORMANCE

Consider GNN performance on edge
classification across pseudorapidity n

Drop in performance at low n —what is
special about this region?

Low performance in barrel strips, where

spacepoints are built from two strip clusters

Spacepoint position may be far from “ideal”

position — i.e. midpoint between ground

truth clusters

How can we attach these two sets of cluster
features? Pixel spacepoints only have one set

of cluster features..

m BERKELEY LAB

T BES :E.E.h
True ClusterA £ -
True Cluster B . .- Stripside A -
Constructed - 2107
spacepoint - 2.106 .
Ideal spacepoint X 2105 '>'(><
" Strip side B e
658 2103
857 " 2.102
656 2104
85396 -305 -394 ~303 -302 -301 -390 360 -388 387 -6 R R R R ]
= {rmam Z {mm
= 1400 | ™) 1 >
£ - ATLAS Slmulatlon Prellmlnary . g
= 1200 [ (s5=14 TeV, tf, (1) = 200, primaries (tf and soft interactions) P> 1GeV ] 09 )]
[ using Module Map _] 'g)
1000[— ndest v = -
u N 08
- l I E ' _ o
800|— | e sl e T e L ke | ] %
- l I i ] 0.7 O
= | _
600 a | ]
n | ] 0.6
400 — I S UL S R AR O ]
— l I I i I Illi -I'HI’N—-MH'!-'IHIII i1 i I 1
200 | 110 P e Y1 KD D0 17 0.5
jllllllllllli”"—“”illl IIIIIII'E
L L I,I'I'llllllllil Iﬂll—l.llllllll'lll II.I,I I I L
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STRIP low spatial resolution and Heterogenous Data

2.5¢cm

I I !/"’ AI 50um

reco reco reco

» P

The mechanism that led to the poor purity in
CTD2022 results is understood: straight line
approximation used in the ATLAS space point

reconstruction leads to poor z resolution (O(cm)!)
at low pr

= f?trip(cstrip 9mp)

Impossible to exactly reconstruct space point position without knowing curvature of the track !

r (mm]

1400

1200[—

1000

400

So00

LEER CTE ey PR T a T Ty IR [ T
- ATLAS Simulation Preliminary

(G=14ToV, tf (u)= mmmmu!mﬂmm-ln\s)
[ using Module Map

1 GeV

B e e P

Illll lll l

..1..\:.‘.!

E L 1

| I l | e - shaeolet GO et LN i bl e ' | ‘ | I

'm‘#

vavava

l'llrl

)
llllllll |

.........

Key Idea: Give as node features in STRIP BARREL the STRIP clusters data
Hopefully the GNN will be able to learn a better representation of the Space Point

llllll!'hl!lll!llxllll

........ Ty
,.o

reco

N7

~Treco
' &

GNN combines space points into tracks, i.e. has access to curvature !



IMPROVEMENT
NG HINIGIRVIDING
CLUSTER
INFORMATION

E E ATLAS Simulation Prelnmmary
= 1200~ G atev, it =200, primaries (tf and softinteractions) p, > 1 GeV
[ using Module Map
1000}
800 ™ | i
600} ' I
400~ ! s P i
Ef L Ln n 1 it R R L E 0
2000t o'y § 0 nlunu__..mn |Iu‘||,| R
e R A NN W AT YT {1 1 e Y DR NI R
A ""'lll-wu‘llllf": A |
T Ty 0 1000 2000
z [mm]
T 1400~ —_ —
£ o ATLAS Slmulatlon Prellmmary
= 12001 o yerev s ()= 200, primaries (if and softinteractions) p_>1 GeV
[C  using Module Map
1000} . st
800 | | | || =il
- ; | 11
u i
600 l il ' I
4005— ' [ERRE e T RSV TR B l i H
= 1)
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= "1IIIII*IIIIII'|' al 1
80062000 1000 0 1000 2000 3000
z [mm]
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Only spacepoint information

