Automatic Differentiation
(under the Hood)

HighRR Lecture Week

The point of Architecture

Why introduce architecture despite
universal function approximatation?

 Data and Training Efficiency

 Physics Inductive Bias

Performance

The point of Architecture

So we want structure, but we also want learning...
... and that means gradients — differentiable structures

parameters

ML Model f, Assessment

labels

=91 GeV

IM|~2 at E

The point of Architecture

Adding physics information may be much more than just
adding symmetries

ete- -> ptp-

b

q / £F

86 88 90
M Z [GeV]

q / ve
b

-/

Actual Physics Computation
(Matrix Elements)

l—/;f / q

Langevin dynamics

Sequence s

Structure X

Initialize

Figure 1: An unrolled simulator as a model for protein structure. NEMO combines a neural
energy function for coarse protein structure, a stochastic simulator based on Langevin dynamics
with learned (amortized) initialization, and an atomic imputation network to build atomic coordinate

output from sequence information. It is trained end-to-end by backpropagating through the unrolled
folding simulation.

Dynamical Layers
(ODE)

Gradients

So what we really want is gradlents of arbitrary programs

mputs

V, Efem

A big underlying reason for the success of Deep Learning

Differentiable Programming

Start Simple

Consider a simple function

I, g

def program(x):
a = f(x)

return a

What can we say about the differentials?

Start Simple

Consider a simple function

I, g

def program(x):
a = f(x)

return a

Differentials (small changes) transform
linearly between input and output

e scale factor is the Jacobian Matrix

 transform is just a matrix multiplication

Start Simple

How about composition?
]
4

711__> Lo __%> mns __$> T

def program(x):

f(x) *

g(a) \ - \

h(b) U = [dx
return c

Start Simple

How about composition?
]—
4

711__> T2 __%> mns __%> (4

def program(x):

f(x) |
g(a) _
return c

Start Simple

How about composition?

n1 AN 2 AN ns — (42

def program(x):
f(x)
g(a)

h(b)
return c

Just the Chain Rule

How about composition? ,
B 4—— || &— [E' «—
Tv] f % g h N4

— R™ —

def program(x):
a = f(x)
b = g(a)

c = h(b)
return c

dc = J*Vdx = J"J8) dx

This is just the chain rule 0, f(y = g(x)) =0, /- J,8

So, it’s just about Matrix Multiplication

To know the gradients (i.e. Jacobians) of a composed program, we
need a good way to characterize products of Jacobians matrices

dc
def program(x):

a = f(x) — — JX_W — thg]f
b = g(a) élxy

B0
B0
2l]2]7

c = h(b)
return C

It’s all about Matrices

Naive Multiplication

Explicitly constructing matrices and naively multiplying doesn’t scale,
details on how we compute matter

(AB)C A(BC)

100k FLOPS 2M FLOPS

Best option: Matrix Multiply without multiplying Matrices

So let’s talk about Matrices

Inspecting a Matrix

Matrices encode transformations of vectors

Conversely: we can recover all information about a matrix by
observing how vectors get transformed

* |.e. through Matrix-Vector Products.

-
. =
_

Inspecting a Matrix

Matrices encode transformations of vectors

Conversely: we can recover all information about a matrix by
observing how vectors get transformed

* |.e. through Matrix-Vector Products.

Inspecting a Matrix

Matrices encode transformations of vectors

Conversely: we can recover all information about a matrix by
observing how vectors get transformed

* |.e. through Matrix-Vector Products.

Inspecting a Matrix

Matrices encode transformations of vectors

Conversely: we can recover all information about a matrix by
observing how vectors get transformed

* |.e. through Matrix-Vector Products.

Inspecting a Matrix

Matrices encode transformations of vectors

Conversely: we can recover all information about a matrix by
observing how vectors get transformed

* |.e. through Matrix-Vector Products.

Inspecting a Matrix

Matrices encode transformations of vectors

Conversely: we can recover all information about a matrix by
observing how vectors get transformed

* |.e. through Matrix-Vector Products.

