Automatic Differentiation (under the Hood)

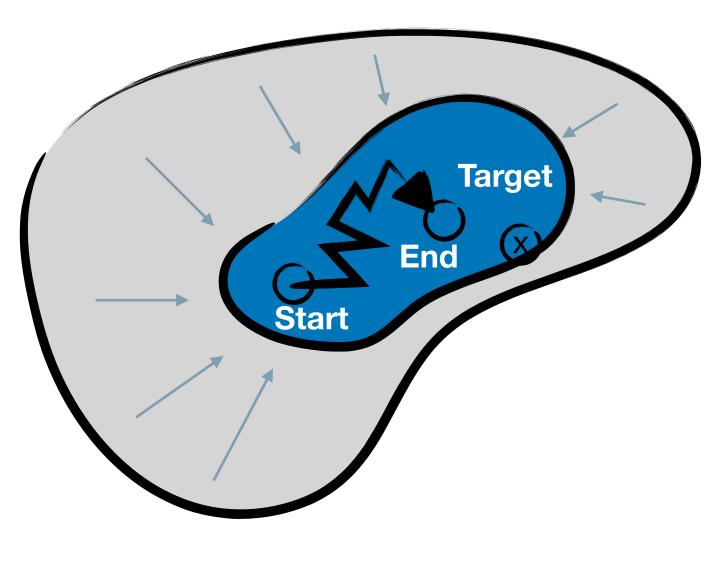
HighRR Lecture Week

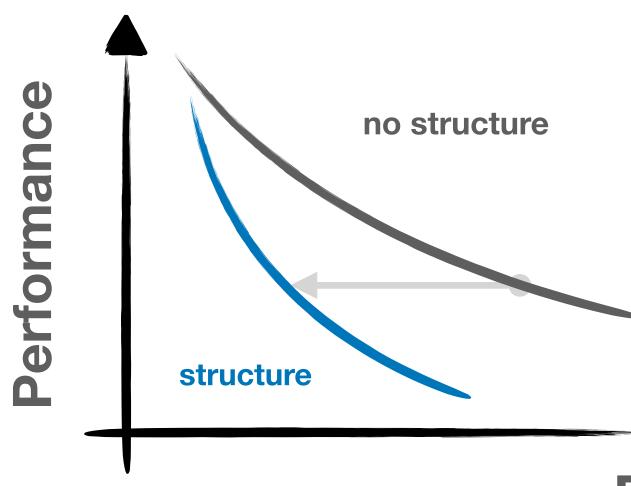
TRANSFORMER

The point of Architecture

Why introduce architecture despite universal function approximatation?

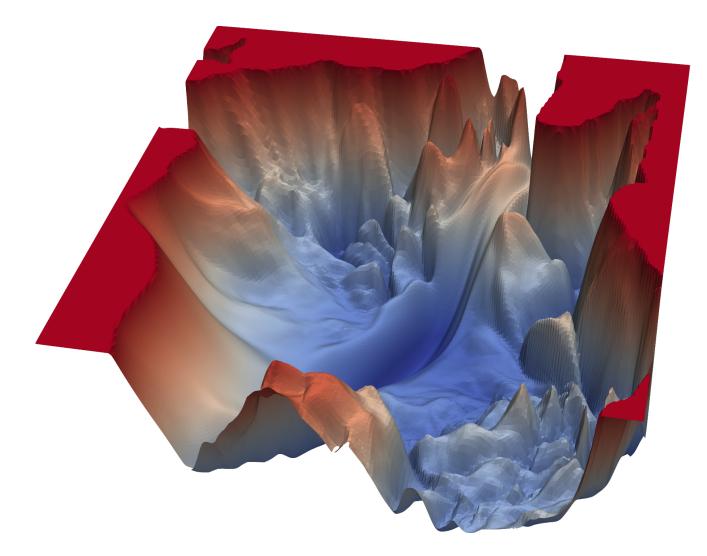
- Data and Training Efficiency
- Physics Inductive Bias

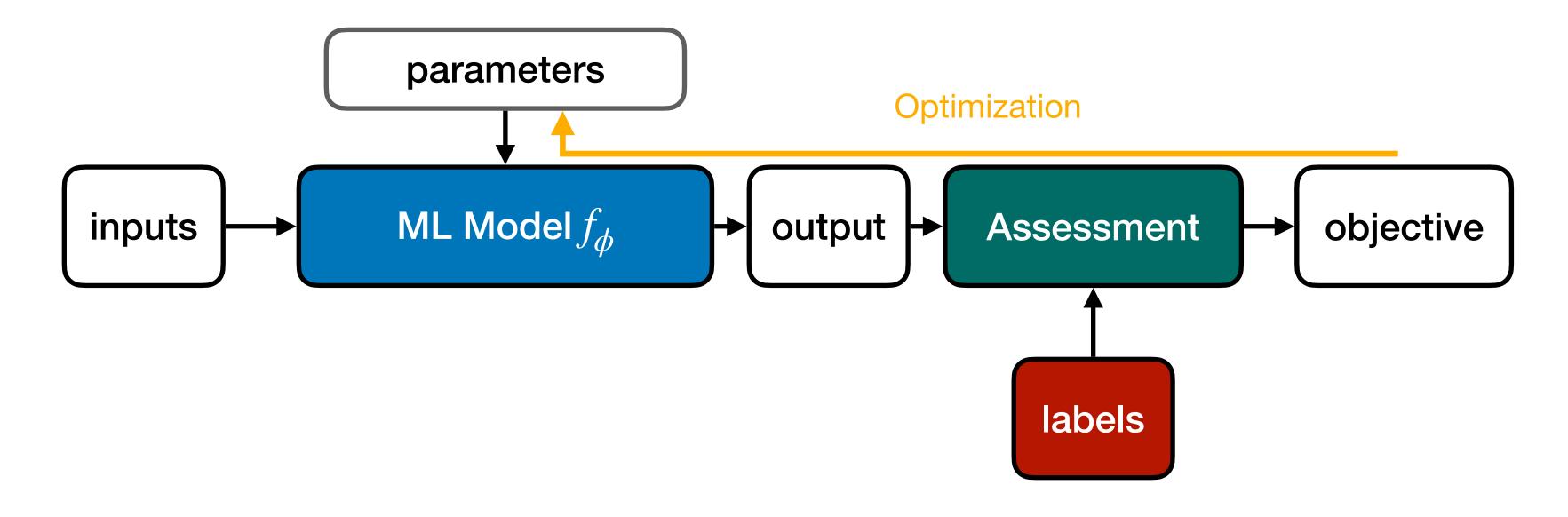




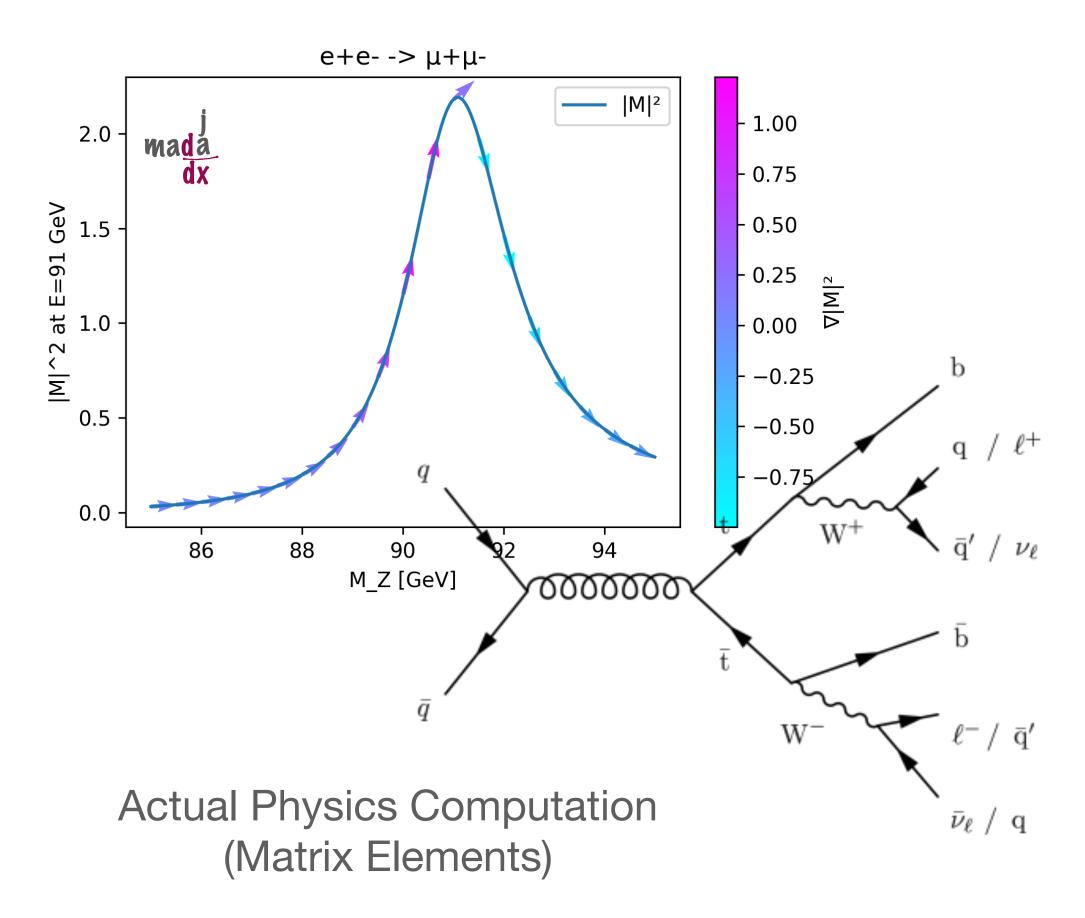
The point of Architecture

So we want structure, but we also want learning... ... and that means gradients \rightarrow differentiable structures





The point of Architecture Adding physics information may be much more than just adding symmetries



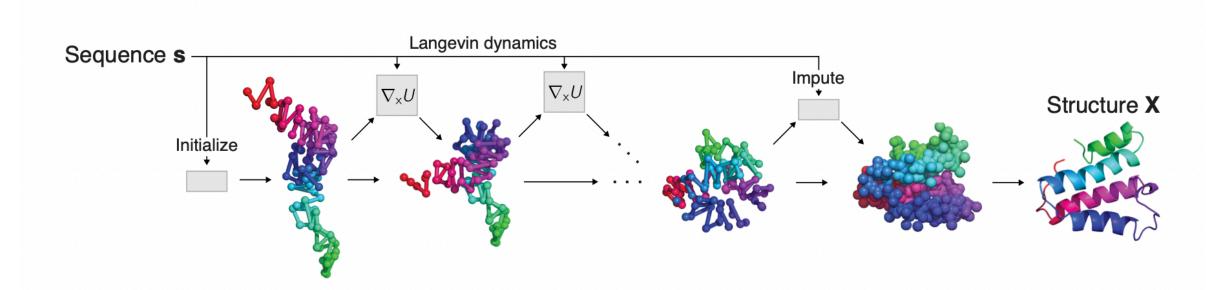
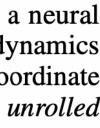
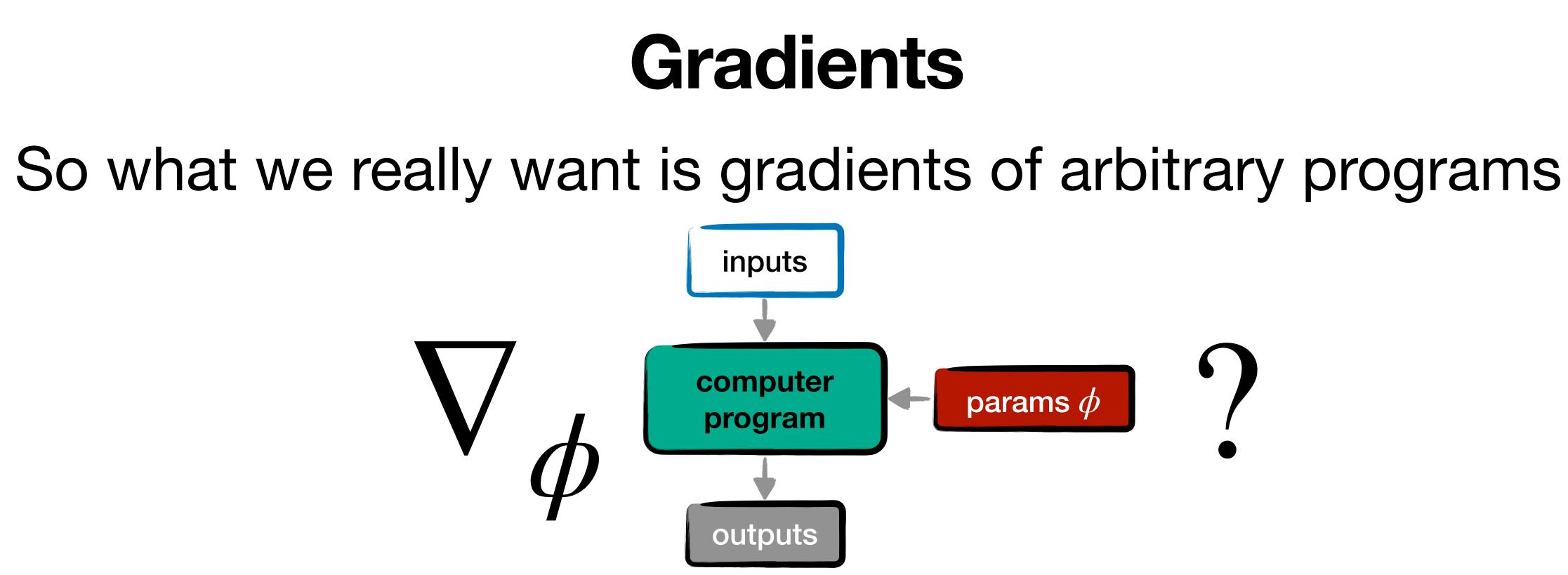


Figure 1: An unrolled simulator as a model for protein structure. NEMO combines a neural energy function for coarse protein structure, a stochastic simulator based on Langevin dynamics with learned (amortized) initialization, and an atomic imputation network to build atomic coordinate output from sequence information. It is trained end-to-end by backpropagating through the unrolled folding simulation.

> **Dynamical Layers** (ODE)



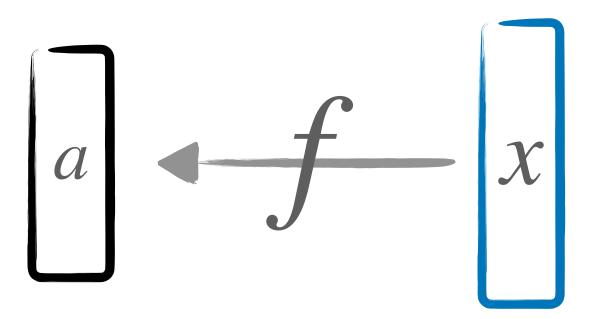


A big underlying reason for the success of Deep Learning **Differentiable Programming**

Consider a simple function $\mathbb{R}^{n_1} \xrightarrow{f} \mathbb{R}^{n_2}$

def program(x):
 a = f(x)
 return a

What can we say about the differentials?



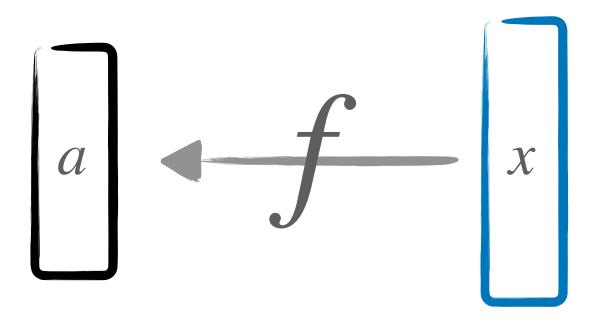
??

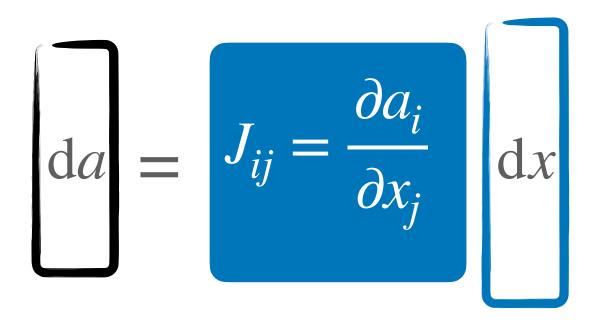
Consider a simple function $\mathbb{R}^{n_1} \xrightarrow{f} \mathbb{R}^{n_2}$

def program(x): a = f(x)return a

Differentials (small changes) transform linearly between input and output

- scale factor is the Jacobian Matrix
- transform is just a matrix multiplication



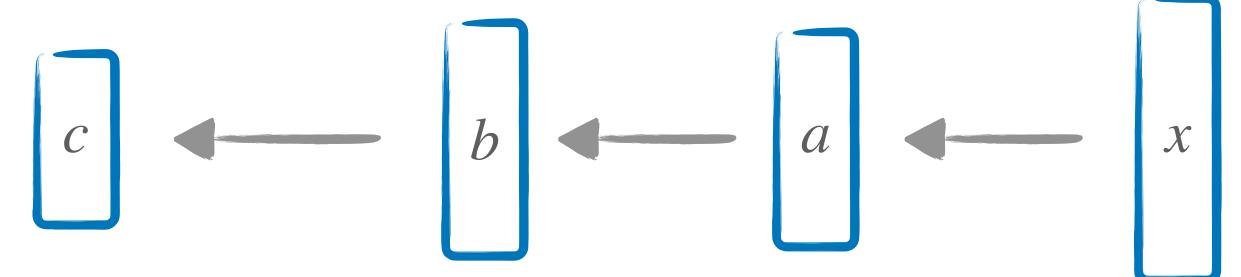


 $\mathrm{d}a_i = J_{ij}\mathrm{d}x_j$

How about composition?

$$\mathbb{R}^{n_1} \xrightarrow{f} \mathbb{R}^{n_2} \xrightarrow{g} \mathbb{R}^{n_3} \xrightarrow{h} \mathbb{R}^{n_4}$$

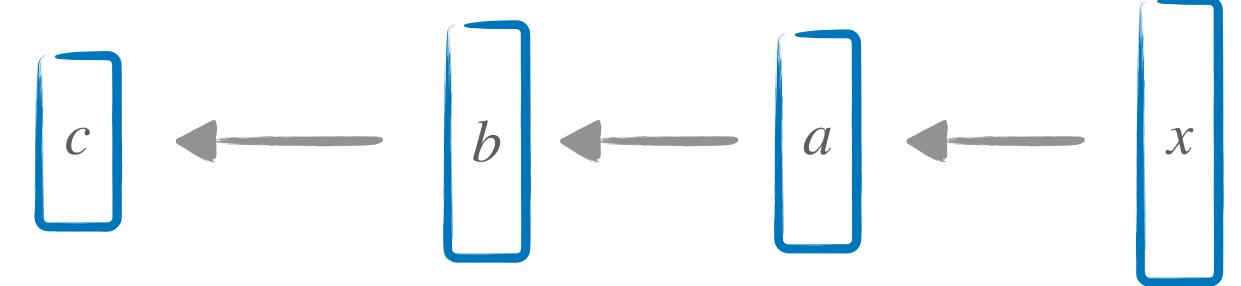
def program(x):
 a = f(x)
 b = g(a)
 c = h(b)
 return c

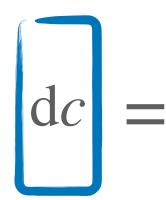


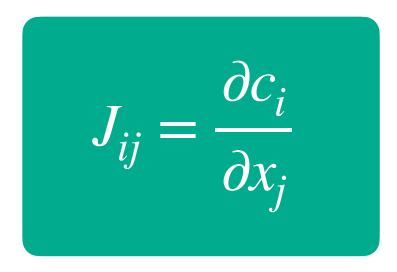
How about composition?

$$\mathbb{R}^{n_1} \xrightarrow{f} \mathbb{R}^{n_2} \xrightarrow{g} \mathbb{R}^{n_3} \xrightarrow{h} \mathbb{R}^{n_4}$$

def program(x):
 a = f(x)
 b = g(a)
 c = h(b)
 return c



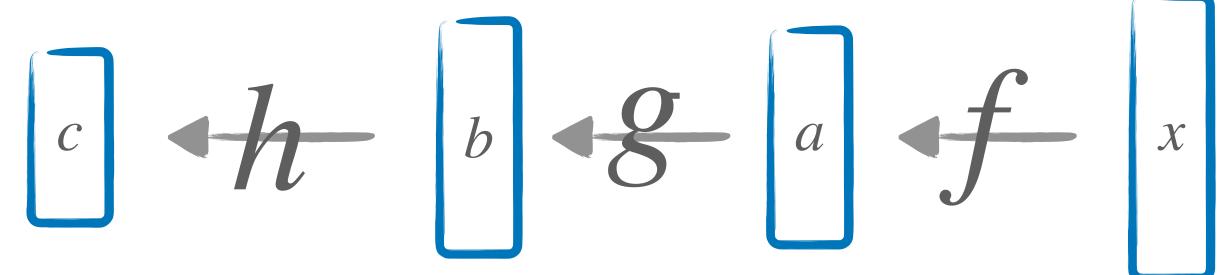




How about composition?

$$\mathbb{R}^{n_1} \xrightarrow{f} \mathbb{R}^{n_2} \xrightarrow{g} \mathbb{R}^{n_3} \xrightarrow{h} \mathbb{R}^{n_4}$$