1400 e

1
0.99
0.98
0.97
0.96
0.95
0.94
0.93
0.92
0.91

Jniversity

GNN per-edge efficiency

GNN per-edge purity

Spacepoint+cluster information

'E 1400_ s oot | T
£ - ATLAs Slmulatlon Prellmlnary
~ 12001 15 = 14 TeV, ], (u) = 200, primaries (tf and soft interactions) p. > 1 GeV
|- using Module Map, Total per-edge efficiency over the detector : 98.2%
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£ - ATLAS Simulation Preliminary
= 1 200 = 15 =14 TeV, ff, (u) = 200, primaries (f and soft interactions) P > 1GeV
[~ using Module Map, Total per-edge purity over the detector : 92.6%
1000—
soof— | |l -
600|— I H
400
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ONGOING WORK: HETEROGENEOUS NODE FEATURES

= Motivated by inconsistent performance across
detector:

= Currently each node in graph uses same input
feature set —spacepoints = (r, ¢, z)

= \We could imagine using cluster-level information, e.g. position and
shape of energy deposit

m Syt thisis not consistent across detector. Need different node and
edge networks depending on detector region

X Trk> mBERKELEY an HIghRR Lecture Week - Heidelberg University - September13,2023 45



ONGOING WORK: HETEROGENEOUS NODE FEATURES

= To get intuition, consider simple filter (@) —— @Mre( [
MLP applied to two pixel nodes: Io

= [0 apply afilter MLP to a pixel (single cluster) and strip (double
cluster) node compination, need a different MLP:

g 1400 U = 1400 )
E - E
= 1200 09 o = 1200 09
9 g .
1000 5 1000
08 % 0.8
o
800 II] z 800
07 & 0.7

600 600 ML Pgp( )
400 06 400 0 I [I I:I 0.6
200 o 0.5 200 e 0.5

So00 2000 =000 1000 2000 3000 04 8000 —2000  =1000 1000 2000 3000

m Already gives better thagmm OMogeneous filter MLP (~ DX CONSLT UGH®N
3'-'__.-'-'@uHtﬂBERKELEY e HighRR Lecture Week - Heidelberg University - September 13,2023
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ONGOING WORK: HETEROGENEOUS GRAPH NEURAL NE TWORK

m Exactsame logic appliesto GNN networks

= Forafour-region heterogeneous GNN, we have four node encoders/networks (N, Ny, Ny, N3g) and
ten edge encoders/networks (Egg, Eg1,Eoz, Egzs E11s o r E34,Esq)

= [hus, is alarger model and takes longer to train

m  But reduces GNN inefficiency and fake rate by approximately half

'g‘ [ T T T T [ T T T T ‘ T T T T I T T T T ‘ T T T T " T T T T I T T T T [ ] Edge encoder Edge encod er
£ 1400-ATLAS Simulation Preliminary — encoder 1 [1,1] [0,1]
= " [Tk Layout: 23-00-03 N ML ‘.0'
1200__ T]=1'0 -] : Oq ... : ..:o
1000 - ’
800 —
: : 3/ L= .
600 | N
= .
400 | n=30 -
1 ]
200 1 n=40 -

L 1 1 —_—
In! i N .. hN—
—— | L | | T .' 0.. ..
0 500 1000 1500 2000 2500 3000 3500 Note Cr——
e S ) - z[mm] ook - Heidelberg U LR Y 2023 47



HE [ EROGENEOUS GNN PERFORMANCE

" [he average total purity is 94% for both models

. Adding model heterogeneity results in up to 11% improvement in GNN per-edge purity in the Strip barrel
region, with ~1% loss in the Pixel subsystem

—_ . , . : — —_— : . — 14
E - ATLAS Simulation Prelimina Z i i &
S 121 /5=14TeV, p =200, primaries (tia% soft interactions). pr> 1 GeV GNN Per Edge purlty ratIO Of HeterogenOUS %
Graphs constructed using Metric Learning. Global target efficiency 0.98 GNN over Homogeneous GN N §
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AE [ EROGENEITY & THE MISSING HITS.