A Matrix as a Program

Gives us an efficient way to "store'"/express matrices:

matrix « a program that computes transforms vectors

def mvp(inp): def explicit(inp):
X,Y,z = inp matrix = np.array(|[
2 3 O return np.array([[2,3,0],
2%X + 3%y, [0,5,4]
S5ky + 4%z])
O 5 4 1) return matrix @ 1inp
mvp([1,2,3]) explicit([1,2,3])

array([8, 22]) array([8, 22])

Recover full Matrix
through three MVPs

2 o5 0
0 o 4

def explicit(inp):
matrix = np.array(|[
[2,3,0],
[0,5,4]
1)

return matrix @ 1inp

explicit([0,0,1])
array([0, 4])

explicit([0,1,0])
array([3, 5])

explicit([1,0,0])
array([2, 0])

A Matrix as a Program

def mvp(inp):
X,Y,Z = 1np
return np.array([
2%X + 3%y,
5ky + 4%z

1)

mvp([0,0,1])
array([0, 4])

mvp([0,1,0])
array([3, 5])

mvp([1,0,0])
array([2, 0])

Inspecting a Matrix

Ability to compute Matrix-Vector Products (MVP) is sufficient to
extract any information we want from a matrix. Note:

* do not need the explicit matrix, just ability to compute MVPs
* to get full matrix we need do Ncoiumn MVPs computations

Or we can go the other way around...

Matrices encode transformations of vectors

Conversely: we can recover all information about a matrix by
throwing specific vectors at it, from the left.

* |.e. through Vector-Matrix Products.

Or we can go the other way around...

Matrices encode transformations of vectors

Conversely: we can recover all information about a matrix by
throwing specific vectors at it, from the left.

* |.e. through Vector-Matrix Products.

Or we can go the other way around...

Matrices encode transformations of vectors

Conversely: we can recover all information about a matrix by
throwing specific vectors at it, from the left.

* |.e. through Vector-Matrix Products.

BEEE - U EEE

Or we can go the other way around...

Matrices encode transformations of vectors

Conversely: we can recover all information about a matrix by
throwing specific vectors at it, from the left.

* |.e. through Vector-Matrix Products.

- DU e

Or we can go the other way around...

Ability to compute Vector Products (MVP) is sufficient to extract any
Information we want from a matrix. Note:

* do not need the explicit matrix, just ability to compute VMPs

* to get full matrix we need to compute Nrow VMPs computations

Again as Programs

Again, having a program that computes vector-matrix products
(VMPs) is equivalent to having the full matrix.

- def vmp(out): - def explicit(out):
a,b = out matrix = np.array([
2 3 O return np.array([{g:g:g%'
2*a, 1)
3*a + 5%*Db, return np.matmul (np.array(out).T,matrix)
0 5 4
1) - explicit([2,3])

array([4, 21, 12])
o vmp([2,3])

array([4, 21, 12])

Again as Programs

Recover full Matrix through two VMPs

def vmp(out):

o a,b = out
. def explicit(out): return np.array([
matrix = np.array([2%a,
[2131@]i 3%a + 5*b,

22 23 () . [0,5,4] . 4%b

return out @ matrix

() ES 41 explicit([1,0])

: LC] 11
explicit([1,0]) array([2, 3, 0])

. array([2, 3, 0])

explicit([0,1])

- explicit([0,1]) array([0, 5, 4])

- array([0, 5, 4])

Composition of Matrices

The MVP, VMP picture still works if we have compositions
e to characterize M = M;M,M, we just need MVP/MVP with M,

M MMM,

Composition of Matrices

The MVP, VMP picture still works if we have compositions
e to characterize M = M;M,M, we just need MVP/MVP with M,

Composition of Matrices

The MVP, VMP picture still works if we have compositions
e to characterize M = M;M,M, we just need MVP/MVP with M,

Composition of Matrices

The MVP, VMP picture still works if we have compositions
e to characterize M = M;M,M, we just need MVP/MVP with M,

Composition of Matrices

The MVP, VMP picture still works if we have compositions
e to characterize M = M;M,M, we just need MVP/MVP with M,

Composition of Matrices

The MVP, VMP picture still works if we have compositions
e to characterize M = M;M,M, we just need MVP/MVP with M,