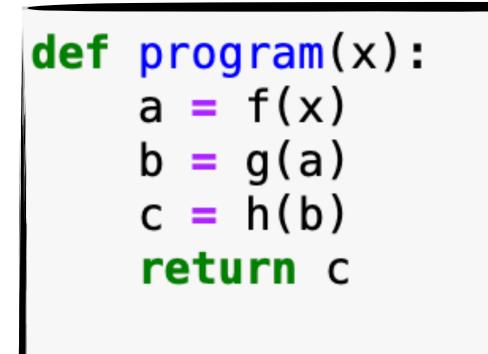
def program(x): a = f(x)b = g(a)c = h(b)return c

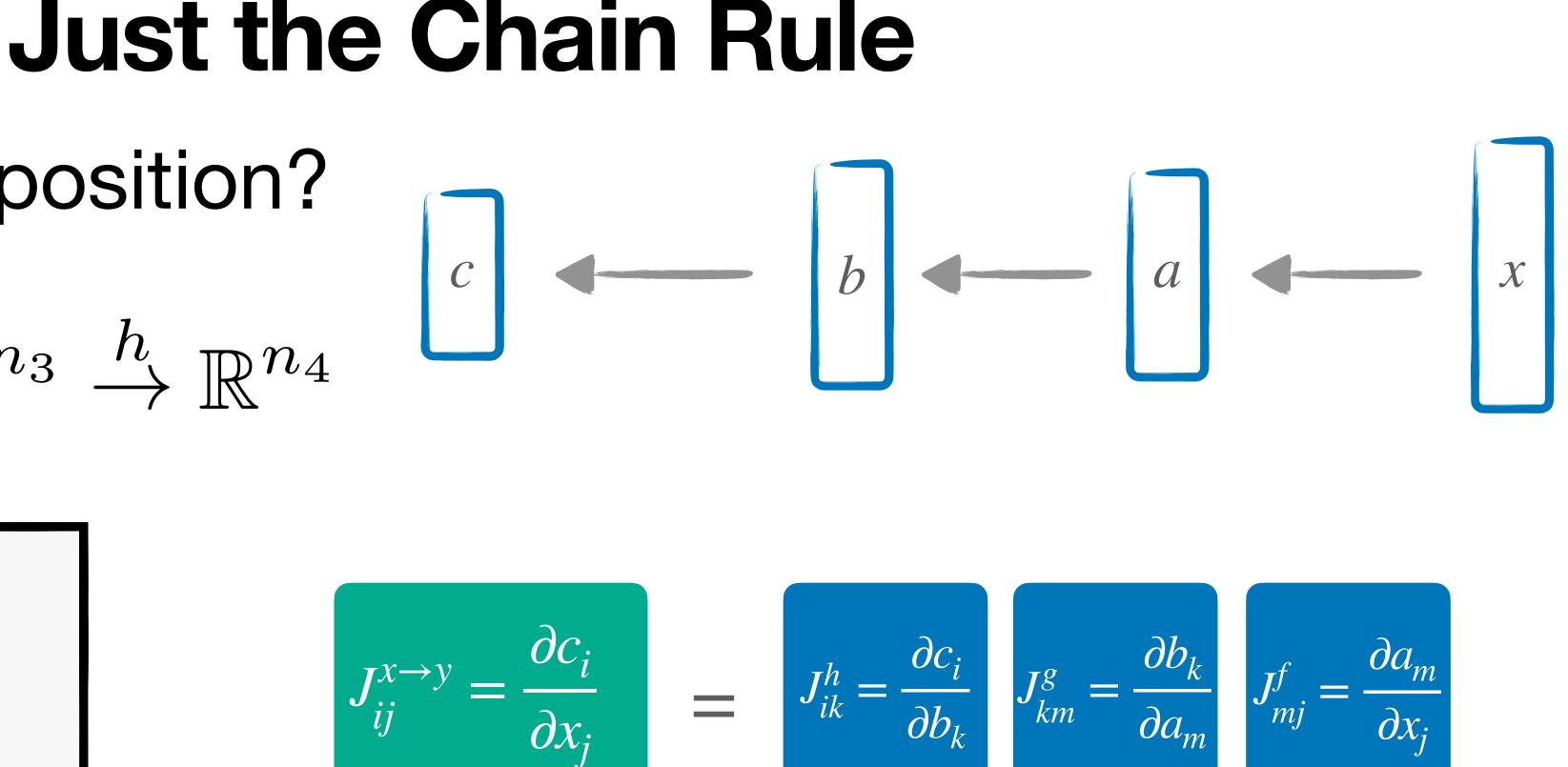


$$dc = J_{ik}^{h} = \frac{\partial c_{i}}{\partial b_{k}} db J_{km}^{g} = \frac{\partial b_{k}}{\partial a_{m}} da J_{mj}^{f} = \frac{\partial a_{m}}{\partial x_{j}} dx$$

How about composition?

$$\mathbb{R}^{n_1} \xrightarrow{f} \mathbb{R}^{n_2} \xrightarrow{g} \mathbb{R}^{n_3} \xrightarrow{h} \mathbb{R}^{n_4}$$





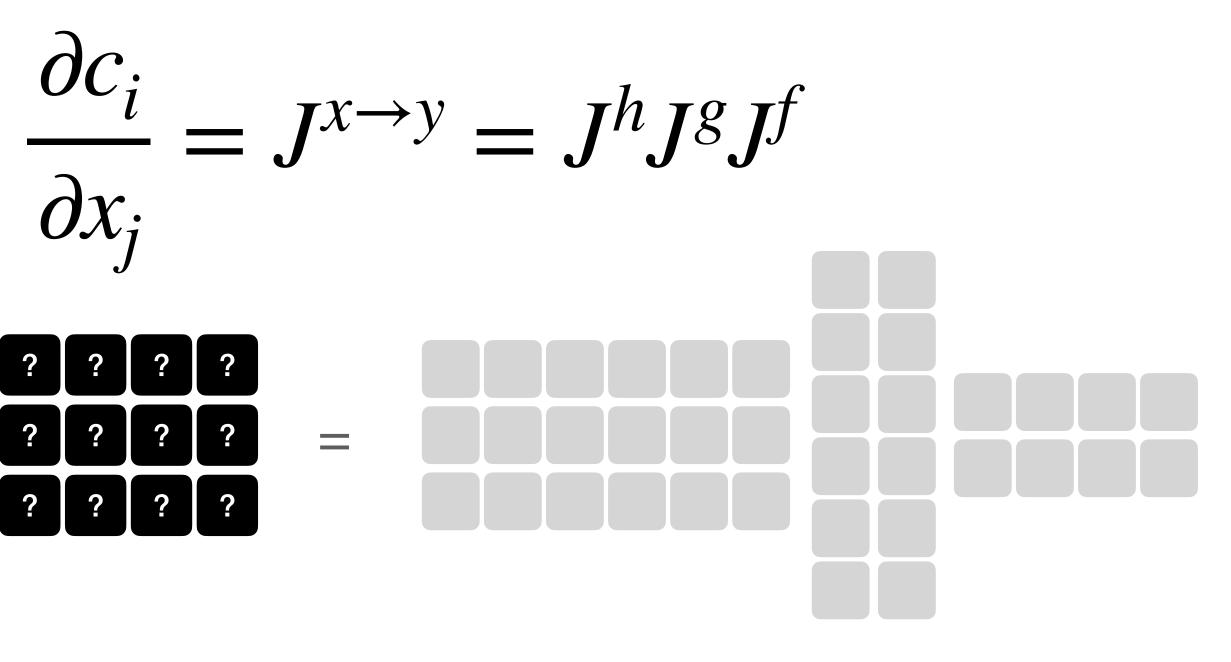
$dc = J^{x \to y} dx = J^h J^g J^f dx$

This is just the chain rule $\partial_x f(y = g(x)) = \partial_y f \cdot \partial_x g$

So, it's just about Matrix Multiplication

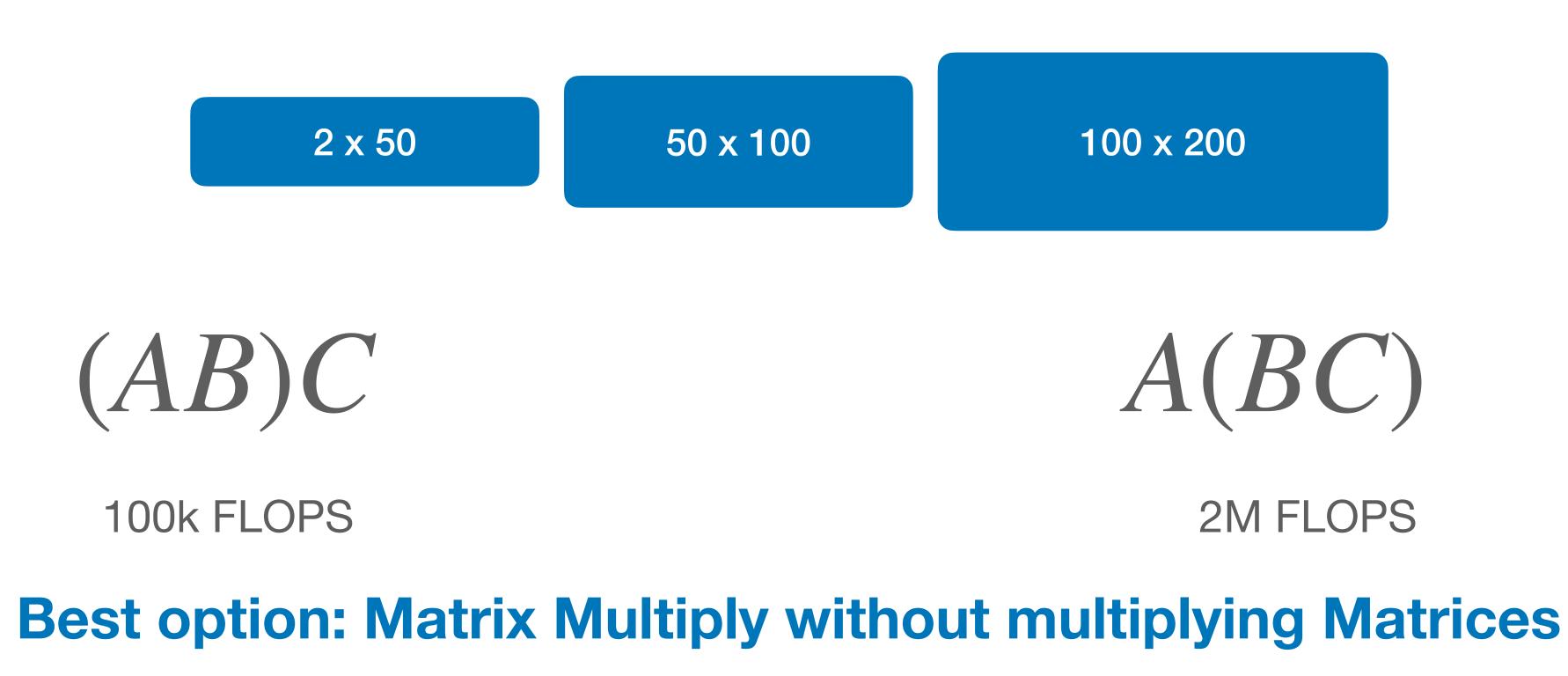
```
def program(x):
    a = f(x)
    b = g(a)
    c = h(b)
    return c
```


To know the gradients (i.e. Jacobians) of a composed program, we need a good way to characterize products of Jacobians matrices



It's all about Matrices

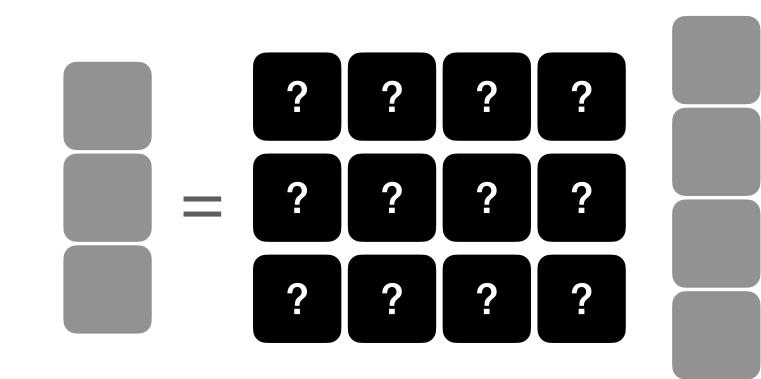
Naive Multiplication



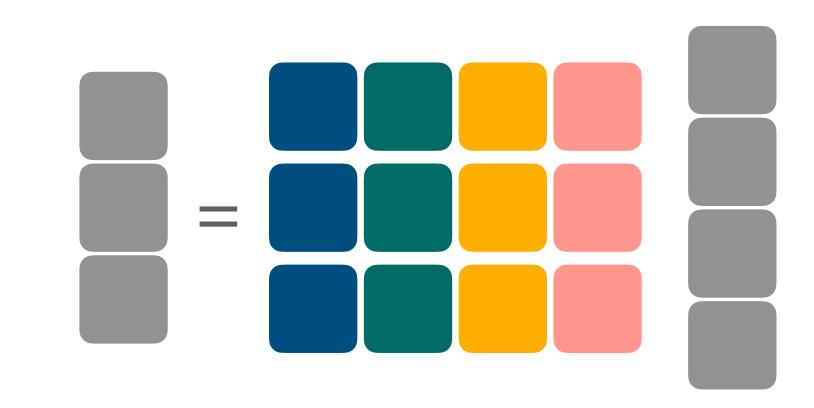
Explicitly constructing matrices and naively multiplying doesn't scale, details on how we compute matter

So let's talk about Matrices

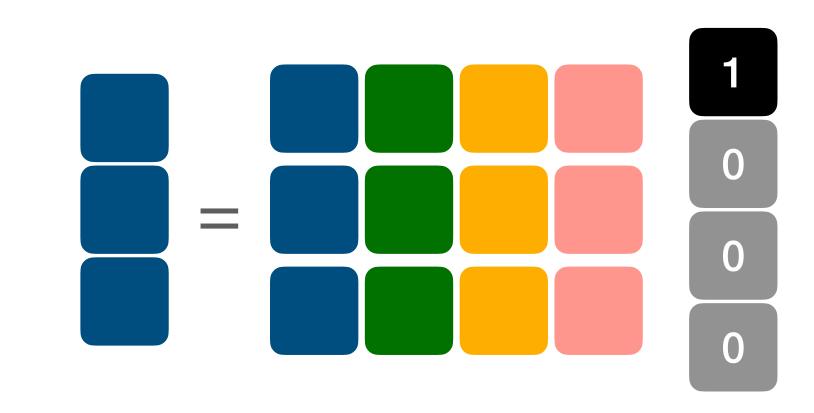
- **Conversely: we can recover all information about a matrix by** observing how vectors get transformed
- i.e. through Matrix-Vector Products.



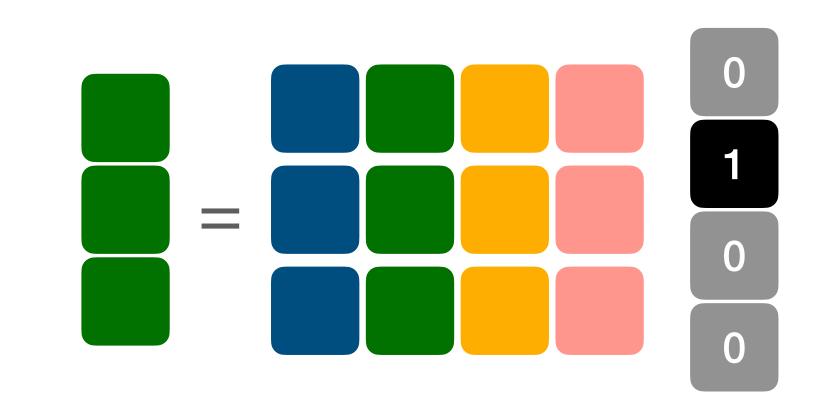
- **Conversely: we can recover all information about a matrix by** observing how vectors get transformed
- i.e. through Matrix-Vector Products.



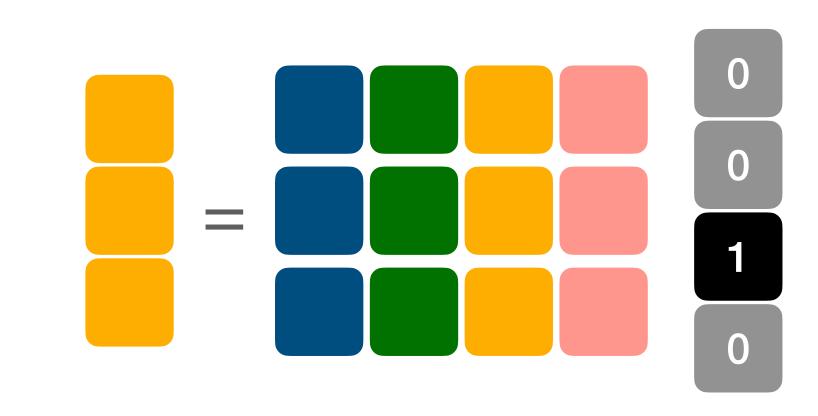
- **Conversely: we can recover all information about a matrix by** observing how vectors get transformed
- i.e. through Matrix-Vector Products.



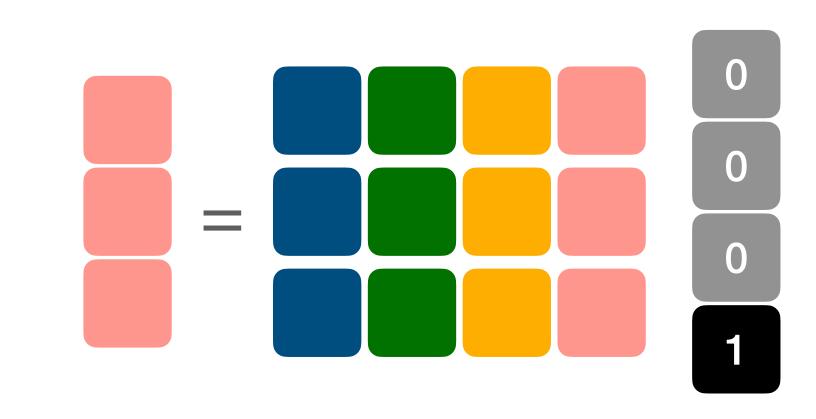
- **Conversely: we can recover all information about a matrix by** observing how vectors get transformed
- i.e. through Matrix-Vector Products.



- **Conversely: we can recover all information about a matrix by** observing how vectors get transformed
- i.e. through Matrix-Vector Products.



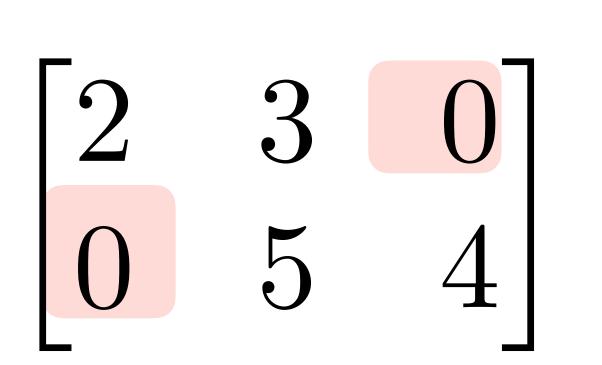
- **Conversely: we can recover all information about a matrix by** observing how vectors get transformed
- i.e. through Matrix-Vector Products.