Now we can see why we are missing nits:
there are orphan clustersin the strip that
are never constructed iNnto spacepoints

Would be great to have GNN that could
nandle both orphaned clusters and
spacepoints..

m BERKELEY LAB

Nhits, Strip

Ratio

N
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ATLAS Simulation Preliminary
Vs =14 TeV, tf, qu> = 200, HS, p,>2 GeV

—— CKF Track Finding
¢ GNN Track Finding
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DIFFERENT APPROACHES TO GNN TRACKING
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HIERARCHY
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HIERARCHY

Low-Level Mid-Level High-Level
> > Features

\

m SO far, our whole pipeline has been fairly
“vanilla” (but it still took a lot of R&D to get
this all to workl!)

Features Features

m For example, every object in the graph is a
spacepoint (or in the case of the
heterogeneous GNN, either a strip
spacepoint or pixel spacepoint)

m  But there are other granularities in the
system, e.g. ‘track-like" objects

m A hierarchical graph neural network is inspired by the different granularities of filterin a
convolutional neural network
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HIERARCHY

m  Consider that in the GNN4ITK pipelineif a track is broken (a missing edge), there is Nno way to
recover it

Perfect matching Merged Tracks Broken Tracks

/ Inefflcnency
Impurity

B T mBERKELEY . HighRR Lecture Week - Heidelberg University - September13,2023



HIERARCHY

Consider that in the GNN4ITk pipelineif a track is broken (a missing edge), there is no way to
recover it

However, ifwe could "pool” hits together into track-like supernodes, then we could reconnect
them at some other granularity

Vanilla GNN:

Hierarchical GNN:
Inefficient graph construction forbids message passing

Long-distance message passing is possible

,

/ Pooling
7 >

A
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HIERARCHY

m Consider that in the GNN4ITK pipelineif a track is broken (a missing edge), there is no way to
recover it

= However, if we could "pool” hits together into track-like supernodes, then we could reconnect
them at some other granularity

m Candeepdiveinto this later if there'sinterest. For now:

Tracking Goal Feature DiffPool SAGPool EdgePool GMPool (ours)
- Models E-GNN E-HGNN | BC-HGNN | EC-GNN Truth-CC

Subquadratic scaling Sparse X v v v
End-to-end trainable Differentiabl v v v v .
e bl e ‘. / g Efficiency ~ 94.61% 95.60% | 97.86% | 96.35%  97.75%

of clusters Fake Rate 4731% 4745% 36.71% 5558 % 5767%
Many hits to many Soft assignment v X X v Time (sec.) 217 2.64 1.07 0.22 0.07
particles relationship
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SYMMETRY

HighRR Lecture Week

Heidelberg University

September 13,2023

56



INCLUDING SYMMETRIES IN ML

= [he message passing in the GNN s "unconstrained” —any features
can go in, and because of MLP Universal Approximator Theorem, any
function Mmay pe learned that operates on input features

B However, we can use our pnysics intuition to reduce the search space
of this learned function

= \VWe know that there are symmetries in the geometry of some
systems, which can be "bullt into” the GNN (and almost any other ML

architecture)
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WHY EQUI-GNN: NAIVELY IMPROVING MODEL PERFORMANCE

Background rejection of top vs. non-top produced jets
3000 ParT-f.t.

2500 LorentzNet

2000
ParticleNet

1500 ParticleNet-Lite

Background Rejection = 1/FR @ 30% Efficiency

ResNeXt
1000 PFEN ’
o
LGN
soEFP :
0
1 10 100 1000 10000
Model Size (Thousand learnable parameters) Would love to add LundNet-5 and JEDI-net to

this plot, but don’t have apples-to-apples
rejection rate
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https://arxiv.org/pdf/2012.08526.pdf
https://link.springer.com/content/pdf/10.1140/epjc/s10052-020-7608-4.pdf

WHY EQUI-GNN: NAIVELY IMPROVING MODEL PERFORMANCE

Background rejection of top vs. non-top produced jets PHYSICS-MOTIVATED ML
. ; (SYMMETRY, DATA)
é 2500
2 RELATIONAL ML
3 2000 (GRAPHS)
o rticleNet
< 1500 .
i ResNeXt
$ NON-RELATIONAL ML
2 50kFP (SETS, IMAGES)
S 0
@ 1 10 100 1000 10000