Composition of Matrices

The MVP, VMP picture still works if we have compositions
e to characterize M = M;M,M, we just need MVP/MVP with M,

Composition of Matrices

The MVP, VMP picture still works if we have compositions
e to characterize M = M;M,M, we just need MVP/MVP with M,

Composition of Matrices

The MVP, VMP picture still works if we have compositions
e to characterize M = M;M,M, we just need MVP/MVP with M,

Composition of Matrices

The MVP, VMP picture still works if we have compositions
e to characterize M = M;M,M, we just need MVP/MVP with M,

Composition of Matrices

The MVP, VMP picture still works if we have compositions
e to characterize M = M;M,M, we just need MVP/MVP with M,

goDeEEee - 80D

r.=e M r,=e M= e M;M,M,

Composition of Matrices

The MVP, VMP picture still works if we have compositions
e to characterize M = M;M,M, we just need MVP/MVP with M,

goDEEEe - 80D

T T .71 |
ro=elM r=elM _M\@M1

Composition of Matrices

The MVP, VMP picture still works if we have compositions
e to characterize M = M;M,M, we just need MVP/MVP with M,

DDDBEES -

— o1 — Tasr =1
ro=elM rl-—el.M—le

Composition of Matrices

The MVP, VMP picture still works if we have compositions
e to characterize M = M;M,M, we just need MVP/MVP with M,

Composition of Matrices

The MVP, VMP picture still works if we have compositions
e to characterize M = M;M,M, we just need MVP/MVP with M,

guoEEEs - (1]

. _ I | |

Composition of Matrices

The MVP, VMP picture still works if we have compositions
e to characterize M = M;M,M, we just need MVP/MVP with M,

Composition of Matrices

The MVP, VMP picture still works if we have compositions
e to characterize M = M;M,M, we just need MVP/MVP with M,

Upshot: Forward and Backward

With MVPs/VMPs can characterize a Products of Matrices

e to get a row/column we never need explicit representations of M..
e programs for MVP/VMPs is all we need (“matrix-free” approach)

c; = Me; = M;M,Me; r,=e M= e MMM,
c; = Me; = M;M,v, r,=e; M =v,MM,

¢; = Me; = M3v, r,=e M= v,M,

c; = Me; = v, I = eiTM = V5

forward backward (or reverse)

Back to Derivatives

A strategy for Derivatives of Programs

Our main job is to characterize the product of Jacobians:

Jc:

_— oy = Jhys gt

an
We know know that we compute it purely through programs that give
us Jacobian Vector Products (JVP) or Vector-dacobian products (VJP)

Jfo(x) — fo Vpr(X) — XTJf

A strategy for Derivatives of Programs

If we have all the jvp(x), vijp(x) for all transforms /1, g, f we can
easily and mechanically create programs that compute derivatives

def program(x):
a = f(x)

b = g(a)

c = h(b)
| return cC

A strategy for Derivatives of Programs

If we have all the jvp(x), vijp(x) for all transforms /1, g, f we can
easily and mechanically create programs that compute derivatives

a = f(x)
b = g(a)

¢ = h(b)
\ return cC

def program(x):

J

xX— h
J Ve = JN s e.
def jacobian_column(c0):
cl = jvp_f(c0)
c2 = jvp_g(cl)

c3 = jvp_h(c2)
return c3

Forward-Mode Differentiation

A strategy for Derivatives of Programs

If we have all the jvp(x), vijp(x) for all transforms /1, g, f we can
easily and mechanically create programs that compute derivatives

def program(x):
a = f(x)
r— b = g(a)
| c = h(b) l
v —> return c J 44—
- xX— __ 7h
el J==y = el Jhys)t JVe, = J"J8) e,
def jacobian_row(r@): def jacobian_column(cO):
rl = vijp_h(ro) cl = jvp_f(co)
r2 = vjp_g(rl) C2 = jvag(cl)
r3 = vjp_T(r2) c3 = jvp_h(c2)
return r3 return c3