A Matrix as a Program

Gives us an efficient way to "store"/express matrices:

matrix \leftrightarrow a program that computes transforms vectors



def mvp(inp): x,y,z = inp]) mvp([1,2,3])

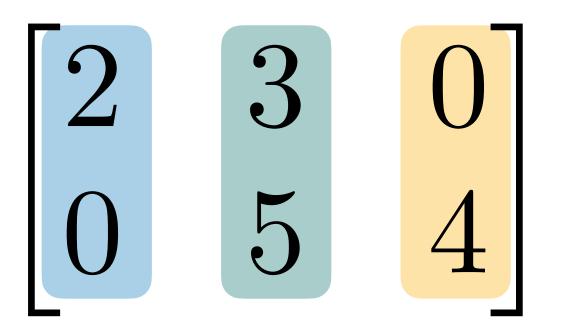
array([8, 22])

```
return np.array([
    2*x + 3*y,
    5*y + 4*z
```

```
def explicit(inp):
    matrix = np.array([
        [2,3,0],
         [0, 5, 4]
    1)
    return matrix @ inp
explicit([1,2,3])
array([ 8, 22])
```

A Matrix as a Program

Recover full Matrix through three MVPs



def explicit(inp):])

explicit([0,0,1])

array([0, 4])

explicit([0,1,0])

array([3, 5])

explicit([1,0,0])

array([2, 0])

- matrix = np.array([[2,3,0], [0, 5, 4]
- **return** matrix **@** inp

def mvp(inp): x,y,z = inpreturn np.array([2*x + 3*y, 5*y + 4*z])

mvp([0,0,1])

array([0, 4])

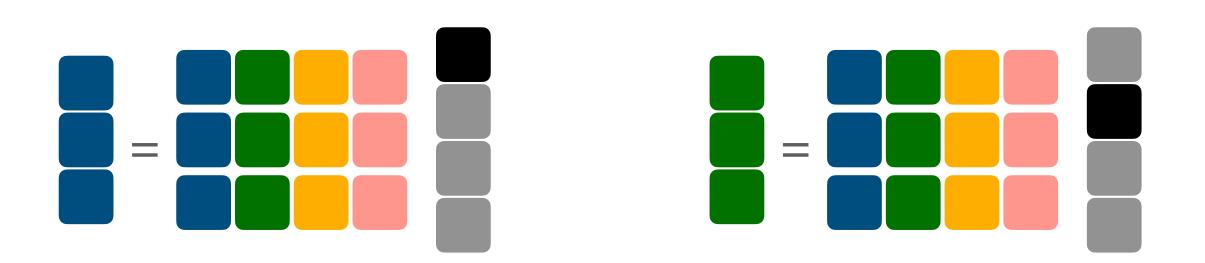
mvp([0,1,0])

array([3, 5])

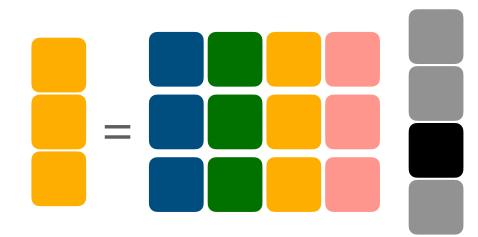
mvp([1,0,0]) array([2, 0])

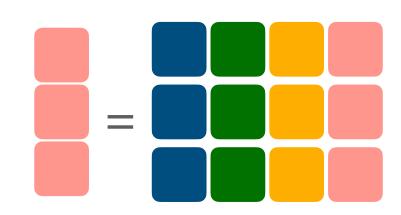
extract any information we want from a matrix. Note:

- do not need the explicit matrix, just ability to compute MVPs to get full matrix we need do N_{column} MVPs computations



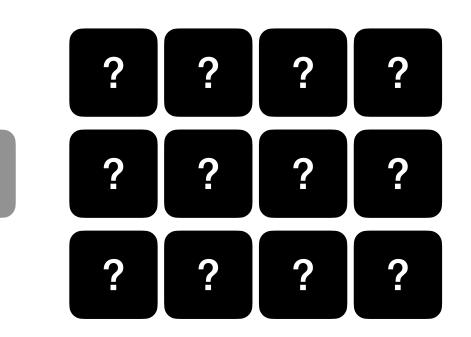
Ability to compute Matrix-Vector Products (MVP) is sufficient to





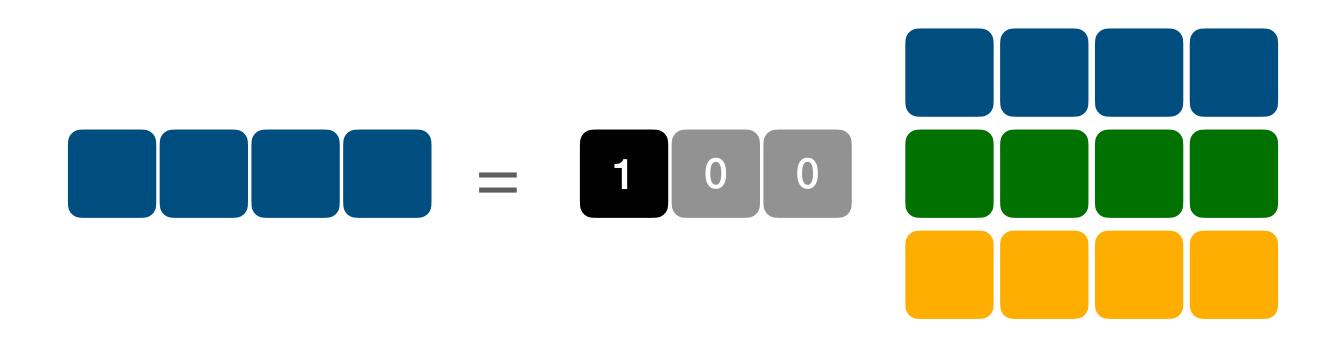
Matrices encode transformations of vectors

Conversely: we can recover all information about a matrix by throwing specific vectors at it, from the left.



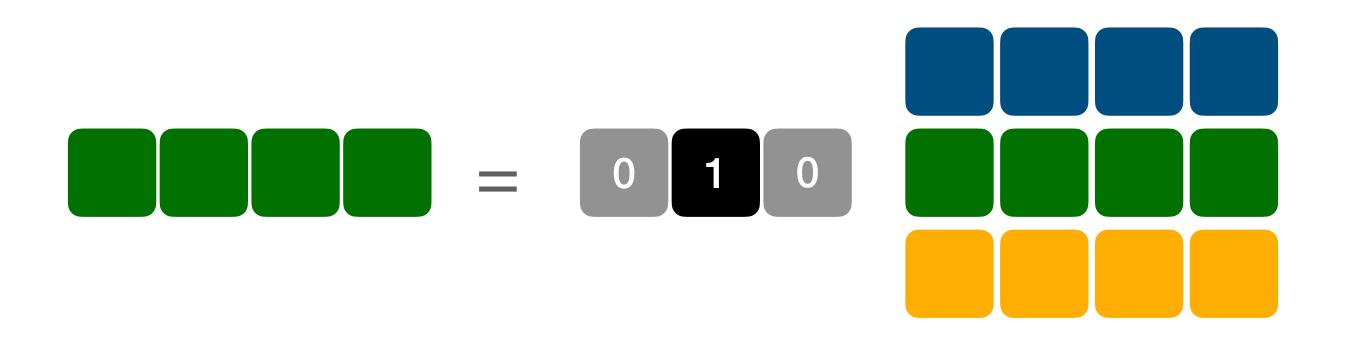
Matrices encode transformations of vectors

Conversely: we can recover all information about a matrix by throwing specific vectors at it, from the left.



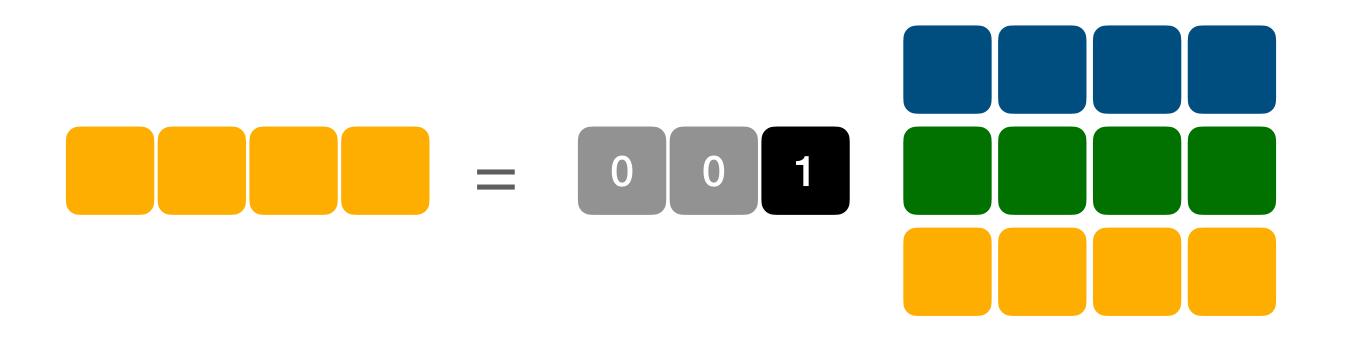
Matrices encode transformations of vectors

Conversely: we can recover all information about a matrix by throwing specific vectors at it, from the left.



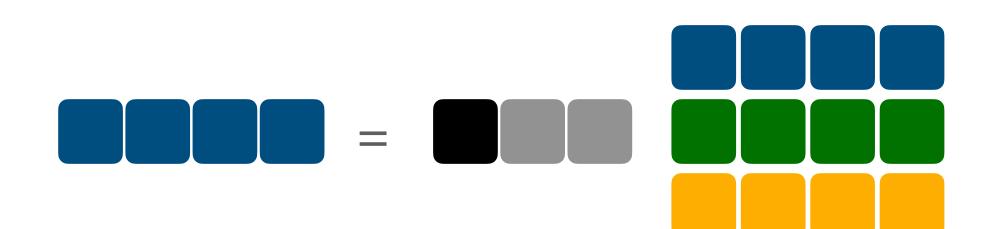
Matrices encode transformations of vectors

Conversely: we can recover all information about a matrix by throwing specific vectors at it, from the left.

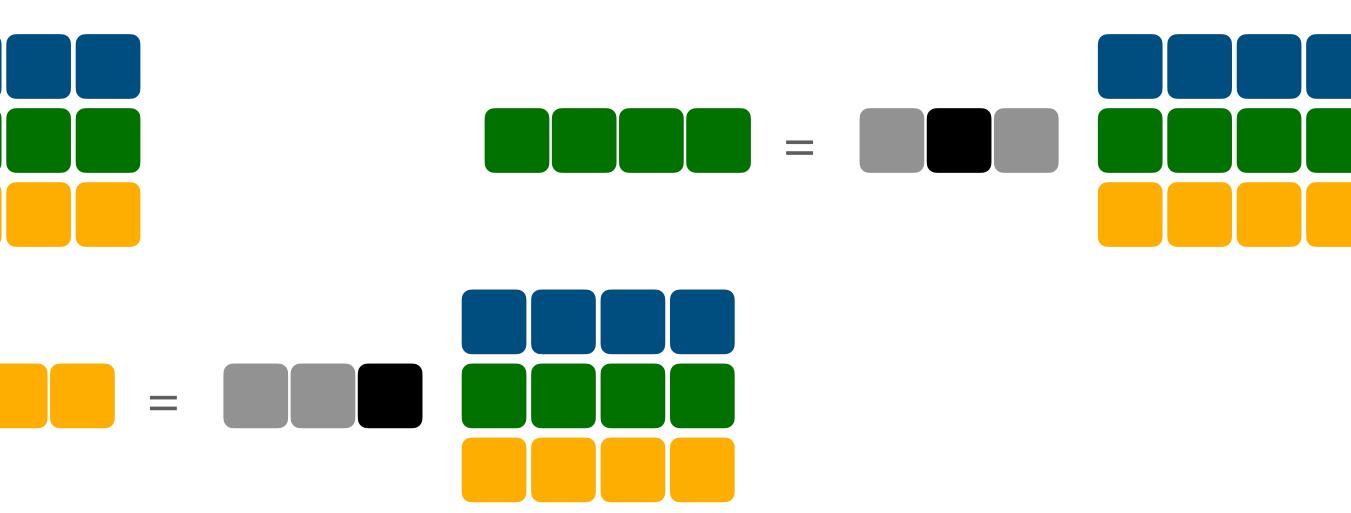


information we want from a matrix. Note:

- do not need the explicit matrix, just ability to compute VMPs to get full matrix we need to compute Nrow VMPs computations

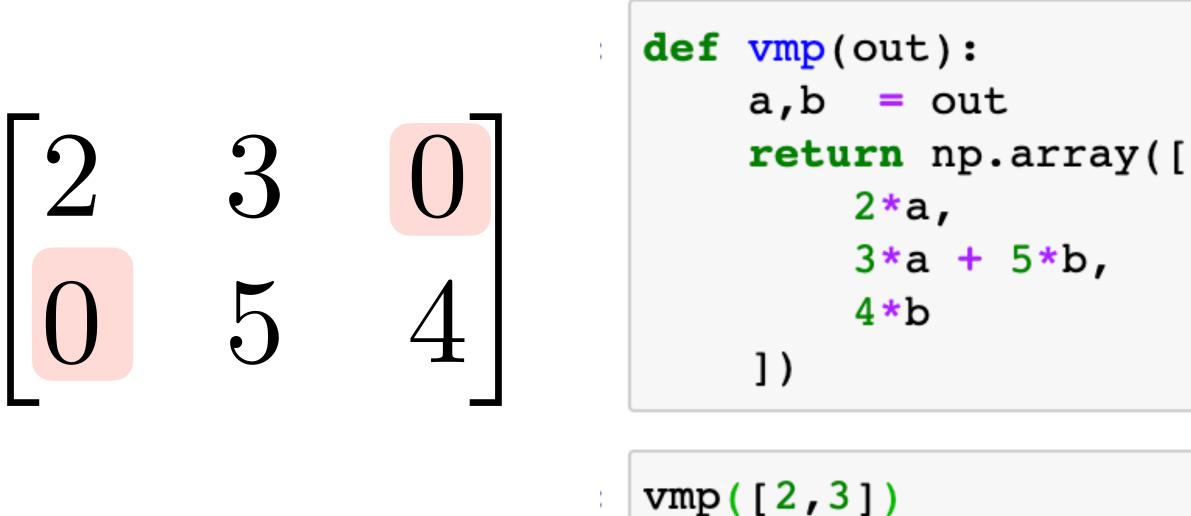


Ability to compute Vector Products (MVP) is sufficient to extract any



Again as Programs

Again, having a program that computes vector-matrix products (VMPs) is equivalent to having the full matrix.

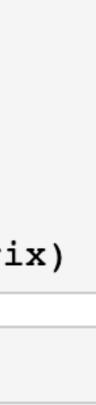


array([4, 21, 12])

```
def explicit(out):
    matrix = np.array([
       [2,3,0],
       [0, 5, 4]
    1)
    return np.matmul(np.array(out).T,matrix)
```

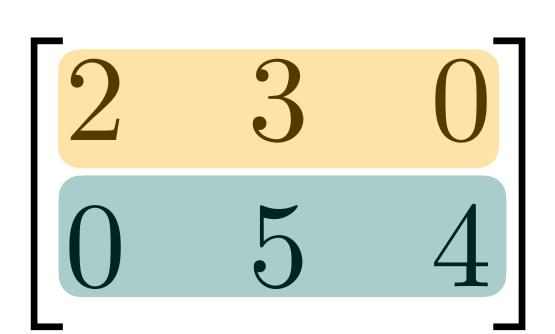
explicit([2,3])

array([4, 21, 12])



Again as Programs

Recover full Matrix through two VMPs



- def explicit(out):])
- explicit([1,0])
- array([2, 3, 0])
- explicit([0,1])
- array([0, 5, 4])

matrix = np.array([[2,3,0], [0, 5, 4]return out @ matrix

```
def vmp(out):
    a,b = out
    return np.array([
        2∗a,
        3*a + 5*b,
        4*b
    ])
```

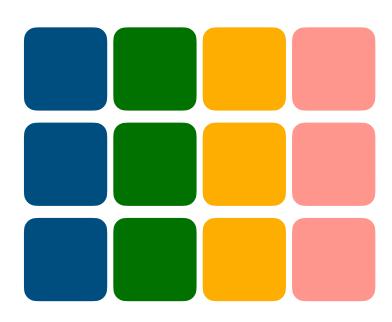
explicit([1,0])

array([2, 3, 0])

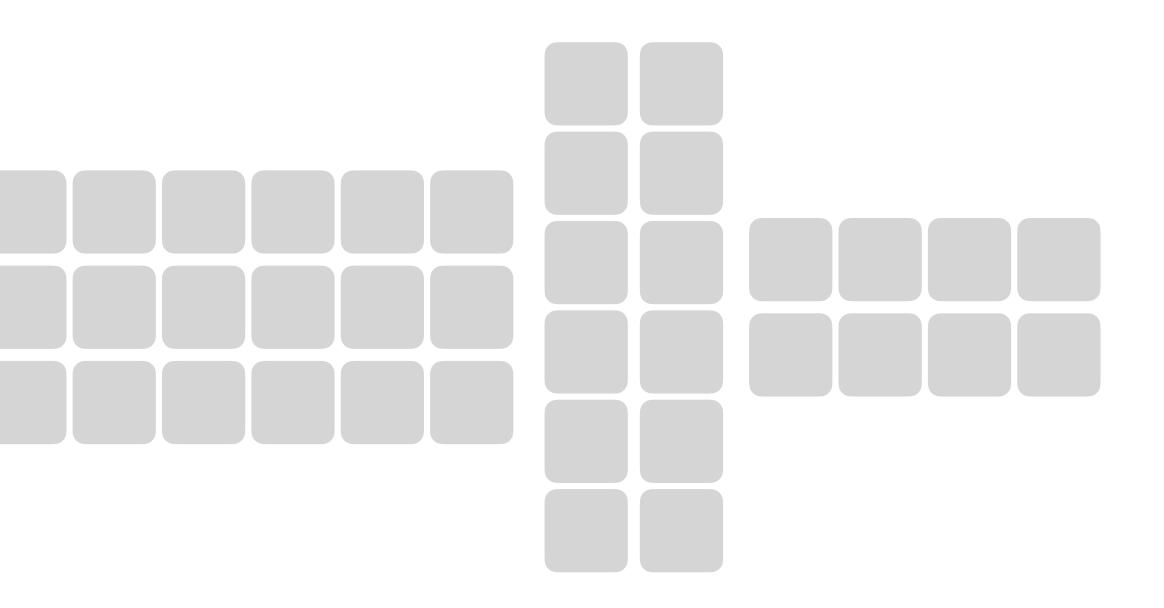
explicit([0,1])

array([0, 5, 4])

The MVP, VMP picture still works if we have compositions

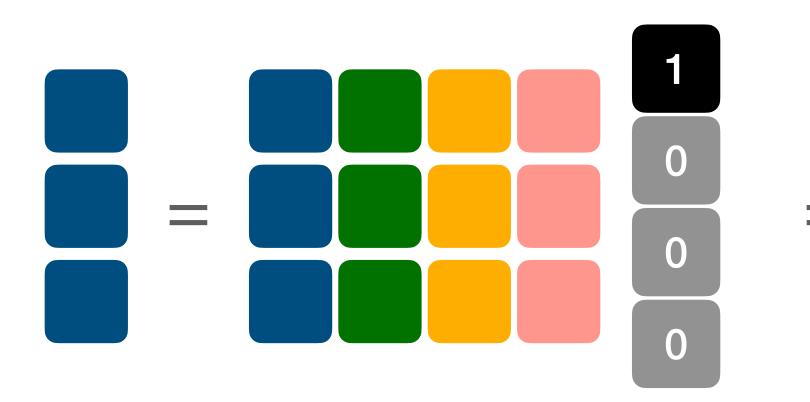


• to characterize $M = M_3 M_2 M_1$ we just need MVP/MVP with M_i

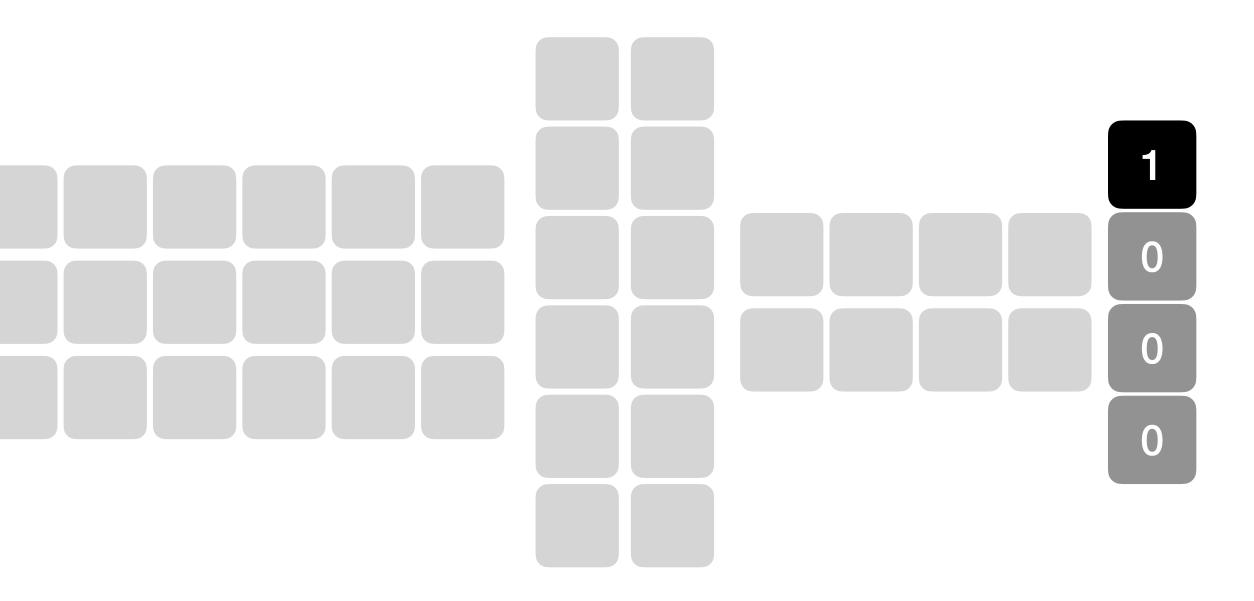


 $M_{3}M_{2}M_{1}$

The MVP, VMP picture still works if we have compositions • to characterize $M = M_3 M_2 M_1$ we just need MVP/MVP with M_i