Model Size (Thousand learnable parameters) Would love to add LundNet-5 and JEDI-net to

this plot, but don’t have apples-to-apples
rejection rate
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WHY EQUI-GNN: NAIVELY IMPROVING MODEL PERFORMANCE

Background Rejection = 1/FR @ 30% Efficiency

3000

2500

2000

1500

Background rejection of top vs. non-top produced jets

ResNeXt

10

100

1000

Model Size (Thousand learnable parameters)

HighRR Lecture Week

Heidelberg University

10000

Given a particular ML structure
(a.k.a relational bias),
diminishing returns on simply
increasing model size
Graph-structured appears to be
as general as one can get
structurally

GNN-based models seem to
perform best at large size
Physics-based models seem to
perform best at small size
Motivates us to constrain
graph-structured ML with
physics knowledge

Would love to add LundNet-5 and JEDI-net to
this plot, but don’t have apples-to-apples
rejection rate
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KINDS OF PRYSICS KNOWLEDGE

A variety of knowledge about the physics case can be
iNncluded in the algorithm

Quantum field theory: Feynman diagram structure (EFP)
QCD: Decay processesinthe Lund plane (LundNet)

Permutation invariance of the jet constituents (PFN,
ParticleNet)

QCD + permutation invariance: Lund featureswitn GNN
(ParT: ParticleTransformer)

2D translation invariance in the calorimeter (ResNeXt)

Special relativity: Frame-invariance under Lorentz
transformations (LorentzNet, VecNet, Covariant ParT, ..)

Cood summary of theory-based tagging in Kasieczka, et al.

\

J

QFT Symmetries

Spacetime
Symmetries

Physics-informed
Features

Data
Augmentation
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https://www.researchgate.net/publication/358458176_Particle_Transformer_for_Jet_Tagging
https://arxiv.org/pdf/2203.05687.pdf
https://arxiv.org/pdf/1902.09914.pdf

Jet constituents 4-
_momenta p;’

WHAT DOES T MEAN TO INCLUDE A
SYMMETRY?

m  Consider jet flavor tagging

m Usesa GNN for predicting the source of jet production (b
quark, c quark, tau jet or a lighter particle), as well as

auxiliary predictions: track production vertex and track- o |
pair vertex compatibility |ATL-PHYS-PUB-2022-027/] ° -
| | | | | | o lrack hits
m  Consider rotating the jet by angle ¢, using rotation matrix
R(6) °
0

ertex v
Quark flavour g
Origin
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https://cds.cern.ch/record/2811135/files/ATL-PHYS-PUB-2022-027.pdf

WHAT DOES IT MEAN TO INCLUDE A '/9\
SYMMETRY? -

m  Consider jet flavor tagging

m Usesa GNN for predicting the source of jet production (b
quark, c quark, tau jet or a lighter particle), as well as
auxiliary predictions: track production vertex and track-
pair vertex compatibility |ATL-PHYS-PUB-2022-027/]

Jet constituents 4-
momenta R(0)p;

m  Consider rotating the jet by angle ¢, using rotation matrix o
R(O) o Track hits
o
o
R Quark flavour g
Vertex R(0)v

Origin
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WHAT DOES IT MEAN TO INCLUDE A ,/‘9\
SYMMETRY? —

m  Consider jet flavor tagging

m Usesa GNN for predicting the source of jet production (b
quark, c quark, tau jet or a lighter particle), as well as
auxiliary predictions: track production vertex and track-
oair vertex compatibility [ATL-PHYS-PUB-2022-077/]

Jet constituents 4-
momenta R(6)p;

m  Consider rotating the jet by angle ¢, using rotation matrix o
R(6) ° .
= Some predictions (and input features) likethe production o Track hits
vertex will rotate with the transformation: “equivariant” °
= Some predictions (and input features) likethe jet flavour °
should not be affected: “invariant” S Quark flavour g
Vertex R(0)v

Origin
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INVARIANCE Vo EQUIVARIANCE

Invariance Equivariance
fpg(x)) = f(x) f(pg(x)) = pg (f(x))