Reverse-Mode Differentiation Forward-Mode Differentiation

A strategy for Derivatives of Programs

For example, we can collect all the right programs while we are
running through our main program as additional output

,¢f def program(x):

a = f(x)
b = g(a)
c = h(b)
return cC

_ _ -

Main Program

A strategy for Derivatives of Programs

For example, we can collect all the right programs while we are
running through our main program as additional output

 def program(x): o (x
l a = f(x) -1 » J pf()
b = g(a)
c = h(b)
return cC
— _

Main Program

A strategy for Derivatives of Programs

For example, we can collect all the right programs while we are
running through our main program as additional output

def program(x): VDA X
l Ca = f(x) e v JVPX)
h = g(a) > ijg(_X)

¢ = h(b)

return cC

= — —

Main Program

A strategy for Derivatives of Programs

For example, we can collect all the right programs while we are
running through our main program as additional output

def program(x): v
| a = f(x) "7 VJ. Pf()
b — g(a) ----------- > JVpg(x)
w c = h(b) «.......|.. |
Y return c > jvp,(x)
— _

Main Program

A strategy for Derivatives of Programs

For example, we can collect all the right programs while we are
running through our main program as additional output
... and from those assemble the derivative program

def program(x): | & JVPA(x) def jacobian_column(c0):
| a = f(x) eoe | cl = jvp_f(co)
b — g(a) > vag(x) > C2 = jvp_lg(cl)
v C = h(b) : c3 = ij_h(CZ)
return c > jvp,(x) S LR o
_ _

Main Program Derivative Program

A strategy for Derivatives of Programs

Or we can go backwards as well...

,lf def program(x):

a = f(x)
b = g(a)
¢ = h(b)
return C

_ %% _

Main Program

A strategy for Derivatives of Programs

Or we can go backwards as well...

def program(x): Vo
l a = f(x) T | 4 pr()
b = g(a)
c = h(b)
return C
— _

Main Program

A strategy for Derivatives of Programs

Or we can go backwards as well...

def program(x): .
l | a = f(x) =T » VIPAx)
h = g(a) ----------- > VJpg(x)
c = h(b)
return cC

_ _ -

Main Program

A strategy for Derivatives of Programs

Or we can go backwards as well...

def program(x): » VIDAX
a = f(x) "7 v pr()
b = g(a) «eeeeeeei}es > Vjpg(X)
| c = h(b) «...... .. .
M return c >VJPh(X)
_ _

Main Program

A strategy for Derivatives of Programs

Or we can go backwards as well...

a = f(x)
b = g(a)
v c = h(b)
return cC

_

Main Program

def program(x):

def jacobian_row(ro):

rl = vjp_h(ro)
r2 = vjp_g(rl)
r3 = vjp_f(r2)

return r3

Derivative Program

A strategy for Derivatives of Programs

That means, if we have a system that can modify a function such that
it returns not only the output value but also a vjp/jvp function

program
transform

Then, we can almost blindly assemble a
corresponding derivative program!

A strategy for Derivatives of Programs

That means, if we have a system that can modify a function such that
it returns not only the output value but also a vjp/jvp function

A strategy for Derivatives of Programs

That means, if we have a system that can modify a function such that
it returns not only the output value but also a vjp/jvp function

A strategy for Derivatives of Programs

That means, if we have a system that can modify a function such that
it returns not only the output value but also a vjp/jvp function

A strategy for Derivatives of Programs

That means, if we have a system that can modify a function such that
it returns not only the output value but also a vjp/jvp function

forward

basis vector Jacobian Column

A strategy for Derivatives of Programs

That means, if we have a system that can modify a function such that
it returns not only the output value but also a vjp/jvp function

A strategy for Derivatives of Programs

That means, if we have a system that can modify a function such that
it returns not only the output value but also a vjp/jvp function

A strategy for Derivatives of Programs

That means, if we have a system that can modify a function such that
it returns not only the output value but also a vjp/jvp function

A strategy for Derivatives of Programs

That means, if we have a system that can modify a function such that
it returns not only the output value but also a vjp/jvp function

Jacobian Row backward basis vector

Forward vs Backward

We have two methods to derive gradients, which one should we use?