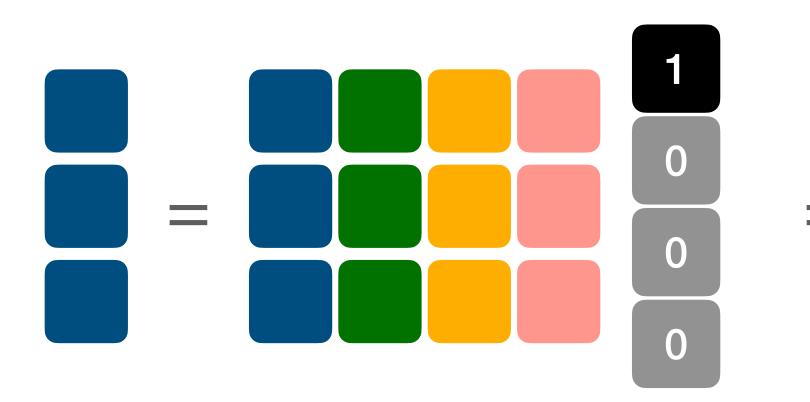


 $c_i = M e_i$

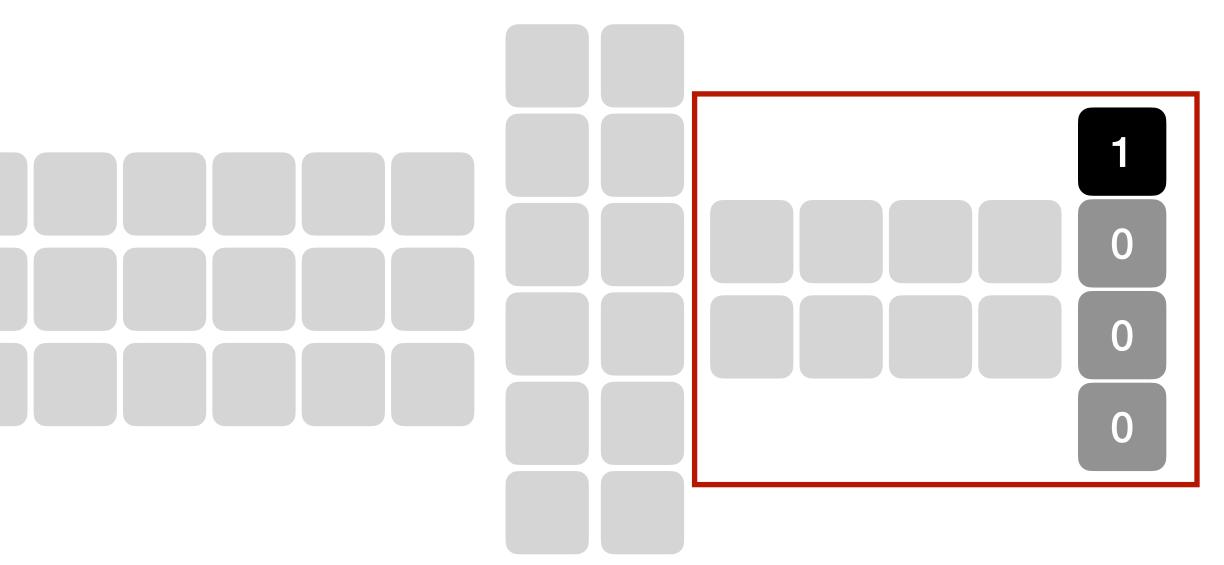


 $c_i = Me_i = M_3 M_2 M_1 e_i$

The MVP, VMP picture still works if we have compositions • to characterize $M = M_3 M_2 M_1$ we just need MVP/MVP with M_i

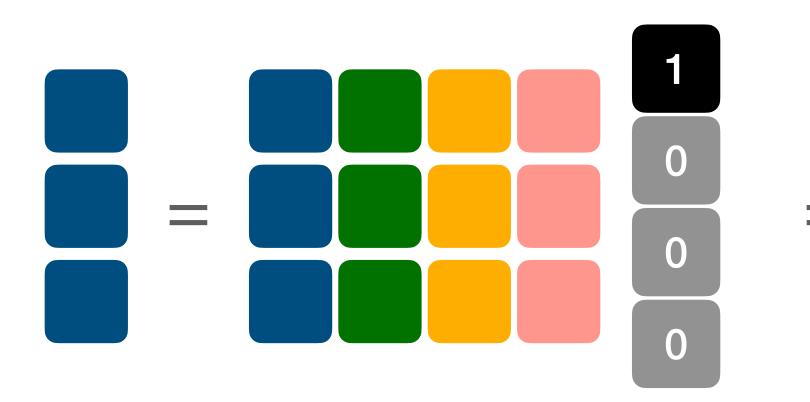


 $c_i = M e_i$



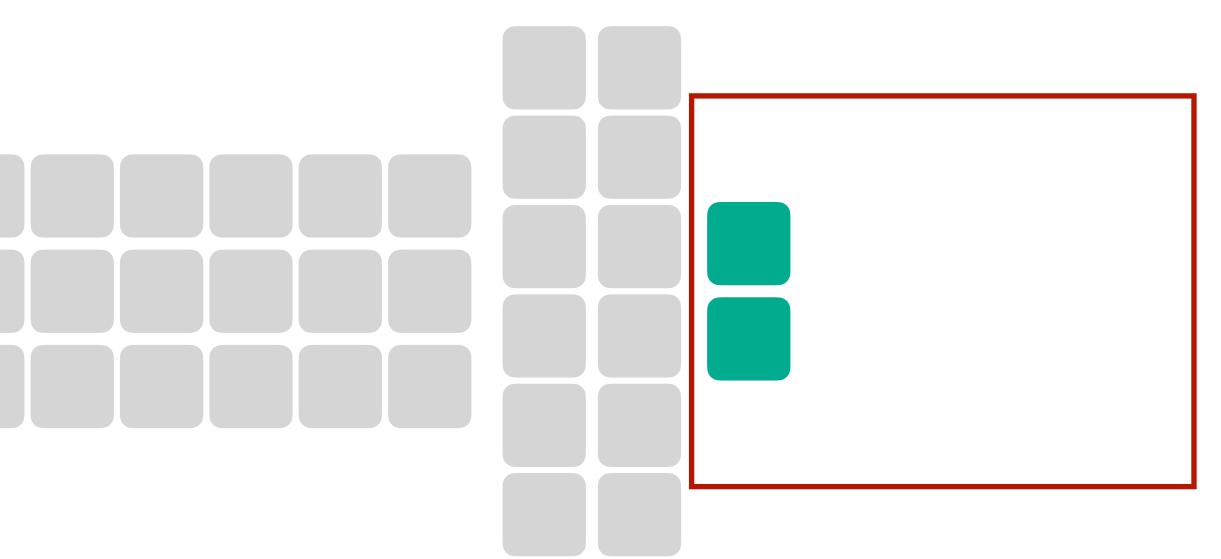
 $c_i = Me_i = M_3 M_2 M_1 e_i$

The MVP, VMP picture still works if we have compositions



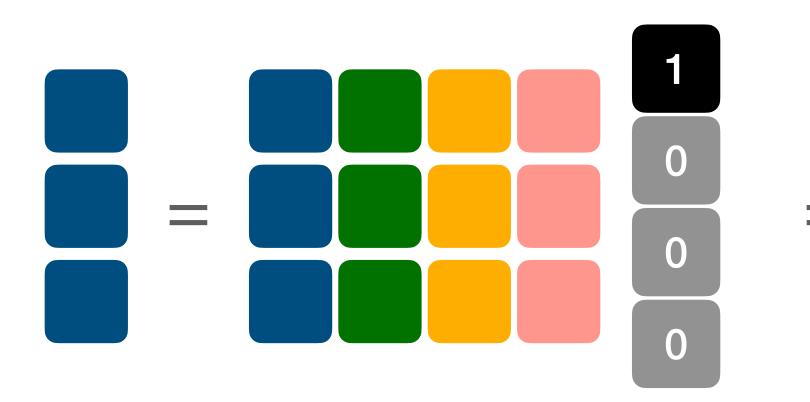
 $c_i = M e_i$

• to characterize $M = M_3 M_2 M_1$ we just need MVP/MVP with M_i



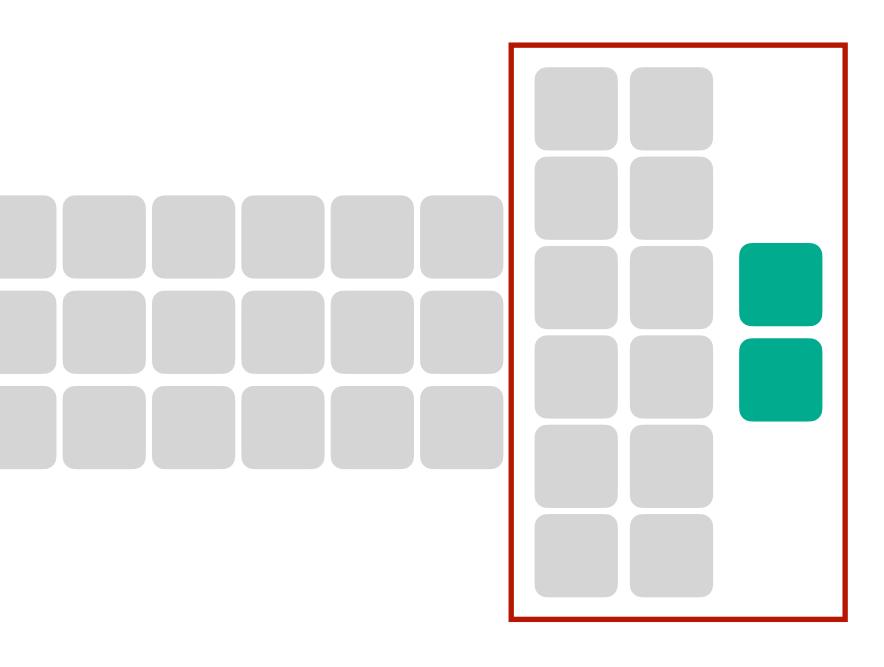
 $c_i = Me_i = M_3 M_2 v_1$

The MVP, VMP picture still works if we have compositions



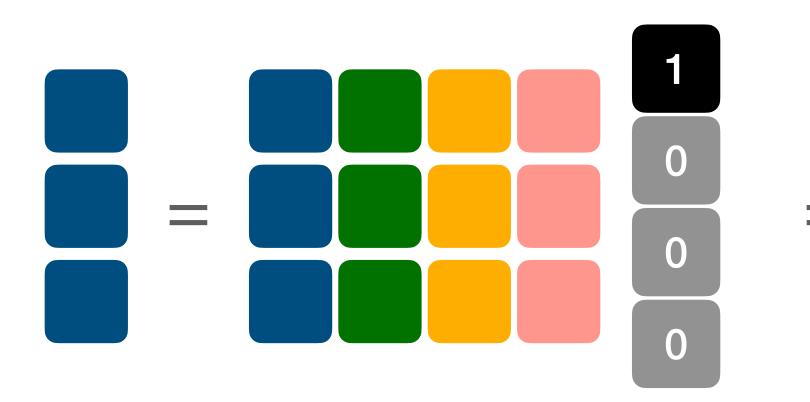
 $c_i = M e_i$

• to characterize $M = M_3 M_2 M_1$ we just need MVP/MVP with M_i



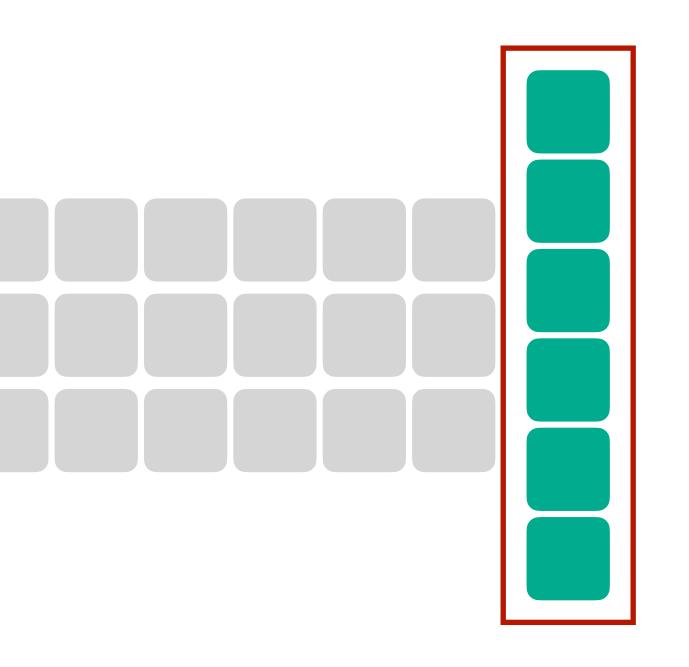
 $c_i = Me_i = M_3 M_2 v_1$

The MVP, VMP picture still works if we have compositions



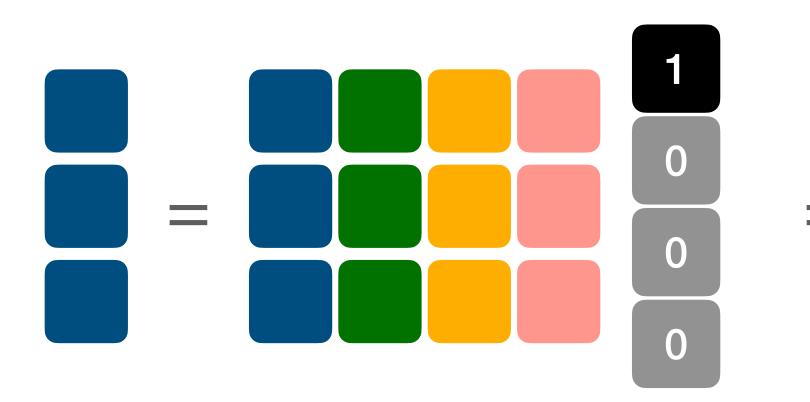
 $c_i = M e_i$

• to characterize $M = M_3 M_2 M_1$ we just need MVP/MVP with M_i



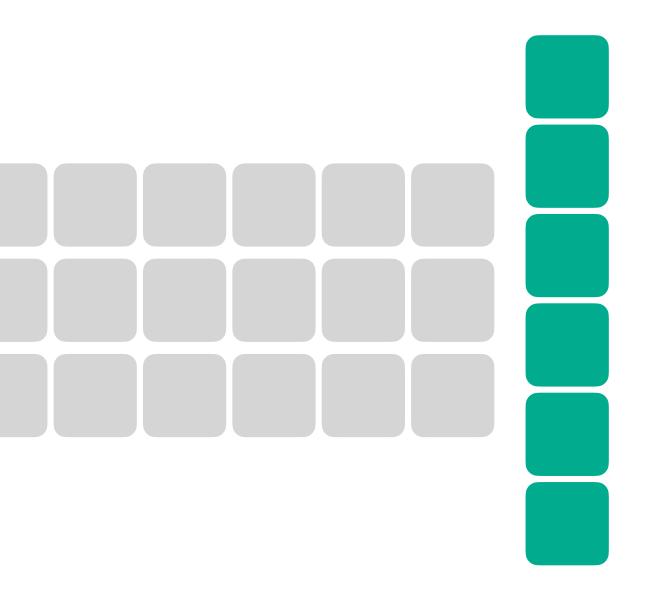
 $c_i = Me_i = M_3 v_2$

The MVP, VMP picture still works if we have compositions



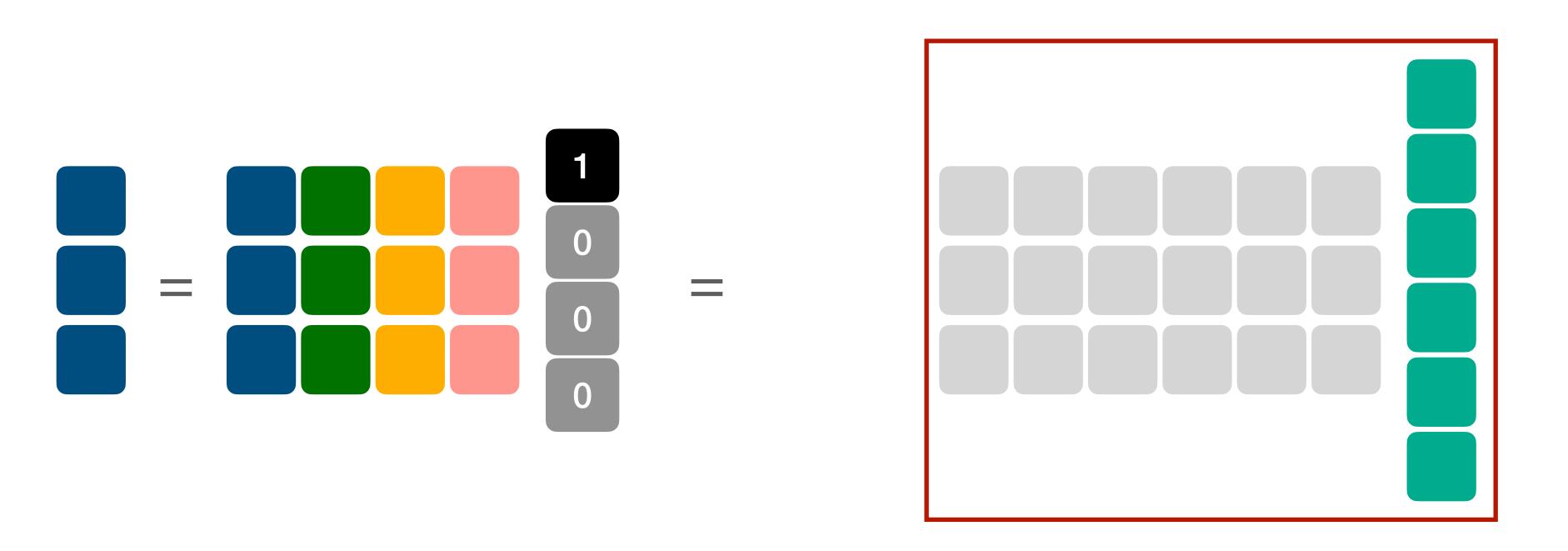
 $c_i = M e_i$

• to characterize $M = M_3 M_2 M_1$ we just need MVP/MVP with M_i



 $c_i = Me_i = M_3v_2$

The MVP, VMP picture still works if we have compositions

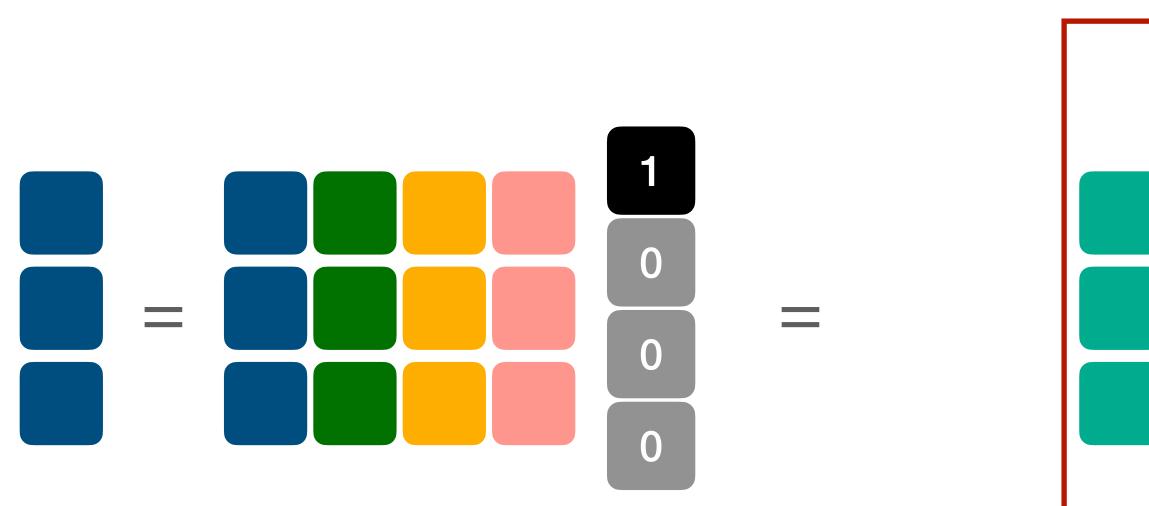


 $c_i = M e_i$

• to characterize $M = M_3 M_2 M_1$ we just need MVP/MVP with M_i

 $c_i = Me_i = M_3v_2$

The MVP, VMP picture still works if we have compositions

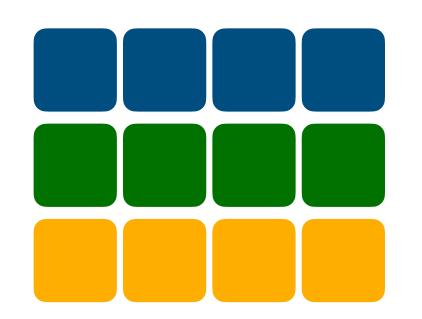


 $c_i = M e_i$

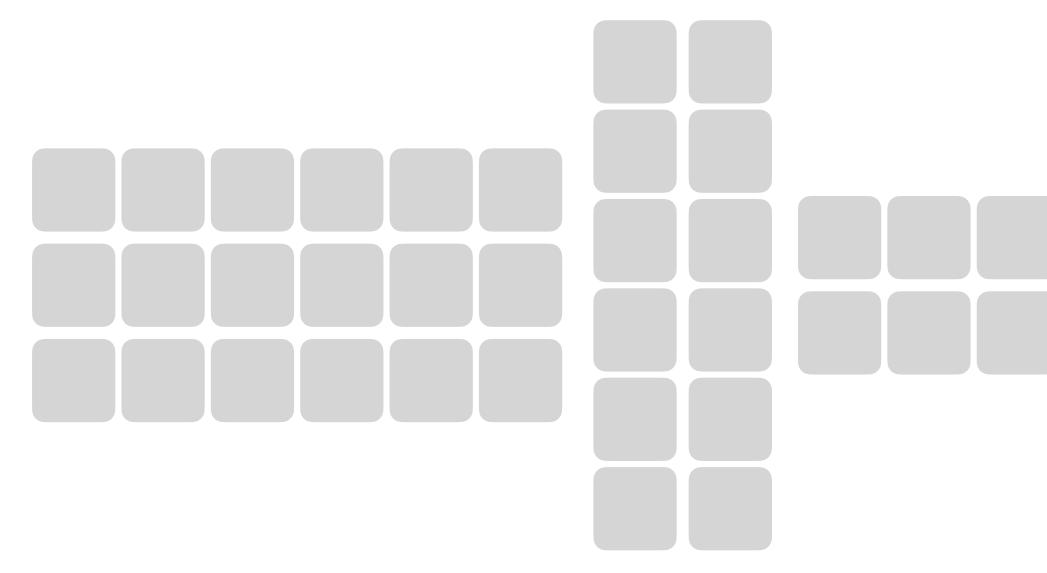
• to characterize $M = M_3 M_2 M_1$ we just need MVP/MVP with M_i