X X
/
f
f f
Y Y
= May besame representation pg or

another representation pg Lovely plot from Mariel Pettee: Symmetry
Group Equivariant Architectures for Physics -
Snowmass White Paper

m [Forsome neural network f and some
iNnput feature x

m Foragroupelementg e
G transformation pg

m |[nvariant network leaves output

unaffected f(pg(x)) = f(x)

m Equivariant (under G) network gives an
output that is also transformed by g € G

VT HighRR Lecture Week - Heidelberg University - September 13,2023 65
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https://arxiv.org/pdf/2203.06153.pdf

WHAT DOES T MEAN TO INCLUDE ASYMMETRY?

s Consider a point cloud, with behavior that you expect to be invariant under E3 symmetry — 3
dimensional Euclidean (rotational and translational) transformations

= Observe how a transformation R propagatesin some arbitrary GNN convolution:
X} = z MLP(x;)
[

(0)—_MLP(x;) = ReLU(Wx, + B)
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WHAT DOES T MEAN TO INCLUDE ASYMMETRY?

s Consider a point cloud, with behavior that you expect to be invariant under E3 symmetry — 3
dimensional Euclidean (rotational and translational) transformations

= Observe how a transformation R propagatesin some arbitrary GNN convolution:

X} = Z MLP(Rx;) =77
l

(0)—_ MLP(Rx;) = ReLU(WRx, + B)

Rx,

' mBERKELEY e HIghRR Lecture Week - Heidelberg University - September13,2023
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WHAT DOES T MEAN TO INCLUDE ASYMMETRY?

m  Consider a point cloud, with behavior that you expectto be invariant under E3 symmetry — 3
dimensional Euclidean (rotational and translational) transformations

= Opbserve how a transformation R propagatesin some arbitrary GNN convolution
=[O preserve B3 symmetry, we must choose a specific kind of message passing function:
Xg = Xo + XMLP(m;)(x; — xo)

Q my = MLP(||x; — xl])
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WHAT DOES T MEAN TO INCLUDE ASYMMETRY?

IRx3 — Rxol|* = (Rxz — Rxo)" (Rx3 — Rx,)
= (x3 — x9)"R"R(x3 — x¢)
= |lx3 — xlI*

Message passing invariant to
rotation and translation

Rxy + YMLP(m;)(Rx; — Rxy) = Rx,

E(n) Equivariant Graph Neural Networks, Satorras, et al

Aggregation equivariantto
rotation and translation
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https://arxiv.org/pdf/2102.09844.pdf

SO2)-EQUIVARIANT CNN FOR TRACKING

m \We expect collisionsin the LHC to be rotationally symmetric
around the beamline

. \We also expectthem to obey Lorentz symmetry for boosts along
the beamline, but to capture this you need four-vectors (time is
Nnot available in TrackMLor, reliably, ITk)

m \We can constrain our tracking GNN to preserve SO(2)
eguivariance

B [hat is: nodes have three inputs, organized into equivariant
features|[x, y] and invariant features [z,charge, ...]; then all
intermediate node hidden features are also either equivariant or
invariant

D MLP | SumPooling (] Euclidean Norm, Inner Product

& Difference

. Output edge classificationis then invariant to rotations around
X—=Yy

Euclidean Equivariant Block
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S O < ) E Q U | v R | N T C N N o S o S
? _ f 5 ! 5 -#- n_hidden =8 ~e- o hidden =8
e~ n_hidden = 16 ~e- o_hidden = 16