For ML, what’s f : R" — R™ ?

It’s our empirical risk as function of parameters, I.e.

L(¢) : Ralot N Rl

Forward vs Backward

Given L(¢) : R® lot _, R! what’s the shape of the Jacobian?

A single row

Non-Linear
Loss

« —

Linear Gradients

d¢

-

Can compute it with a single pass of reverse-mode differentiation

Scaling to Billions of Parameters

By using reverse-mode, we can scale to billions of dimensions
® gradient computation requires roughly same time as main program

nal of Machine Learning Research 23 (2022) 1-40 Submitted 8/21; Revised 3/22; Published 4/22

Switch Transformers: Scaling to Trillion Parameter Models
with Simple and Efficient Sparsity

William Fedus*

NOAMQGOOGLE .COM
Google, Mountain View, CA 94043, USA

p Jun 2022

Editor: Alexander Clark

Gives us a good sense of
To deal with hyper-planes in a 14-dimensional space, visualize a 3D - - - AT
space and say ‘fourteen'to yourself very loudly. -Hinton d | re Ctl O n | n bl I I |0 n - D S paCeS

1970

Forward vs Backward

For Machine Learning, mostly the reverse-mode differentiation via
vector-dacobian products is relevant. Rediscovered by ML in 80s.

Backpropagation

1986

Seppo Linnainmaa

Seppo Linnainmaa

ALGORITMIN KUMULATIIVINEN PYORISTYSVIRHE

YKSITTAISTEN PYORISTYSVIRHEIDEN TAYLOR-KEHITELMANA

Pro gradu-tutkielma . ohjaaja professori M.Tienari

Geoff Hinton
Learning representations by back-propagating errors

Published: 09 October 1986

David E. Rumelhart, Geoffrey E. Hinton & Ronald J. Williams

Nature 323, 533-536 (1986) | Cite this article
95k Accesses | 13696 Citations | 255 Altmetric | Metrics

Abstract

We describe a new learning procedure, back-propagation, for networks of neurone
units. The procedure repeatedly adjusts the weights of the connections in the net
as to minimize a measure of the difference between the actual output vector of the
the desired output vector. As a result of the weight adjustments, internal ‘hidden’ u
which are not part of the input or output come to represent important features of t
domain, and the regularities in the task are captured by the interactions of these units. The
ability to create useful new features distinguishes back-propagation from earlier, simpler
methods such as the perceptron-convergence procedurel.

Beyond Sequences

You might ask: “My programs look a bit more complicated than a
sequence of function calls”: control flow, loops, ..

def program(x): def program(x):
a = f(x) V=X
b = g(a) for i in range(3)
c = h(b) v=4xvx(1=v)
return C return v

We know how to do this How do we do this?

A Graph Picture of Matrix Multiplication

We can get a hint, by looking at Matrix Multiplication as a graph

A Graph Picture of Matrix Multiplication

What do Matrix-Vector Products look in this picture ?

o F
=M
8 08D . T
7= M,Mx

= (Mx), = Z X y; = (Mx); = Z Mipxp

pEparents(y;)

A Graph Picture of Matrix Multiplication
What do Vector-Matrix Products look like?

lll] v =My
S giss Weem
— M
7= M,Mx
yi = (@ M); = v =(@'M); = Z M

p€Echildren(y,)

JVP/VJP in graph

There Is a correspondence between
e Matrix Elements and Edges
® | inear Programs <> Matrices <> annotated edges

2 3 0 a R}
2 3 5 4
0 5 4

JVP/VJP in graph

def mvp(inp):
X,Y,Z = 1np
return np.array([
2%X + 3%y,

5%y + 4%z
1) °
([1,2,3])
i o\ 3/ \5 /4
array([8, 22])

pEparents(y)

JVP/VJP in graph

def vmp(out):

a,b = out
return np.array([
2%a,
3%a + 5%b,
4xb J
1)
vmp([2,3]) 2 3 5 4
array([4, 21, 12])
= (z' M), = M
Yi= K 1 4%p pi

pechildren(y)

JVP/VJP in graph

“creating a JVP/VJP program” is just annotating the graph edges
with partial derivatives

= m 5 em m 5
| i i |
| i | |

= U 4 | - U 4
main Oxl)Cz aX3

. JVP/JVP FEES FEEDS
non-linear graph i - i -
i 1 i |

program Y om ?

dy, dy,
\ am'm

|
£ G) (& ..