 $c_i = Me_i = v_3$

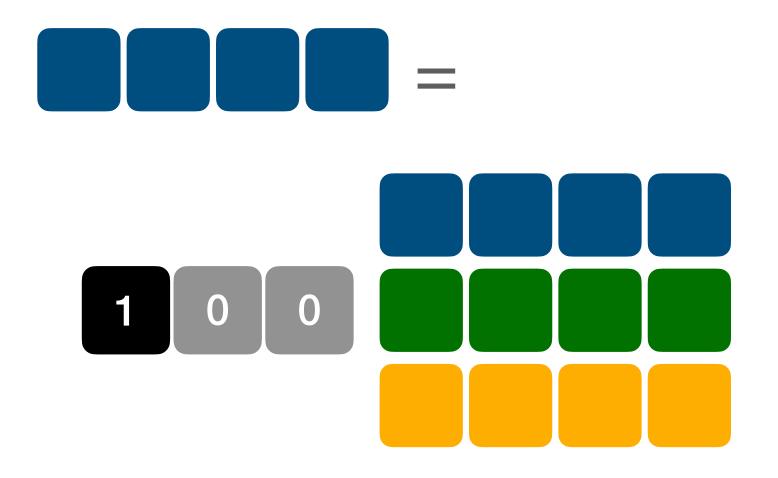
The MVP, VMP picture still works if we have compositions



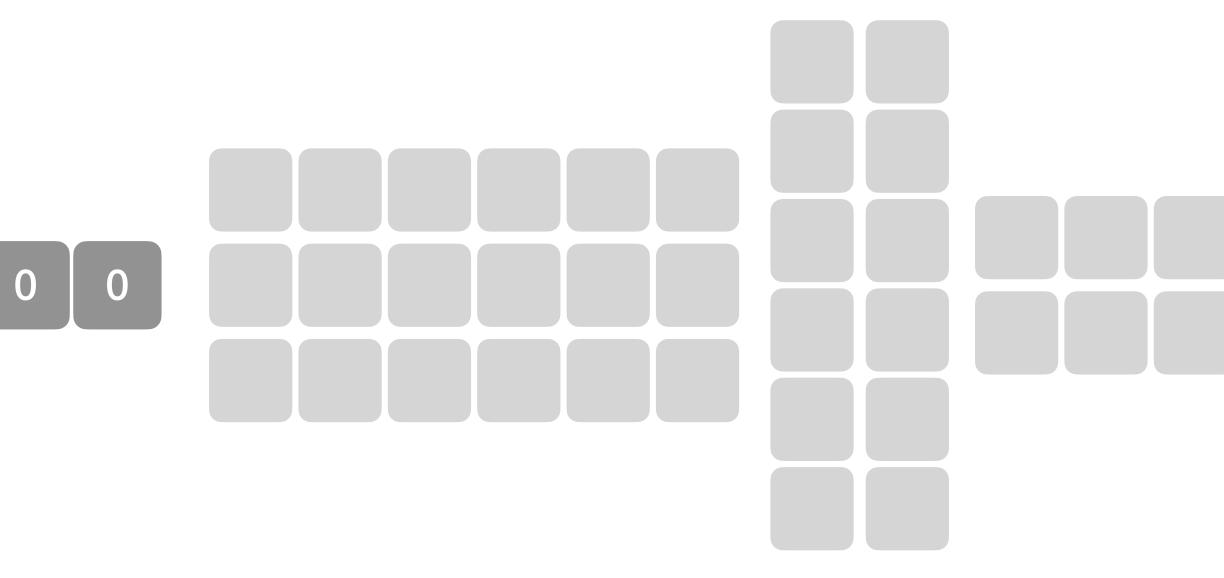
• to characterize $M = M_3 M_2 M_1$ we just need MVP/MVP with M_i



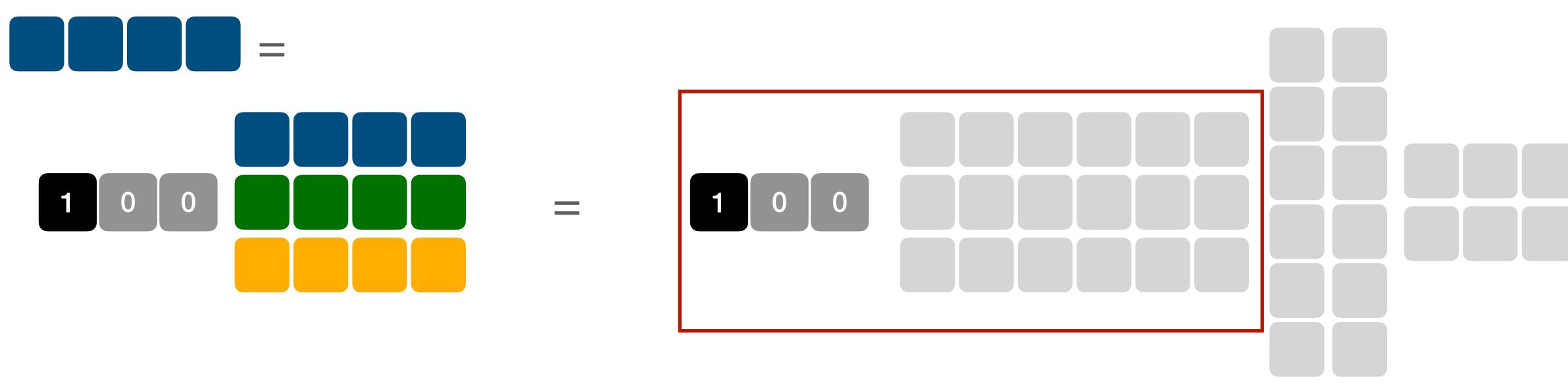
 $M = M_1 M_2 M_3$



 $r_i = e_i^T M$



 $r_i = e_i^T M = e_i^T M_3 M_2 M_1$

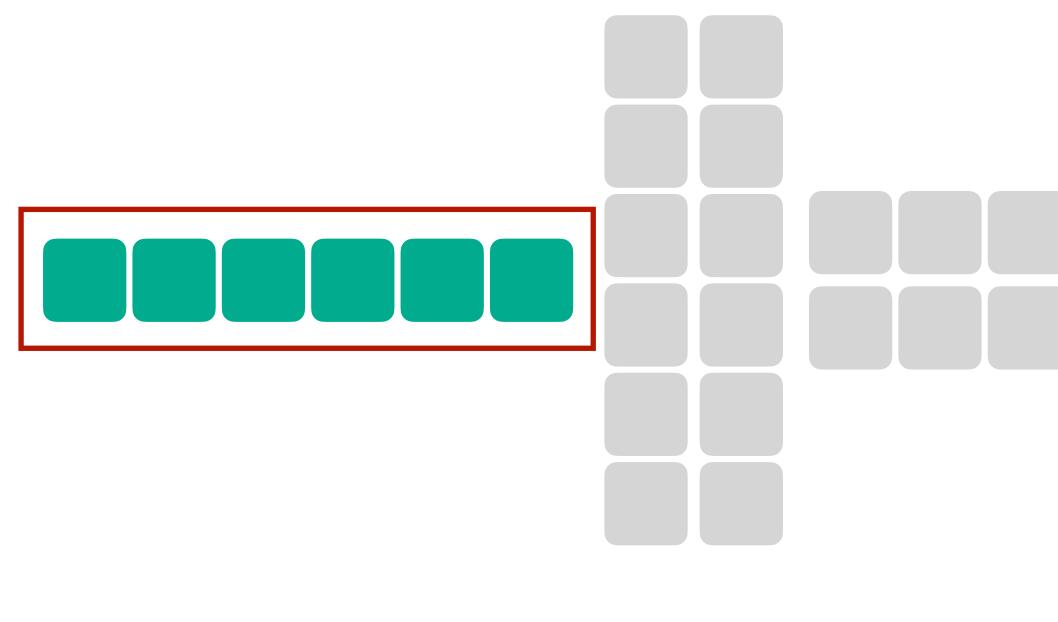


 $r_i = e_i^T M$

 $r_i = e_i^T M = e_i^T M_3 M_2 M_1$



 $r_i = e_i^T M$



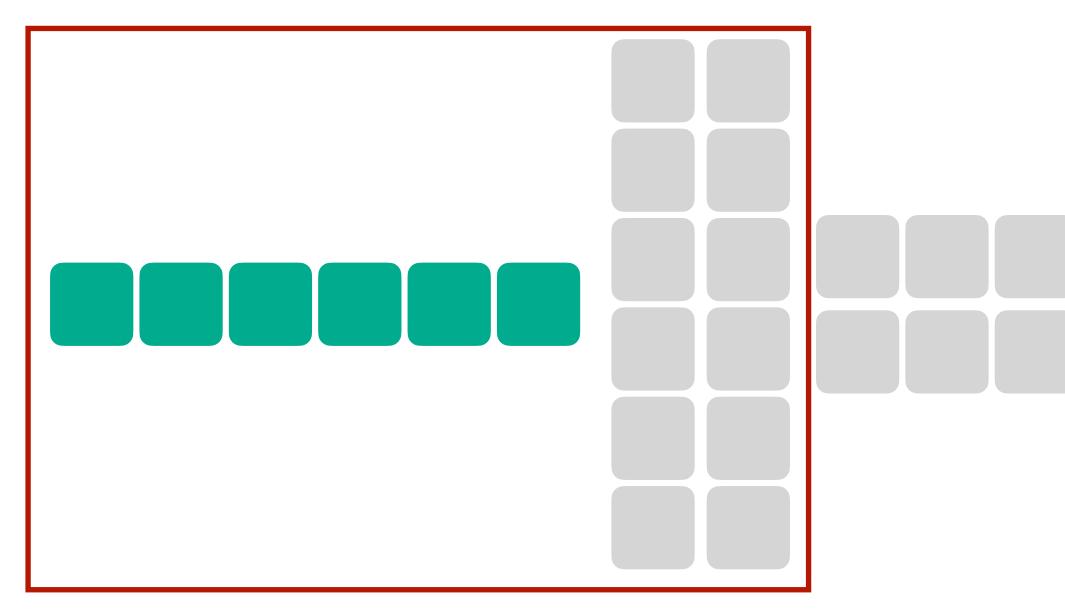
 $r_i = e_i^T M = \bar{v}_1 M_2 M_1$

The MVP, VMP picture still works if we have compositions



 $r_i = e_i^T M$

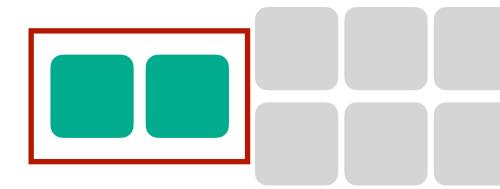
• to characterize $M = M_3 M_2 M_1$ we just need MVP/MVP with M_i



 $r_i = e_i^T M = \bar{v}_1 M_2 M_1$



 $r_i = e_i^T M$



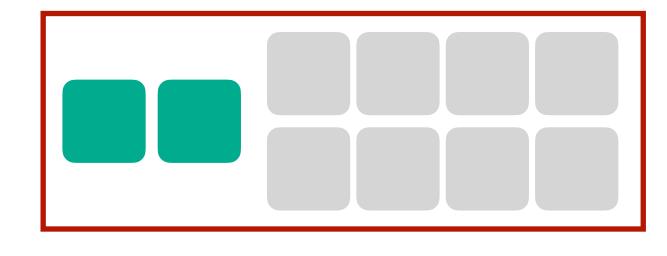
 $r_i = e_i^T M = \bar{v}_2 M_1$

The MVP, VMP picture still works if we have compositions



 $r_i = e_i^T M$

• to characterize $M = M_3 M_2 M_1$ we just need MVP/MVP with M_i



 $r_i = e_i^T M = \bar{v}_2 M_1$

The MVP, VMP picture still works if we have compositions



 $r_i = e_i^T M$

• to characterize $M = M_3 M_2 M_1$ we just need MVP/MVP with M_i

 $r_i = e_i^T M = \bar{v}_3$

Upshot: Forward and Backward

- With MVPs/VMPs can characterize a Products of Matrices

$$c_i = Me_i = M_3 M_2 M_1 e_i$$
$$c_i = Me_i = M_3 M_2 v_1$$
$$c_i = Me_i = M_3 v_2$$
$$c_i = Me_i = v_3$$

forward

• to get a row/column we never need explicit representations of M_i . programs for MVP/VMPs is all we need ("matrix-free" approach)

$$r_{i} = e_{i}^{T}M = e_{i}^{T}M_{3}M_{2}M_{1}$$
$$r_{i} = e_{i}^{T}M = \bar{v}_{1}M_{2}M_{1}$$
$$r_{i} = e_{i}^{T}M = \bar{v}_{2}M_{1}$$
$$r_{i} = e_{i}^{T}M = \bar{v}_{3}$$

backward (or reverse)

Back to Derivatives

Our main job is to characterize the product of Jacobians:

$$\frac{\partial c_i}{\partial x_j} = J^{x \to y} = J^h J^g J^f$$

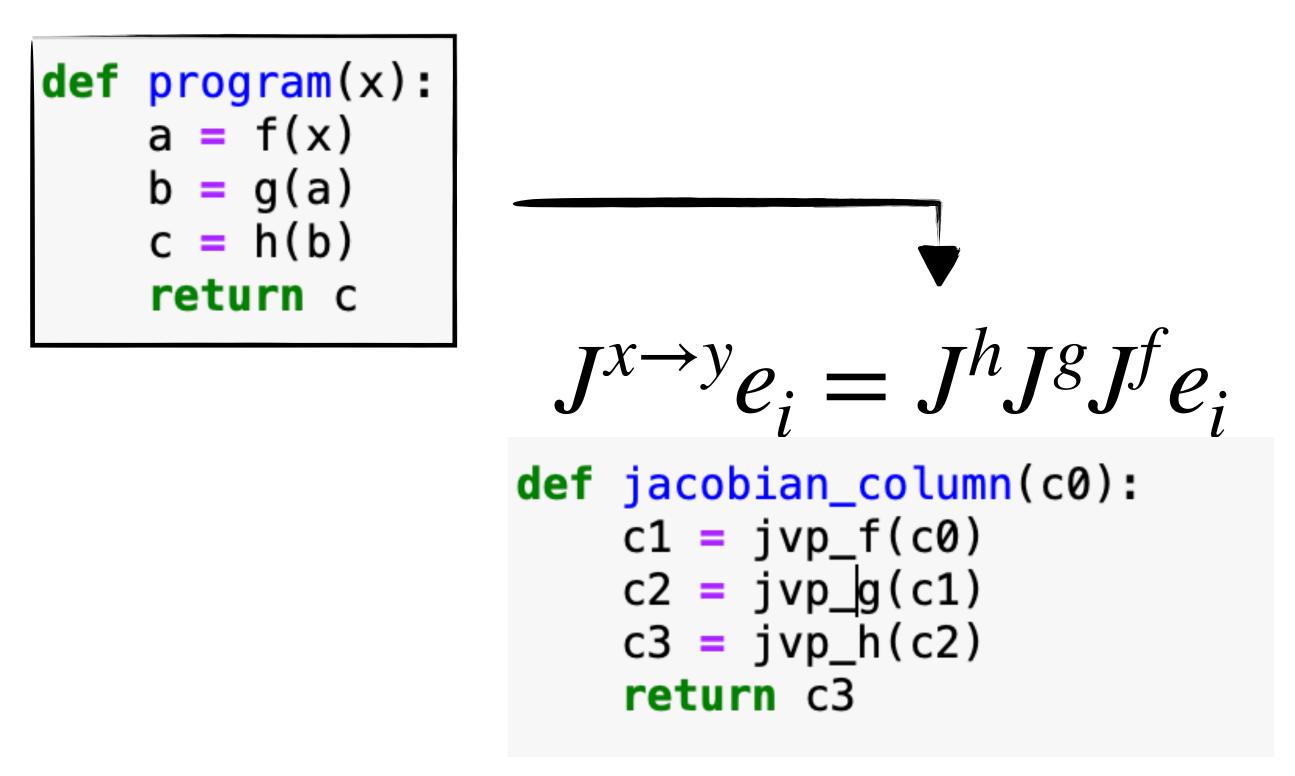
We know know that we compute it purely through programs that give us Jacobian Vector Products (JVP) or Vector-Jacobian products (VJP)

$$\operatorname{jvp}_f(x) = J_f x$$

$$\operatorname{vjp}_f(x) = x^T J_f$$

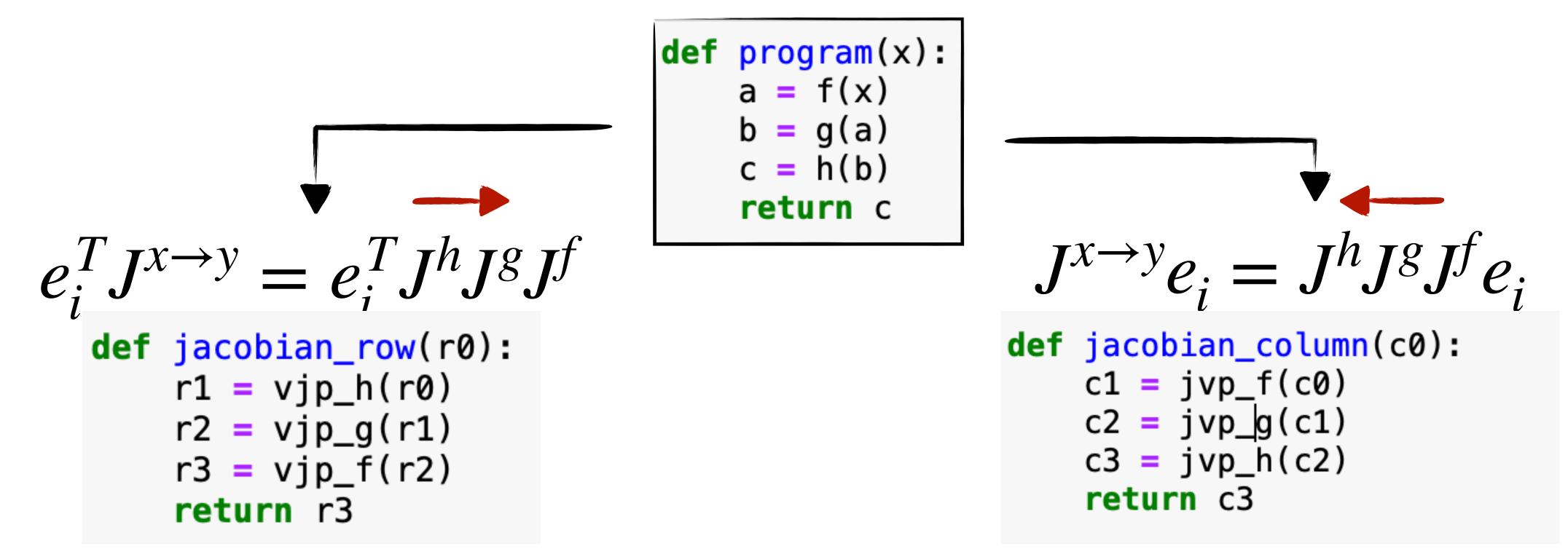
If we have all the jvp(x), vjp(x) for all transforms h, g, f we can easily and mechanically create programs that compute derivatives

F	program(x)
	<pre>program(x):</pre>
	a = f(x)
	b = g(a)
	c = h(b)
	return c



If we have all the jvp(x), vjp(x) for all transforms h, g, f we can easily and mechanically create programs that compute derivatives

Forward-Mode Differentiation

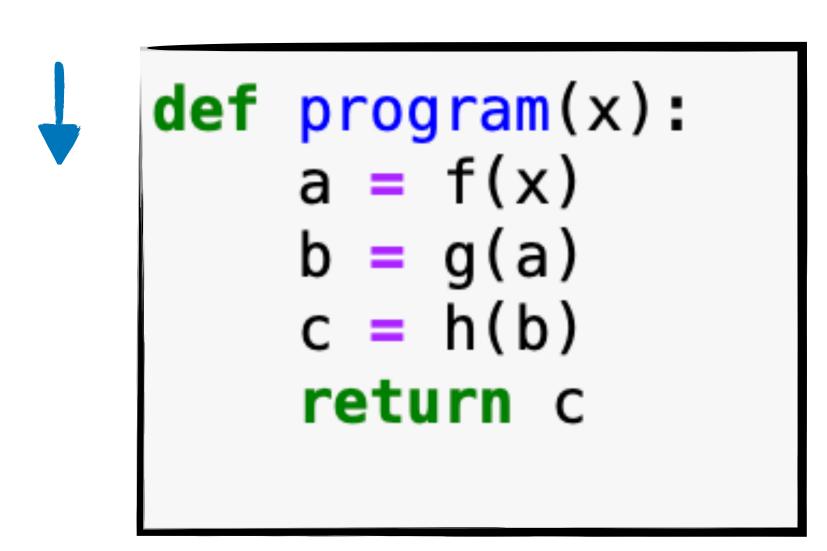


Reverse-Mode Differentiation

If we have all the jvp(x), vjp(x) for all transforms h, g, f we can easily and mechanically create programs that compute derivatives

Forward-Mode Differentiation

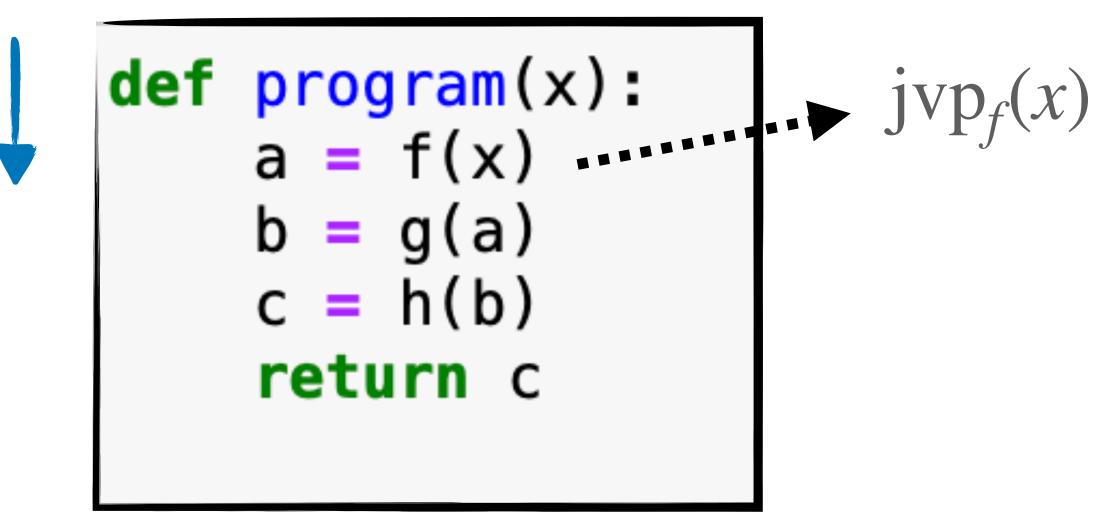
running through our main program as additional output