e

FOR TRACKING
S D SR S (0 R SO SSSOOD SR SR
0.9925 T T T T T 0.9925 i """""""""" t """"""" i """"""""" i ''''''''''
Q L l 1 l 1 9] L L 1 l 1
3 0.9900 ! ! ' ! ' 3 0.9900 ' ' '
m [hisworks, toa degree
0.9850 0.9850
m Get good performance for very small models
0.9825 0.9825
. . 0 md 2 34 n 0 i 2 34 n
= At some point, an unconstrained model ’ ’
1 0000 IN Trained on 8 = /4 1.0000 IN Trained on 8 =m/2
outperforms T o =
08975 T {* """""""" ‘+ """""""" + """""" + 0.9975 + """" ! t t i 1
m [nterestingly, even small unconstrained models
l l | | U | ! [
| earn t he Sym met ry 09925 | | 1 T + 0.9925 t T T 1 +
?‘ 0.9900 3 0.9900
0.9875 0.9875
Nhidden Model Params AUC Efficiency Purity 0 }
< BuclidNet 967 0.9913 £0.004 0.9459 & 0.022 0.7955 £ 0.040 ™ ' pror oo e 1| oss + t t t
InteractionNet 1432 0.9849 + 0.006  0.9314 +0.021  0.7319 + 0.052 00825 00825
16 EuclidNet 2580 0.9932 +0.003  0.9530+0.014  0.8194 + 0.033 ° i o e " ¢ i B e "
InteractionNet 4392 0.9932+0.004  0.9575 4+ 0.019 0.8168 + 0.073
2 EuclidNet 4448 0.0941 =0.003  0.9547 £ 0.019 _ 0.9264 + 0.023
InteractionNet 6448 0.9978 4 0.003 0.9785 4+ 0.022 0.9945 + 0.043
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TRACKING AS OBJeCT DETECTION
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ITHE TRACKING PROBLEM

Protons collide in center of detector, “shattering” into
thousands of particles

The charged particles travel in curved tracks through
detector's magnetic field (Lorentz force)

A track is defined by the hits left as energy deposits in the
detector material, when the particle interacts with material

INnthisstudy,we usethe TrackML Dataset [link], with variable-
sized subsetsoftracksselected

The goal of track reconstruction: Given set of hits from particles o
IN a detector, assign label(s) to each hit. =
Can reframe the problem of assigning label =2 hits T

1. Assume the existence of some uniquelylabelled “representative point” in each
track object
2. Thenour task is to assign hits = representative point

| y | - ' labels
HIghRR Lecture Week - Heidelberg University Septembeﬂ{ggﬁo
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https://www.kaggle.com/c/trackml-particle-identification

TRACKING AS OBJeCT DETECTION

. Awell-studied problem in computer vision: Given an image, can we

identify all discrete objects of interest and predict information about
them?

m  Popular approach is to draw a bounding box as the representative B
label o

m  Can't directly use this approach for tracking: tracks are not localized
N 3D space

The “You Only Look Once”
(YOLO) approach to
detection: draw a bounding
box and predict the object

1. Resize image.
2. Run convolutional network. . insle st
3. Non-max suppression. Ina single step.

Redmond et al, arXiv: 1506.02640

B T mBERKELEY . HighRR Lecture Week - Heidelberg University - September13,2023 74



OBJECT DETECTION AS METRIC LEARNING

m \We considera "naive’ solution to the object detection problem

= Using a transformer or graph neural network (GNN), embed each hit x; in a
latent space U(x;)

= Use ahingeloss to encourage hits from the same particle (y;; = 1) to be
close, hits from different particles (y;; = 0) to be distant:

I Ai]" when yl] =1
B maX(O, 1-— Ai]'), when yl] =0

To create representative points, we use a greedy condensation” approach. For
all points:

Randomly select a point
2. Findall neighbors (withinradius R)

If none of the neighborsare already a representative, then convertthe pointto a
representative, and attach all neighborsto that representative

-10

Latent R'? projected to R?

30 20 1o ] 1

Random " ‘.—f.
hit 1

. o

learn which points are good representative points?

Works quite well, but some points are clearly better candidates for representative than others. Can we
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OBJECT CONDENSATION: LEARNING REPRESENTATIVE POINTS

|[dea from particle flow reconstruction: Object
condensation: one-stage grid-free multi-object
reconstruction in physics detectors, graph, and image
data, Kiesler 2020 [link]

Simultaneously learn an embedding similarity space and
a condensation score for each hit, where a higher score is
a more "attractive” point charge in similarity space

‘/.; .