JVP/VJP in graph

Compute derivatives by propagating basis vectors through the graph

basis vector forward Jacobian Column

oV
peparents(y) P

JVP/VJP in graph

Compute derivatives by propagating basis vectors through the graph

basis vector forward Jacobian Column

oV
peparents(y) P

JVP/VJP in graph

Compute derivatives by propagating basis vectors through the graph

basis vector forward Jacobian Column

oV
peparents(y) P

JVP/VJP in graph

Compute derivatives by propagating basis vectors through the graph

0z;
. NEECIE-.

basis vector forward Jacobian Column

ou,
a,=(Jb)=) —b,
peparents(y) P

JVP/VJP in graph

Compute derivatives by propagating basis vectors through the graph

0z;
. NEECIE-.

basis vector forward Jacobian Column

ou,
a,=(Jb)=) —b,
peparents(y) P

JVP/VJP in graph

Compute derivatives by propagating basis vectors through the graph

de
axl'
Jacobian Row backward basis vector
. dup
a. = (b)), = Z gL
l l D
aVi

bechildren(z)

JVP/VJP in graph

Compute derivatives by propagating basis vectors through the graph

de
axl'
Jacobian Row backward basis vector
. dup
a. = (b)), = Z gL
l l D
aVi

bechildren(z)

JVP/VJP in graph

Compute derivatives by propagating basis vectors through the graph

07
—] K
axl'
Jacobian Row backward basis vector

ou
a=0"N= Y

P
bechildren(z) avl

JVP/VJP in graph

Compute derivatives by propagating basis vectors through the graph

0
aixf DEE CDE «

Jacobian Row backward basis vector

ou
a=0"N=) z,—

P
bechildren(z) avl

Example

Let’s take a simple example:

{ = xle —+ Slnxl — y —+ Slnxl

Express as a graph:

X1

X1Xy + S1n X4

L = xl.X2 + Slnxl — y + Slnxl

Example
Annotate Edges: (add JVP/JVP information)

| - Y 4 Y v 4
0,y =X, j 0.y = X

am m 5
i i
i I

Y Y 4
0.7 = COSX
Xl 1 .
0yz—1
'- [] -‘

L = X1X2 + Slnxl — y + Slnxl

Run backwards

0,2 = COS X,

X1Xy + S1n X4

L = xl.X2 + Slnxl — y + Slnxl

Run backwards

0,2 = COS X,

X1Xy + S1n X4

L = xl.X2 + Slnxl — y + Slnxl

Run backwards

X1Xy + S1n X4

L = xl.X2 + Slnxl — y + Slnxl

Example

Voila!

{ = x1x2 + Slnxl — y + Slnxl

07
— = X, + COS X;
8)61

07
— ‘xl

8)62

A Graph Picture of Matrix Multiplication

With the graph picture, we can generalize differentiation to arbitrary
computation graphs, i.e. arbitrary programs!

ou, ou,
a, = (Jb), = = bp a. = (bT])i — Z Zpa_
pEparents(y) P bechildren(z) Vi

Forward Propagation Backward Propagation

Let’s automate this!

We derived a strategy to efficiently compute the gradient of any given
well-defined program

But of course, we don’t want to do this ourselves

® |n any case this Is just mechanically putting together
some JVP, VJP functions

® |t’'s something a computer can do!

Automatic Differentiation (AD)

Automatic Differentiation Systems

Most Deep Learning Framework are at their core Autodiff systems
e Differentiable Programming Languages first, ML Stuff second

1" TensorFlow

% PYTHRCH

NN

Beyond Deep Learning

But there is a long list of nhon-DL focused AD frameworks as well
® |dea exist in many language (C++, Julia, Fortran, ...)