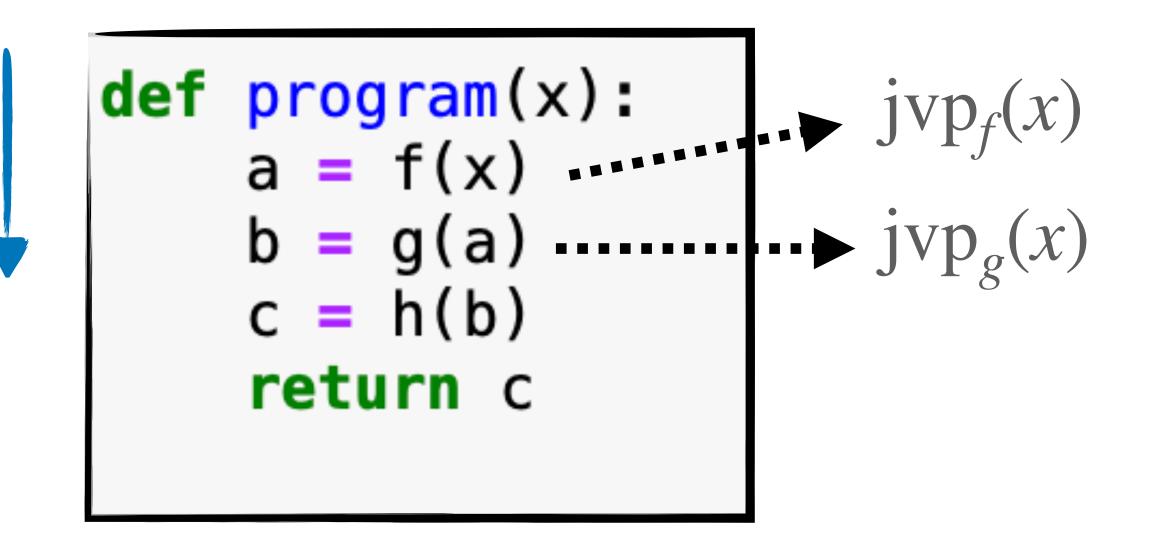
Main Program

For example, we can collect all the right programs while we are

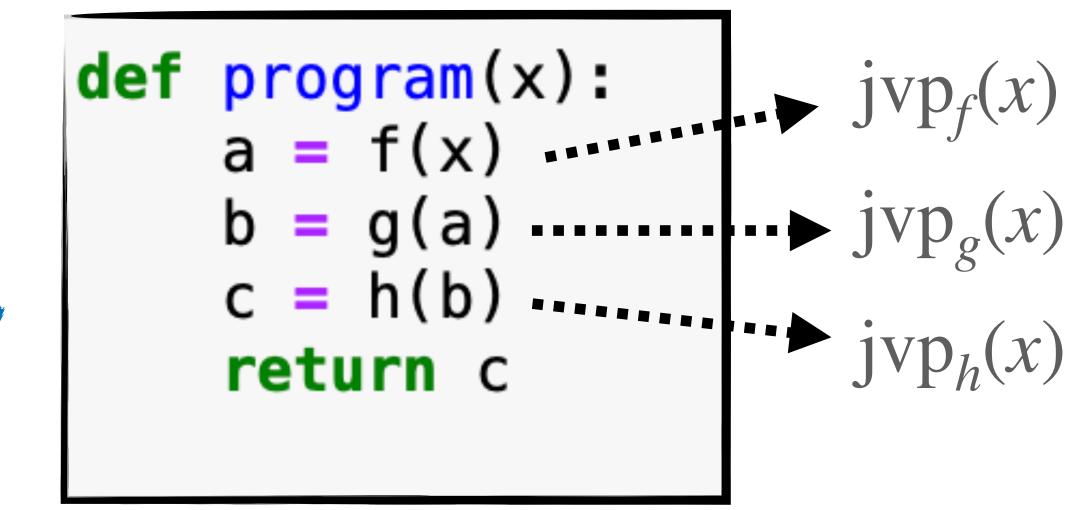
For example, we can collect all the right programs while we are running through our main program as additional output



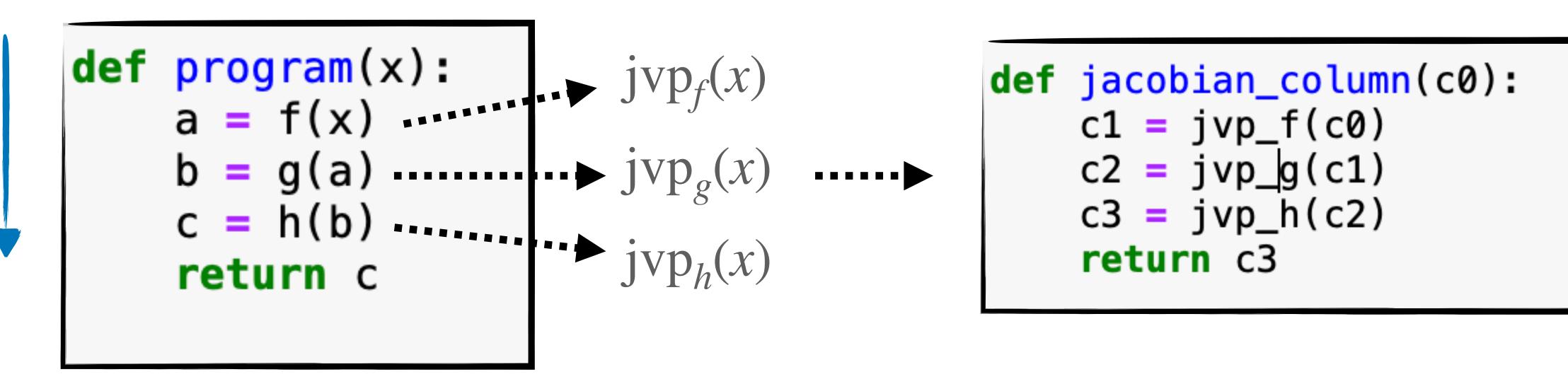
For example, we can collect all the right programs while we are running through our main program as additional output



For example, we can collect all the right programs while we are running through our main program as additional output



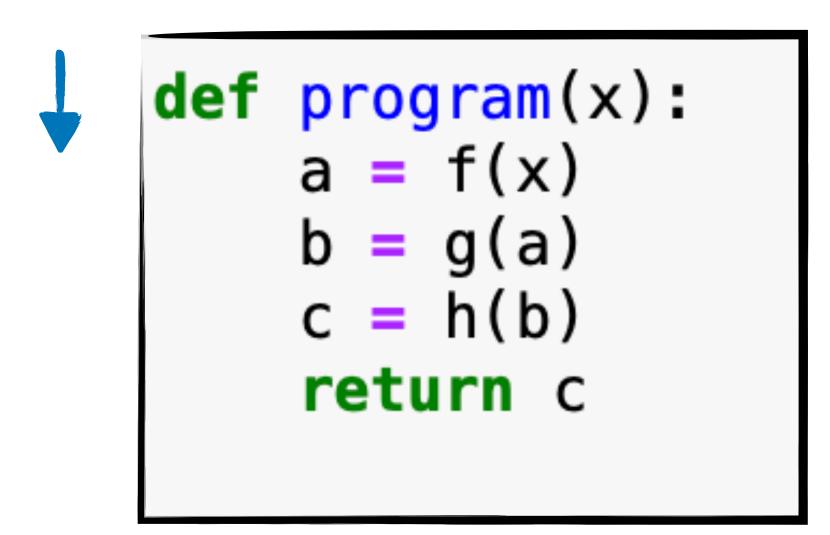
For example, we can collect all the right programs while we are running through our main program as additional output ... and from those assemble the derivative program



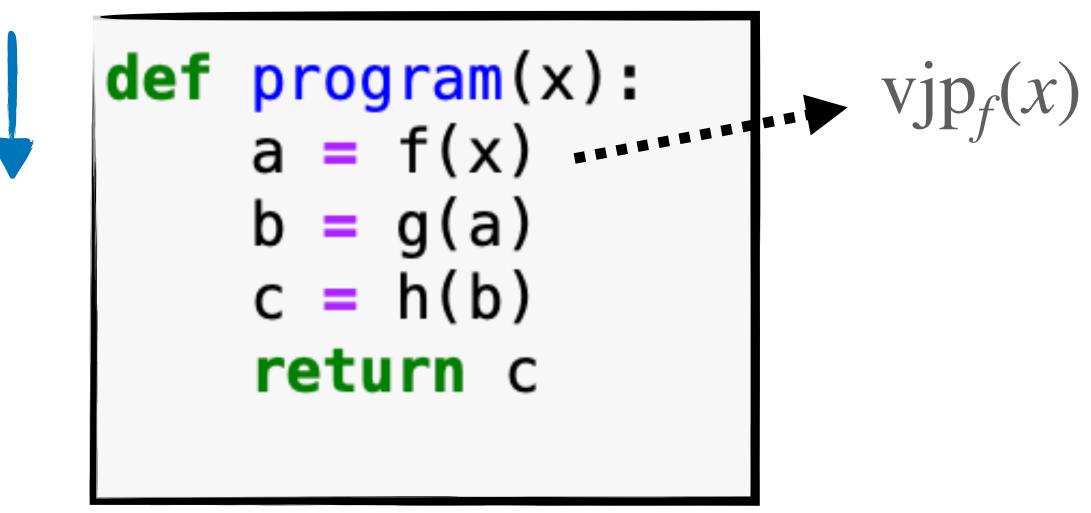
Main Program

Derivative Program

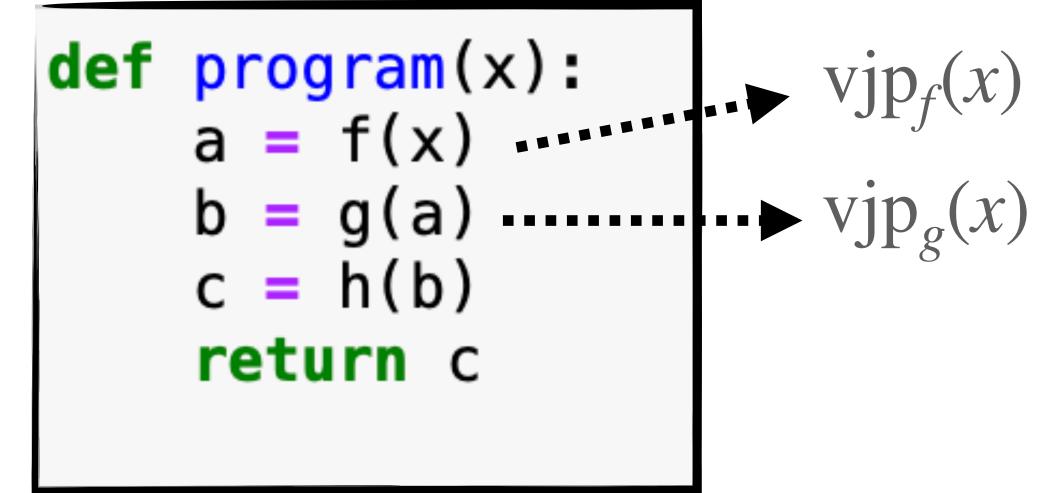
Or we can go backwards as well...



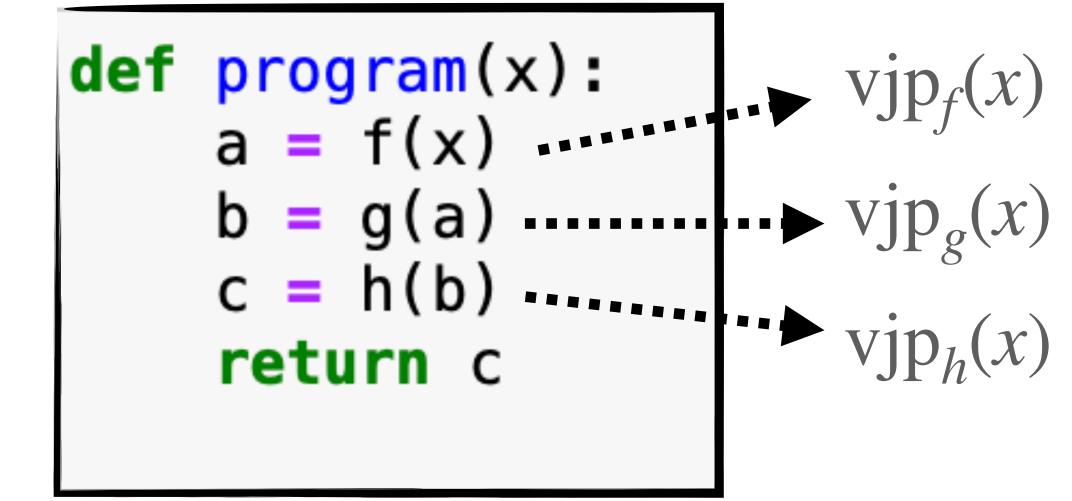
Or we can go backwards as well...



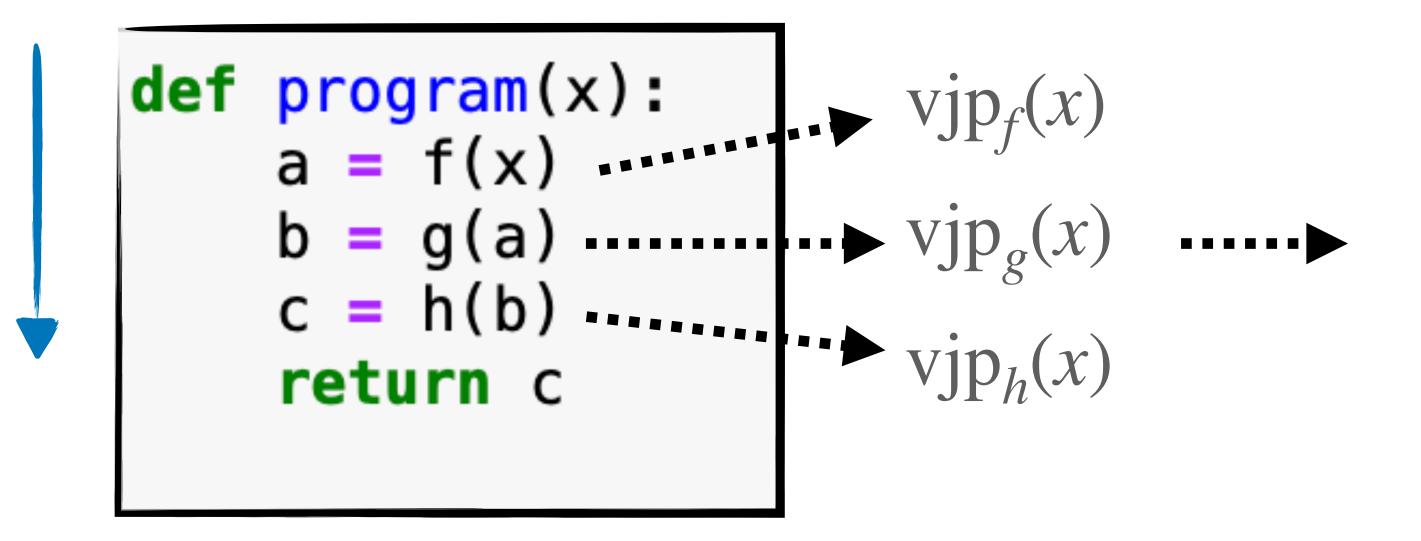
Or we can go backwards as well...



Or we can go backwards as well...



Or we can go backwards as well...

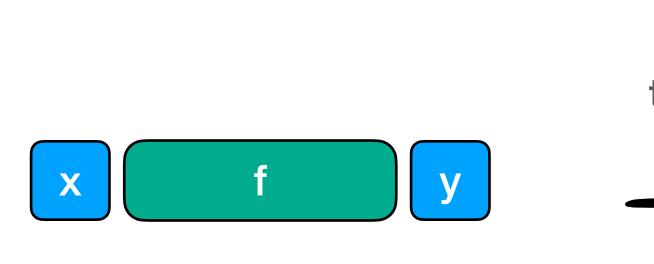


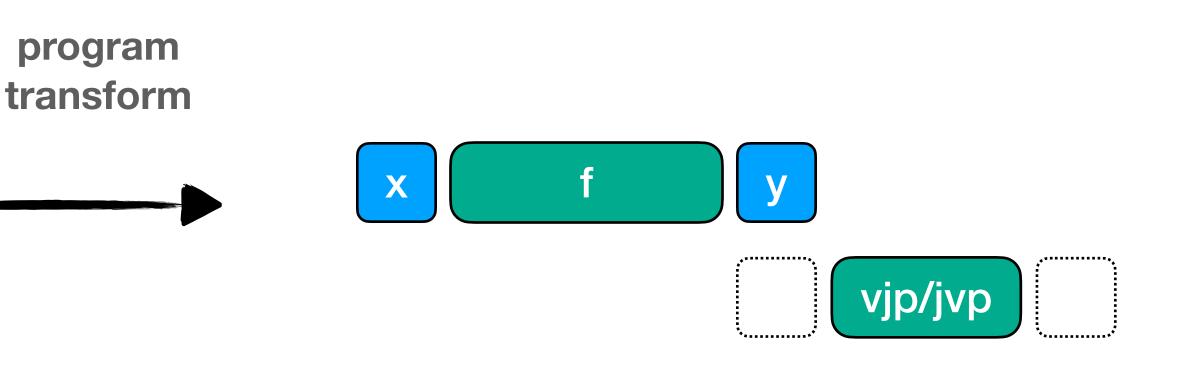
Main Program

def jacobian_row(r0): $r1 = vjp_h(r0)$ $r2 = vjp_g(r1)$ $r3 = vjp_f(r2)$ return r3

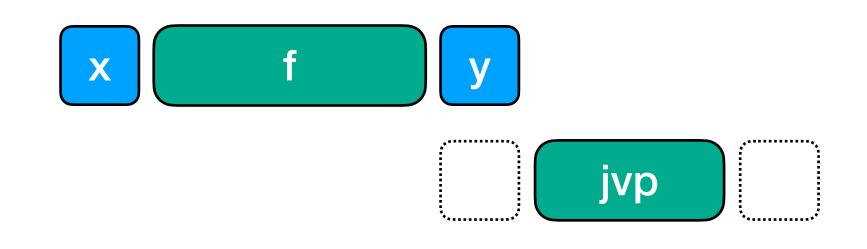
Derivative Program

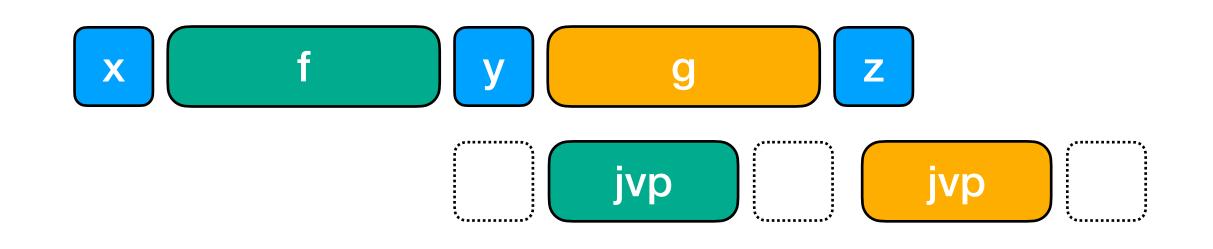
That means, if we have a system that can modify a function such that it returns not only the output value but also a vjp/jvp function

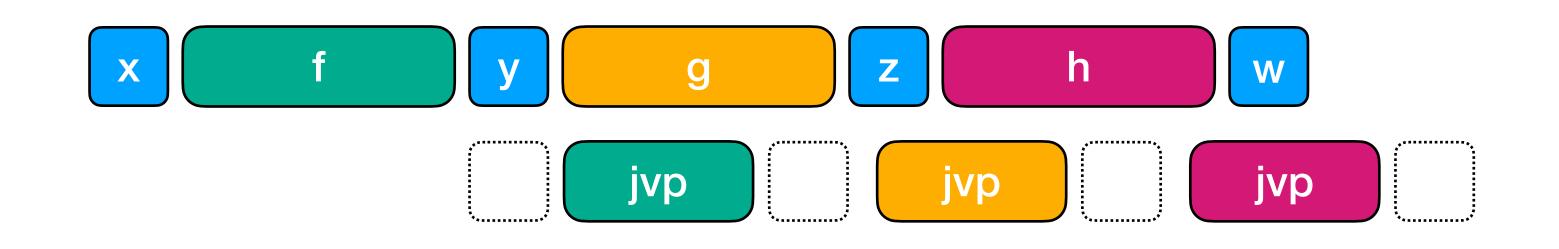


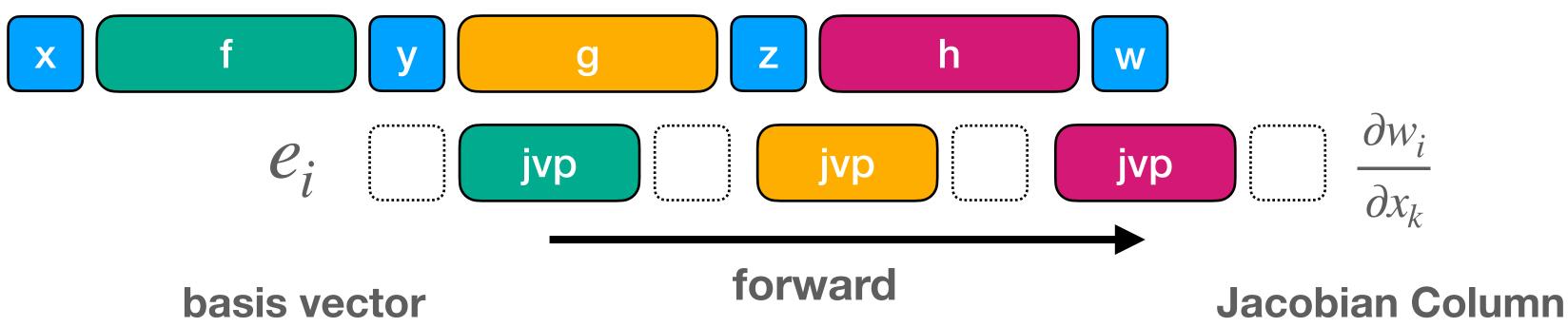


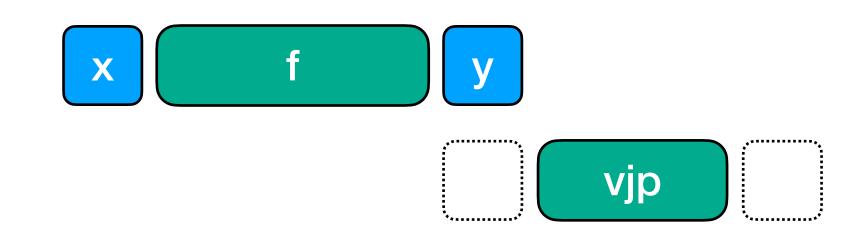
Then, we can almost blindly assemble a corresponding derivative program!