All hits with learned condensation score B above some
threshold are considered candidates for representation
points, then we apply greedy condensation to the
representatives sorted by B

Shortcomings:
= Having this "hard cut” charge threshold requires fine-tuning

m  [nference requires sorting likely condensation points and

A o oY : . The potential function of members of the same class
sequentially considering each condensation point based on all . . :
orevious condensation points relative to the representation point of that class

(Kiesler 2020)

= Training (as a simplification) only considers maximum-scoring
condensation point in each class, which neglects global optima

mBERKELEY " HIghRR Lecture Week - Heidelberg University - September13,2023
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https://arxiv.org/pdf/2002.03605.pdf
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DESIRED LOSS FUNCTION BeHAVIOUR: A TWITTER INSPIRATION

Influential Users

© |Information source
@ nformation disseminator

(O |Information broker

Kim & Valente 2020, COVID-19 Health Communication Networks
on Twitter: Identifying Sources, Disseminators, and Brokers

|[dea: We can represent a social network as a directed graph of
influence flow

Recuero et al 2019 and Kim & Valente 2020 used network
analysis to identify several types of user based on in-degree and
out-degree of information flow

Let's simplify: All members of network can be users (receive
information from incoming edge) and influencers (send
information to outgoing edge)

We can build a directed graph by learning for each member of
the point cloud two embeddings in the same space: a user-
embedding andan influencer-embedding

Goall

represents their class

We would like users of each class to
crowd around exactly one influencer that

Goal 2
We want influencers to be distant from
each other
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DESIRED LOSS FUNCTION BEHAVIOUR

= Civeneach of N points x; in track T, embedded into RM with two models: a user-embedding
U and an influencer-embedding J

= Wewant a minimum in the loss when all hits x; € T, have U(x;) inside neighbourhood

N(?(x,;)) for at least one influencer (and preferablyonly one influencer)

T, N =5

m BERKELEY LAB

RM

‘u(xi)r:](xi) *

v

In this case, 4 out of 5 users

MIGD) 4

are in the neighbourhood
of an influencer

HIghRR Lecture Week - Heidelberg University
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DESIRED LOSS FUNCTION BERAVIOUR

= Giveneachof N points x; in track T, embedded into R™ with two models: a user-embedding U
and an influencer-embedding 7

= Wewant a minimum in the loss when all hits x; € T, have U(x;) inside neighbourhood M(9(x;))
for at least one influencer (and preferablyonly one influencer)

. . . N 2
= \We can achieve this by taking Ly(T,) = \/Hj%f.iw(xi) - (%) ® Position of user-embeddings

| - - | %* Position of influencer-embeddings
m Consider loss L in simple example of two points in three different cases:

 —r > — < > < >
* 8 % s * g
L < (A3, + A%,) L < (A%, + A%,) L < (A3, + A%))
X (A%, +A%2) =4 X (A%, + A%2) = 16 X (A%, +403) =0
Case A CaseB CaseC

~Note: Noise is/given a class label NaN and handled like all other data points | '  Septermber13, 2023 79



ITHE INFLUENCER LOSS

The attractive Influencer-User loss is actually the geometric mean across influencers

of the arithmetic mean across users of the distance between each positive pair across

all ntracks, so we can rewrite it for numerical stability: Aoo =Ap1 =0
1 1 1 oX0
J [ a
We include a repulsive Influencer-User hinge loss to punish users condensing towards g
an influencer from a different class: Ap1 >3

Ly, = mean;; (max(O, 1-— Al-j)), yij =0

And finally, we encourage influencers being a distance of at least A’ from each other,
to avoid users being "overrepresented’ by multiple influencers:

Ly = mean;;(max(0,A” — A})),  y; =0

We take this combination as the Influencer LossL = L, + aLy + bLy, where the weights | The total Influencer Loss is
a and b can be used to tune the efficiency-purity rate and the efficiency-duplicate at a minimum in this case
rate, respectively
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A TRAINING MONTAGE

REAL SPACE EMBEDDING SPACE

0.06

0.3 3

0.04
X
Hr

2 0.02

0.2 €
° 0
0.1 e -0.02

o

-0.04

o X -0.06

= -0.08
0.1 0.2 0.3 0.4 05 -0.2 -0.15 -0.1 -0.05 0 0.05 0.1

We can see the Influencer Loss working on two tracks above, across training epochs