0

automatic differentiation in C++ couldn't be simpler E nzym e _j I (J u I ia)

autodiff (C++)

Remember: ML kind of rediscovered AD on its own

Beyond Deep Learning

dnfdragora-update]

‘ 696 updates available.

{ View Cmds Tools Options Buffers

CALL PUSHCOMPLEX16 (md1l_complexi)
CALL PUSHREALS (mdl_sw)

o A FyetheALD (mil e0)

Ooooggggggggggggg gAAfll: gg;gyé(param,_ miapbpvalue)

0.000

¢l 'pmass . inc'

0.0000000000000000 INCLUDE 'pm
0.0000000000000000 totalmass = g.g?g
Sor 998089 Dot;:;irnn:;st.ein?otalmasg + pmass (i)
1.5556037984774659E-010 s
0.0000000000000000

§ 0.0000000000000000
cks): 65536 bytes

Differentiable
MadGraph
in FORTRAN

Now use a simple multipurpose PS generator (RAMBO)‘ just to get a
RANDOM s=t of four momenta of given masses pmass(i) to be used to evaluate
the MadGraph5_aMCGNLO matrixz-element .

Alternatevely, here the user can call or set the four momenta at his will,

aanaaan

See below.

IF (nincoming -EQ. 1) THEN
0000000000000000 GeV” CALL PUSHCONTROL1B(0)
qurts = pmass(1)
SE

7776 bytes
‘sd adjoint: -4.9110892667388022e+01

E
CcHs energy in GEV
sqrts = 1000d0
IF | (sqrts | LE. 2.0d0*

../../Source/DHELAS/*.f /o /S 5 i b
\ e o Vool ource/MODEL/* , f matrix. f] totalmass) THEN

= 20 Jun 2023 22:24 - Java 1 ; = CoitL ncomoningi)
Ulh/home/tapenade/bin; . - 1.0.11 Linux mds (€ 0908 Eotainass

CALL PUSHCON
upl_b. j 1 s TROL1B(1)
-0.1nc END IR
Put_b.inc
'T) unex,

Pected operator,

sa1€5t:0.0), nongy) mul?::{i’?;‘essmn A eXpressions[jf e prass, p)
:essmns[cau(mme ident-dcm{‘e()' J.dent:conjg, = Write the information
) Unexpecte ifE;(prmp i SXPressionsident CALL smatpry 2% Ehe four moments
i s ession IN ey 9 CALL X B(p, mat
A \ C B ’ €lem,
rt)”' realCst:g,q), norﬁg? cary, ngCONTRO‘ﬁ1 mateleffmb)
0 expressions[cau(L

Exp ression Iy ex

Pressj
oo (] SO

ns[if
2.0,

o 023 Xpressions?;; | rE[f;:LLL
MU"'Ch 2 one(), mul (ca | E“L%
None(), ldent ggi

| CALL
XPressjo | Mate]

A general pattern

Differentiable Programming is a generic way to introduce
physics structure into ML without losing learnability

B Ut m OSt Of 0 u r COd e IS Making the World Differentiable: On Using Self-Supervised Fully

Recurrent Neural Networks for Dynamic Reinforcement Learning

n Ot (yet) d iﬁe re nt i a b I e and Planning in Non-Stationary Environments

Jirgen Schmidhuber*
Institut fir Informatik
Technische Universitat Minchen
Arcisstr. 21, 8000 Miinchen 2, Germany
schmidhu@tumult.informatik.tu-muenchen.de.

A program for the next
few years

Abstract

iction to minforqement learning and to supervised learning with recurrent
iry environments is given. The introduction also covers the basic principle of
h frozen model networks’ as employed by Werbos, Jordan, Munro, Robinson
en and. Widrow. This principle allows supervised learning technigues to be
ent learning.
ithm for a reinforcement learning neural network with internal and ezternal
Nnary reactive environment is described. Intemal feedback is given by con-
ic activation flow through the network. Ezternal feedback is given by ouiput
: the state of the environment thus influencing subsequent input activations.
l is to receive as much reinforcement (or as little ‘pain’) as possible.
time lags between actions and ulterior consequences are possible. The ‘visi-

-