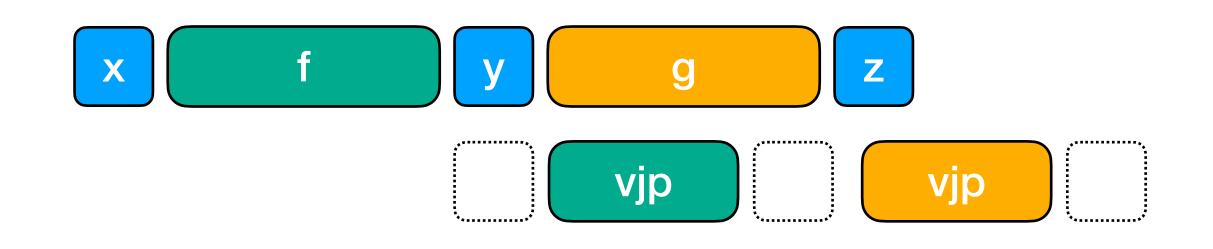


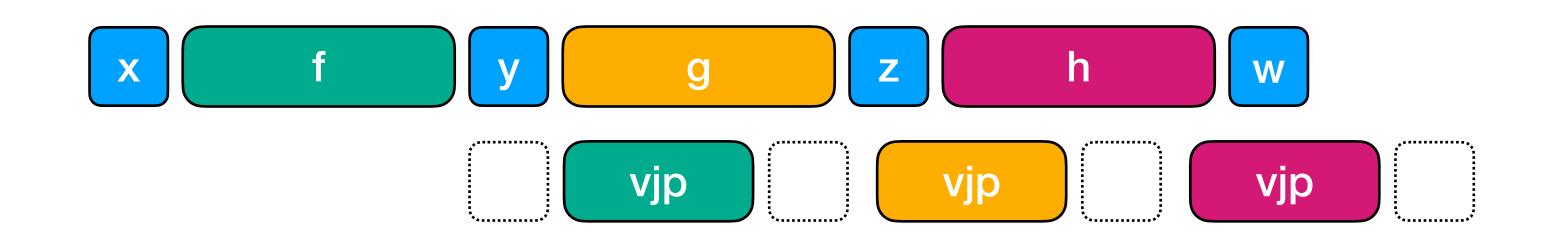




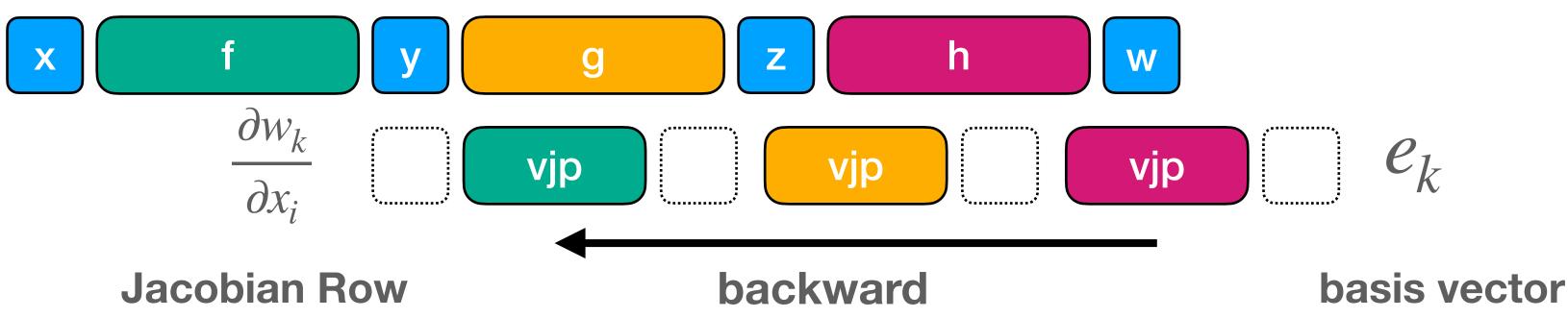








A strategy for Derivatives of Programs



That means, if we have a system that can modify a function such that it returns not only the output value but also a vjp/jvp function

Forward vs Backward

It's our empirical risk as function of parameters, i.e.

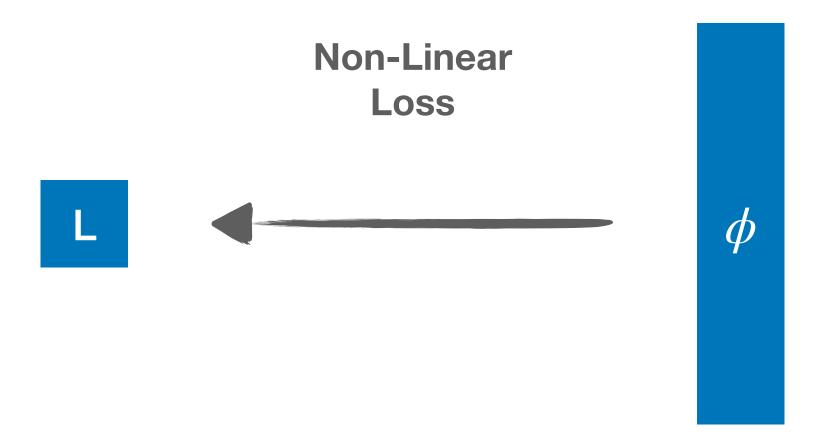
- We have two methods to derive gradients, which one should we use?
 - For ML, what's $f : \mathbb{R}^n \to \mathbb{R}^m$?

- $L(\phi): \mathbb{R}^{a \text{ lot}} \to \mathbb{R}^1$

Forward vs Backward

Given $L(\phi) : \mathbb{R}^{a \text{ lot}} \to \mathbb{R}^1$, what's the shape of the Jacobian?

A single row



Can compute it with a single pass of reverse-mode differentiation

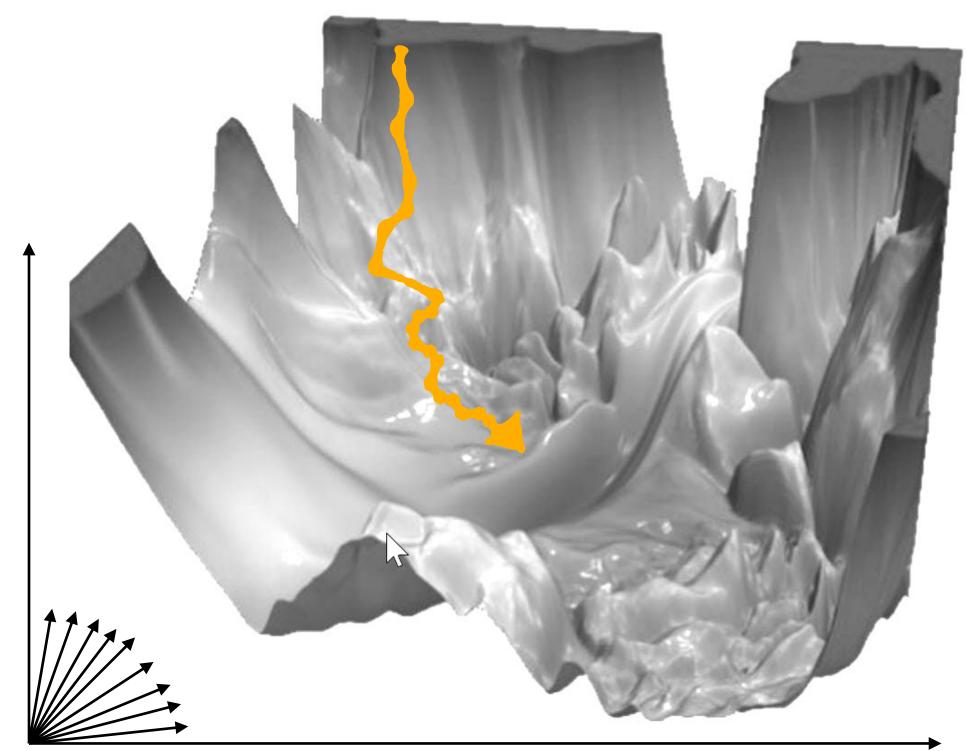
Linear Gradients

Scaling to Billions of Parameters

By using reverse-mode, we can scale to billions of dimensions gradient computation requires roughly same time as main program

2022

un



To deal with hyper-planes in a 14-dimensional space, visualize a 3D space and say 'fourteen' to yourself very loudly. -Hinton

Journal of Machine Learning Research 23 (2022) 1-40

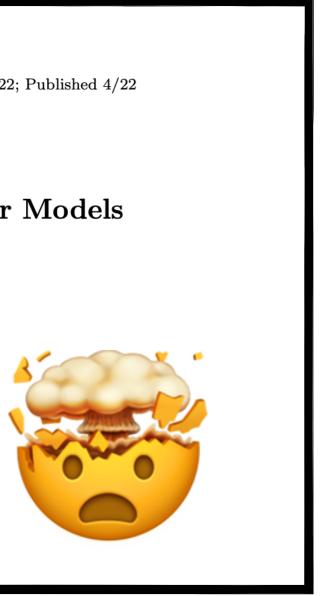
Submitted 8/21; Revised 3/22; Published 4/22

Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity

William Fedus^{*} LIAMFEDUS@GOOGLE.COM

Barret Zoph* BARRETZOPH@GOOGLE.COM

Noam Shazeer NOAM@GOOGLE.COM Google, Mountain View, CA 94043, USA



Editor: Alexander Clark

Gives us a good sense of direction in billion-D spaces

Forward vs Backward

For Machine Learning, mostly the reverse-mode differentiation via vector-Jacobian products is relevant. Rediscovered by ML in 80s.

1970

Seppo Linnainmaa

Seppo Linnainmaa

ALGORITMIN KUMULATIIVINEN PYÖRISTYSVIRHE

YKSITTÄISTEN PYÖRISTYSVIRHEIDEN TAYLOR-KEHITELMÄNÄ

Pro gradu-tutkielma

ohjaaja professori M.Tienari

Backpropagation

1986

Published: 09 October 1986

Learning representations by back-propagating errors

David E. Rumelhart, Geoffrey E. Hinton & Ronald J. Williams

Nature 323, 533–536 (1986) Cite this article 95k Accesses | 13696 Citations | 255 Altmetric | Metrics

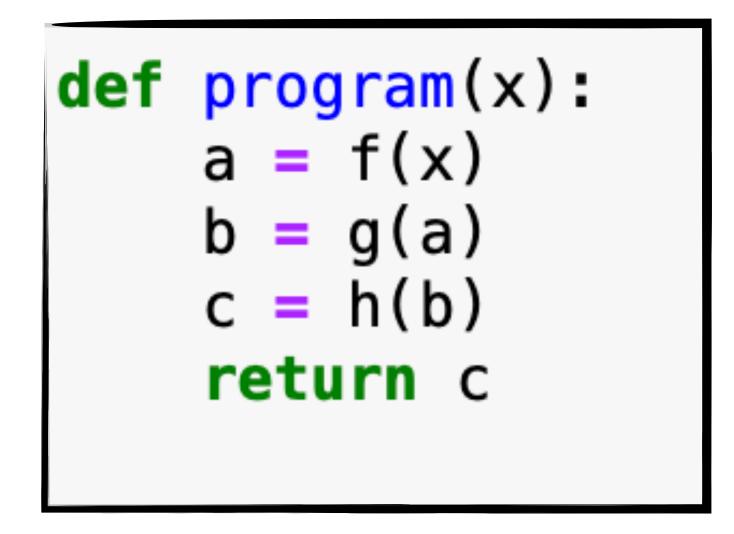
Abstract

We describe a new learning procedure, back-propagation, for networks of neurone units. The procedure repeatedly adjusts the weights of the connections in the netw as to minimize a measure of the difference between the actual output vector of the the desired output vector. As a result of the weight adjustments, internal 'hidden' u which are not part of the input or output come to represent important features of t domain, and the regularities in the task are captured by the interactions of these units. The

ability to create useful new features distinguishes back-propagation from earlier, simpler methods such as the perceptron-convergence procedure¹.

Geoff Hinton

You might ask: "My programs look a bit more complicated than a sequence of function calls": control flow, loops, ...



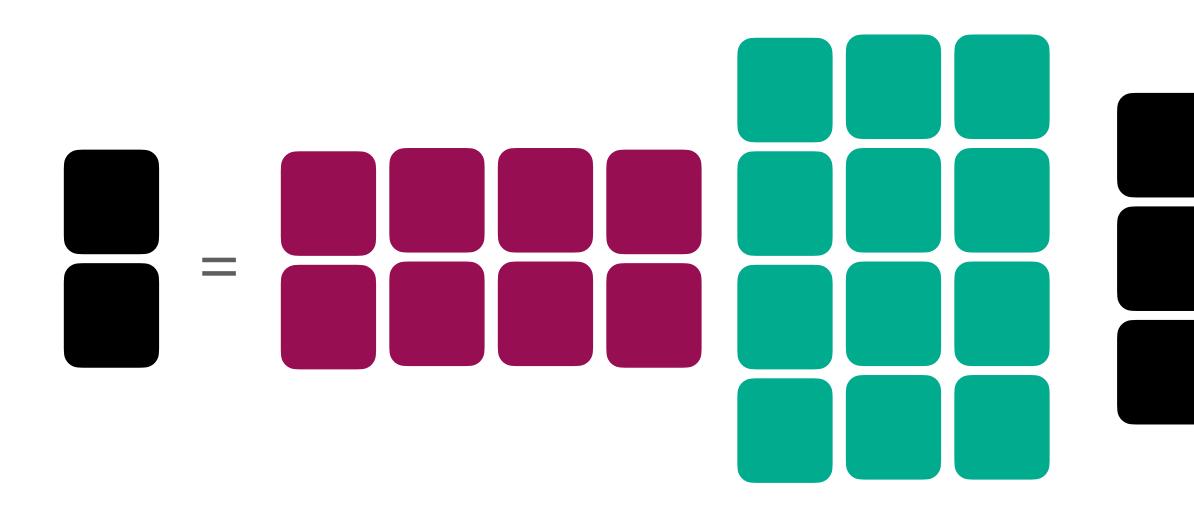
We know how to do this

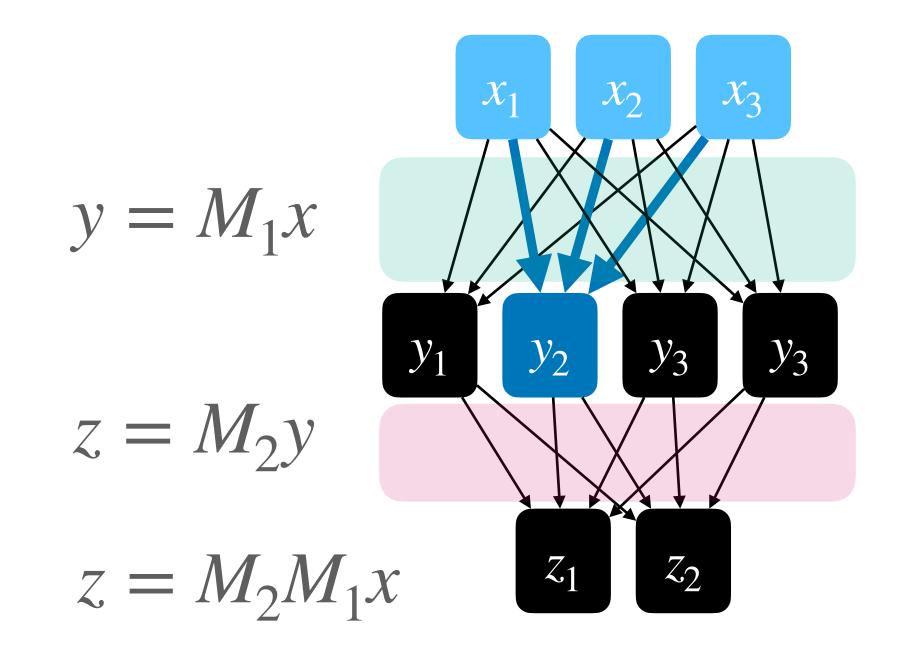
Beyond Sequences

def program(x): V = Xfor i in range(3) v=4*v*(1-v)return v

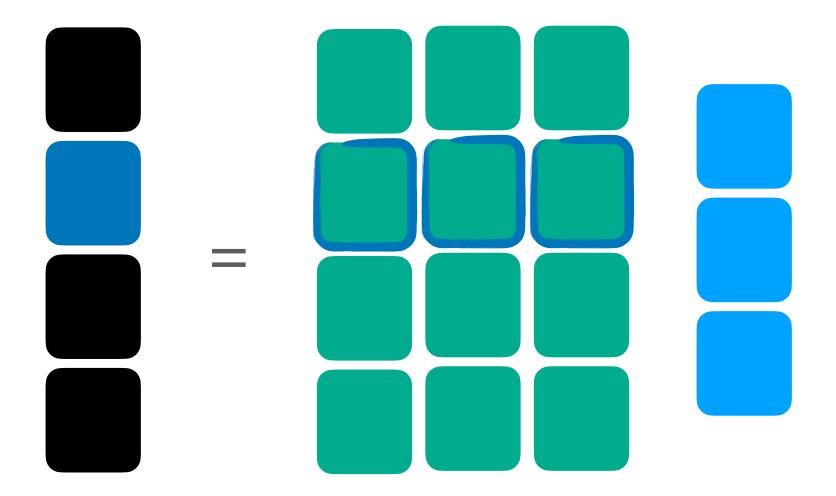
How do we do this?

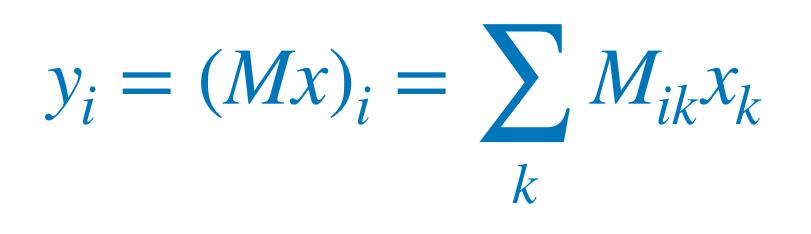
We can get a hint, by looking at Matrix Multiplication as a graph

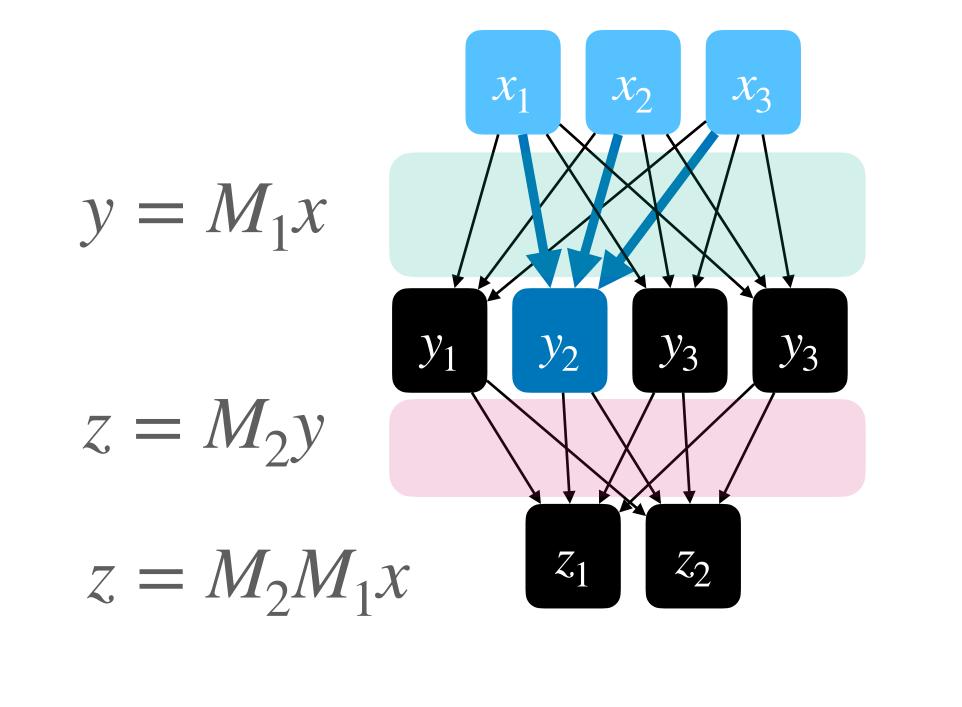


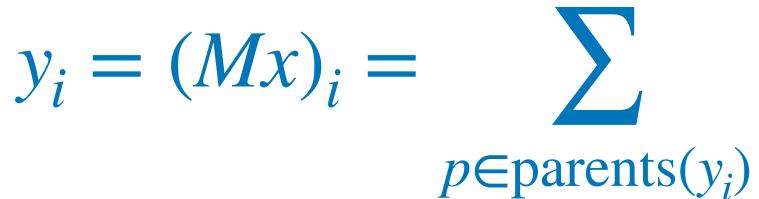


What do Matrix-Vector Products look in this picture?