In Real Space, we show only Users (circles) and Influencers (stars) when they are associated with an
Influencer or User (respectively)

The color in RealSpace is a projection in 1D of the location in Embedding Space

In Embedding Space, we should edges created, and connected Influencers are large stars, unconnected
Influencers are small stars

0
-
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A TRAINING MONTAGE

0.4

EMBEDDING SPACE

0.06

0.04

0.02
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We can see the Influencer Loss working on two tracks above, across training epochs
In Real Space, we show only Users (circles) and Influencers (stars) when they are associated with an

Influencer or User (respectively)

The color in RealSpace is a projection in 1D of the location in Embedding Space
In Embedding Space, we should edges created, and connected Influencers are large stars, unconnected
Influencers are small stars
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ONN TRACKING IN PRODUCTION
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CONVERSION TO ONNX

= Onnx is the gold standard for portability of ML
m [akesany framework (Tensorflow, Pytorch, Jax)
m Representsasa computational graph

= However graph neudral network operations have
always been lacking in Onnx

= [he latest version of Pytorch operations and Onnx
librariessupports GNN conversion!

AveragePool

Reshape

B {1000%2048>
C{1000)

Softmax

1x1000

A 4

[gpu_olsoftmaxj }
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CONVERSION [TO C++

m [hiscan be donewith Onnx, with C++
library of OnnxRuntime

m \Works basically out-of-the-box!

m Canalsodothiswith LibTorch

) m BERKELEY LAB

// EE IS EEEE L]

// GNN
// EXEEEEEE T
std::vector<const char*> gInputNames{"g_nodes", "g_edges"};
std::vector<Ort::Value> gInputTensor;
gInputTensor.push_back(
std: :move(fInputTensor[e])
)i
std::vector<inte4_t> gEdgeShape{2, numEdgesAfterF};
gInputTensor.push_back(
Ort::Value::CreateTensor<inted_t>(
memoryInfo, edgesAfterFiltering.data(), edgesAfterFiltering.size(),
gEdgeShape.data(), gEdgeShape.size())
)i
// gnn outputs
std::vector<const char*> gOutputNames{"gnn_edge_score"};
std::vector<float> gOutputData(numEdgesAfterF);
std::vector<int64_t> gOutputShape{numEdgesAfterF};
std::vector<Ort::Value> gOutputTensor;
gOutputTensor. push_back(
Ort::Value::CreateTensor<float>(
memoryInfo, gOutputData.data(), gOutputData.size(),
gOutputShape.data(), gOutputShape.size())
)i
runSessionWithIoBinding(*g_sess, gInputNames, gInputTensor, gOutputNames, gOutputTensor);

torch::Tensor glutputCTen = torch::tensor(gOutputData, {torch::kFloat32});
gOutputCTen = gOutputCTen.sigmoid();
// std::cout << gOutputCTen.slice(®, ©, 3) << std::endl;
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OPEN PROBLEMS
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OPEN PROBLEMS

m Fxtending m iNnference timing and scaling studies to

m [nvestigating training and inference performance on lower pr tracks
e <1CeV)and high pr tracks (l.e. > 10 GeV)

m |nvestigating performance on large radius tracks and dense track
environments

= Direct comparison with compinatorial Kalman filter (current
algorithm) efficiency and track parameter resolution
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OPEN PROBLEMS

m \We have typically been afraid of "dense’ representations, hence the building of more and more
sparse graphs. But sparse representations may miss interesting relationships, and models like
COAT try to apply dense modelsto graphs

= \We cannot yet get GNNsonto FPCAs easily — indexing and scattering is non-trivial

= Training GNNsacross GPUs is non-trivial:

m  Event-level parallelism gives no benefit (typical LHC hit-graph above OpenAl model of noise scale)

m  Node-level parallelism is difficult toimplement (but we are working with Georgia Tech groupto do this, library
called Lasagne has been successfully tested with parallelised graph attention network)

m Currently use spacepoints as the lowest level object, but ATLAS tracking natively uses clusters —
should enable this in GNN pipeline
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