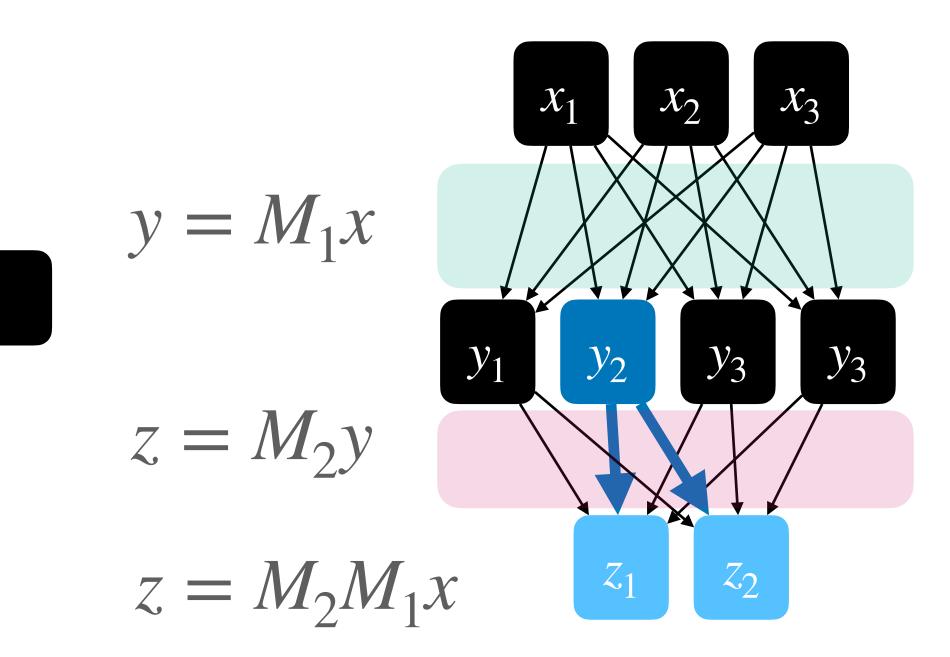


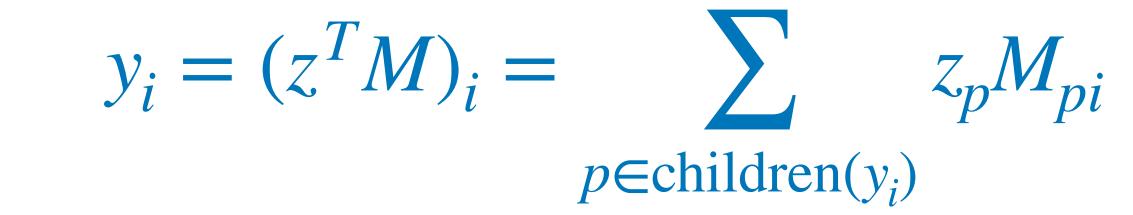
 $M_{ip}x_p$

What do Vector-Matrix Products look like?

=

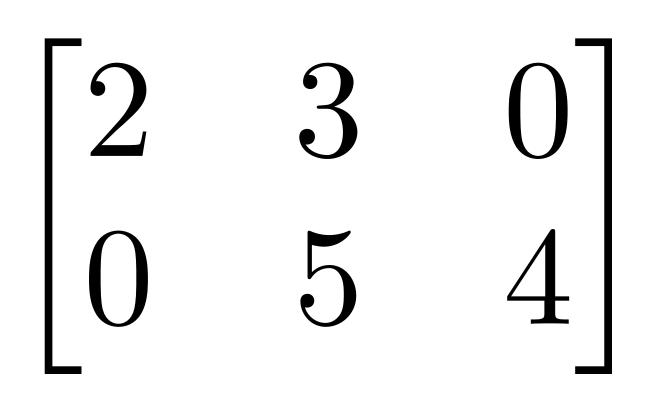
$y_i = (z^T M)_i = \sum z_k M_{ki}$ k

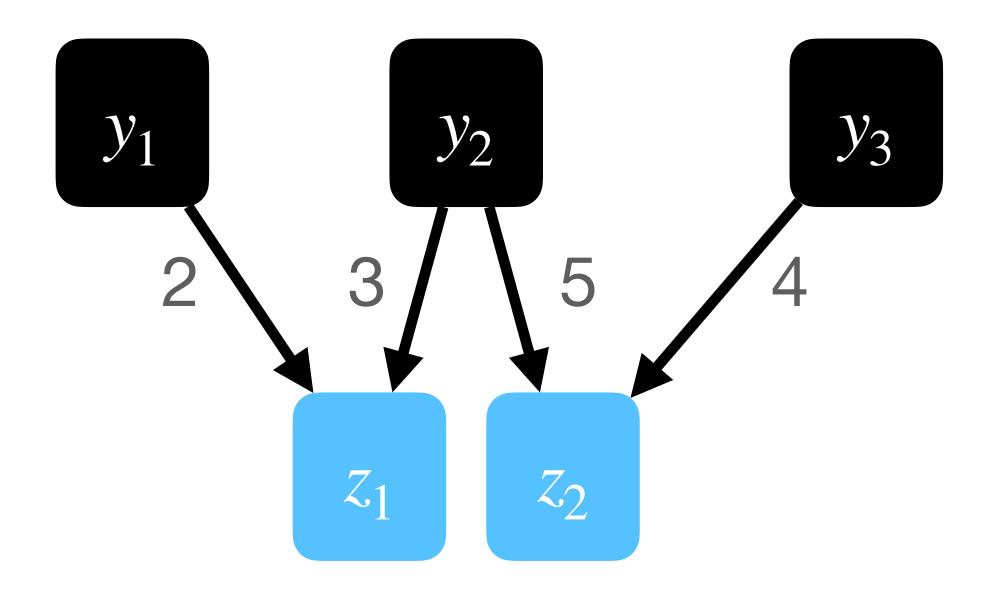




There is a correspondence between

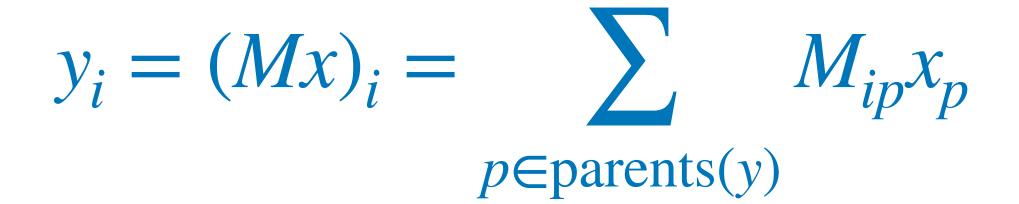
- Matrix Elements and Edges
- Linear Programs <> Matrices <> annotated edges

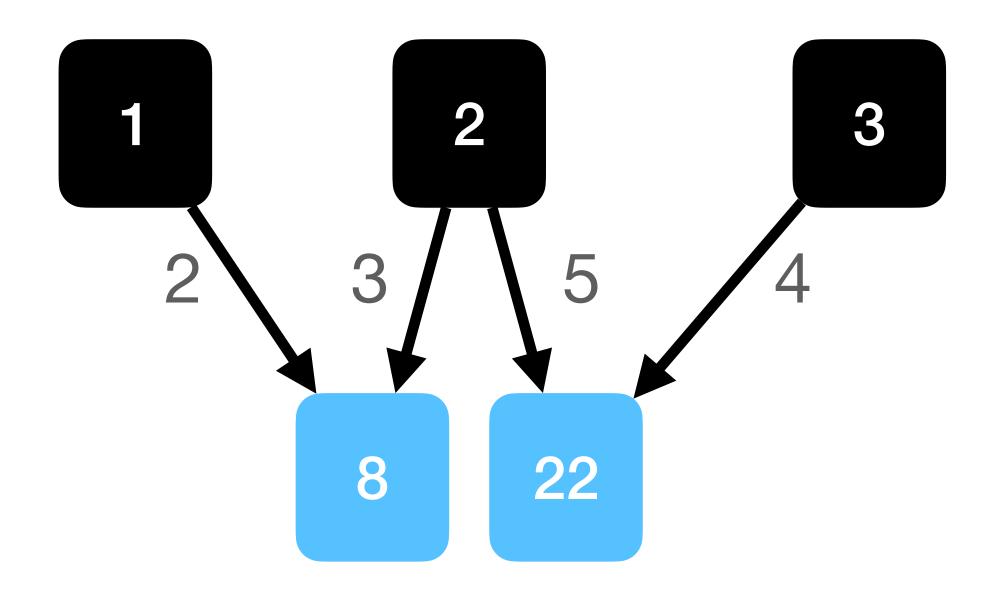




def mvp(inp):
 x,y,z = inp
 return np.array([
 2*x + 3*y,
 5*y + 4*z
])
mvp([1,2,3])

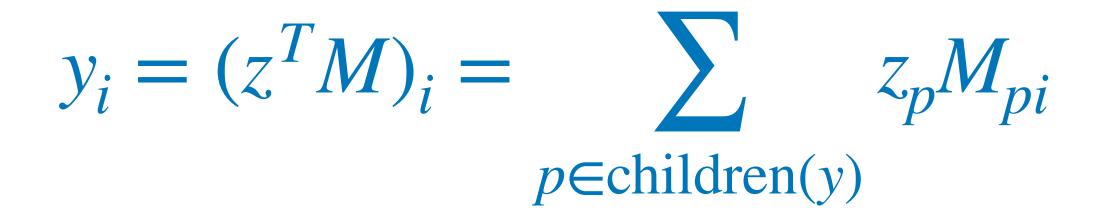
array([8, 22])

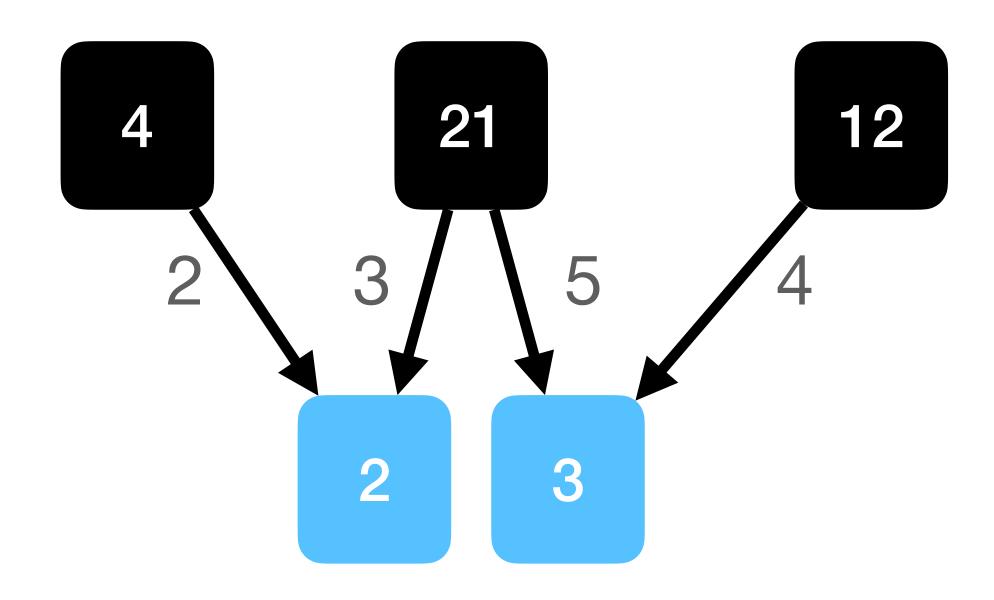




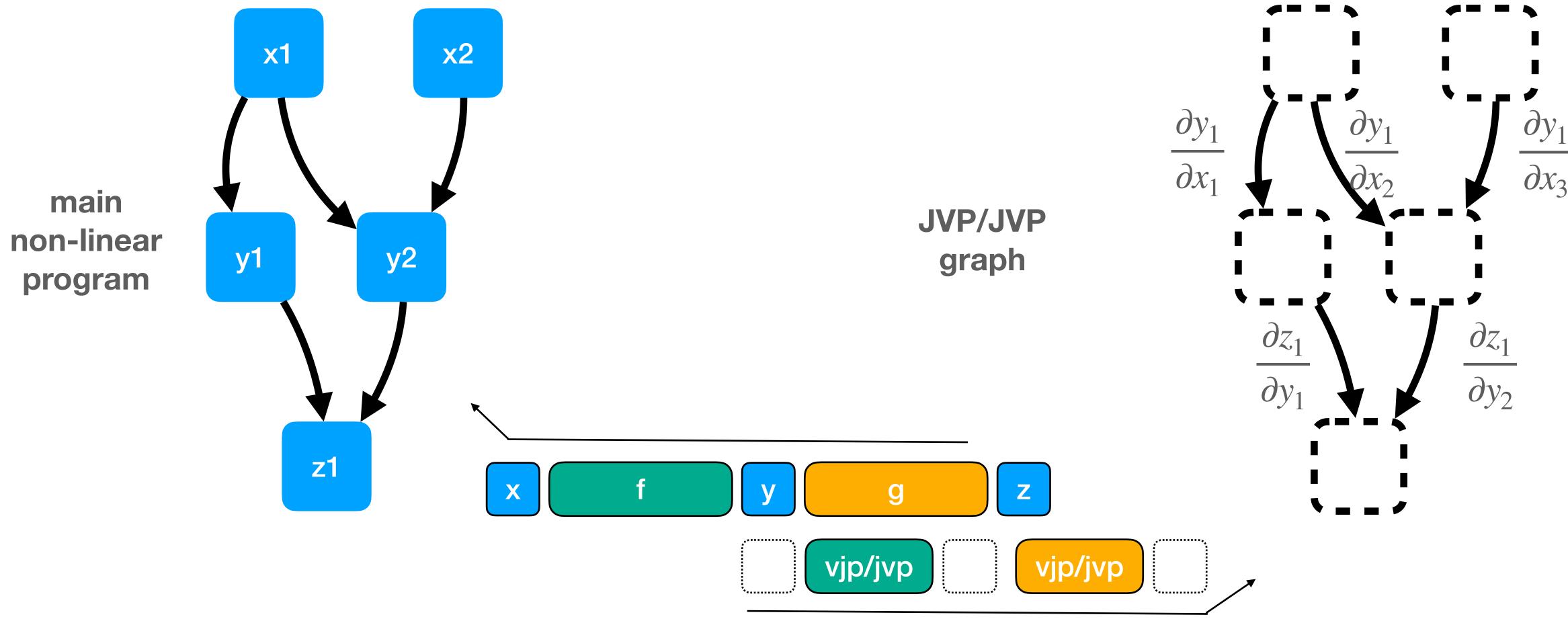

```
def vmp(out):
    a,b = out
    return np.array([
        2*a,
        3*a + 5*b,
        4*b
    ])
vmp([2,3])
```

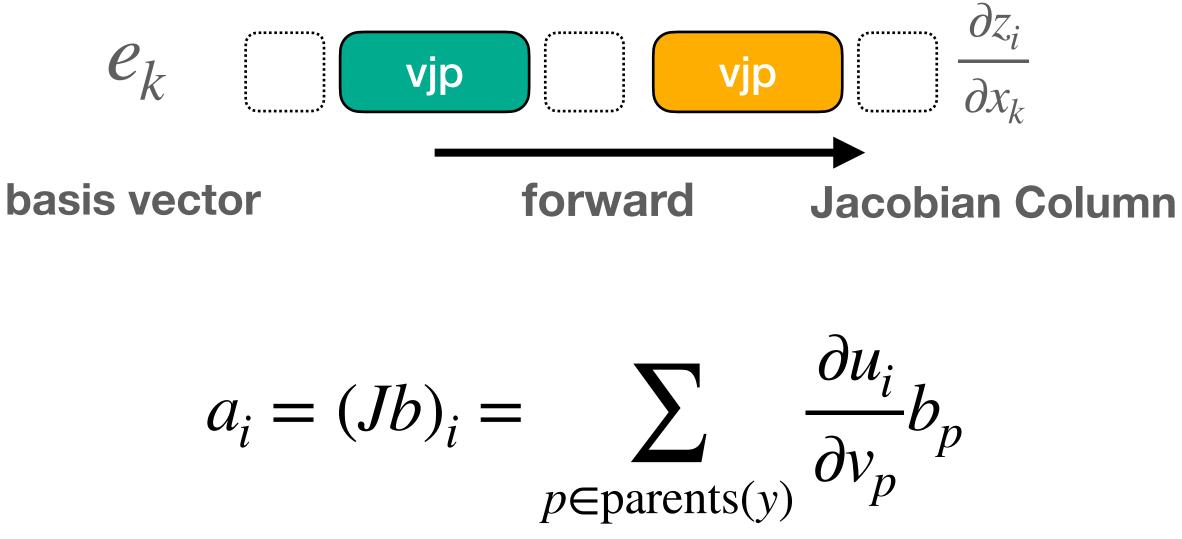
array([4, 21, 12])

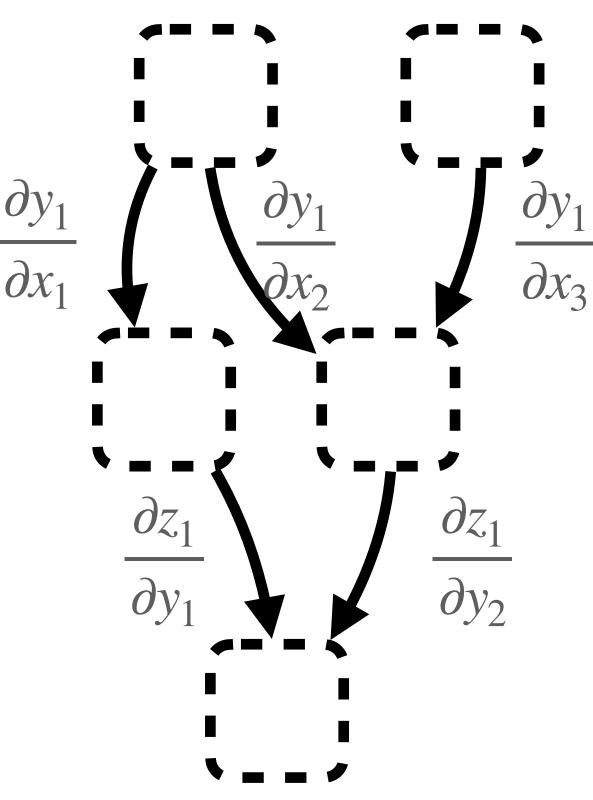


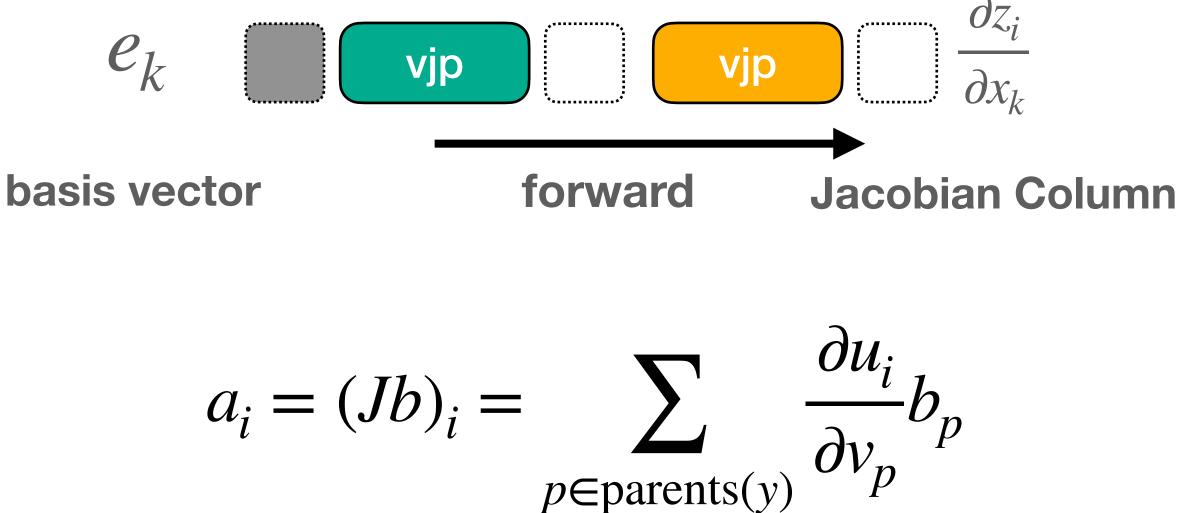


"creating a JVP/VJP program" is just annotating the graph edges with partial derivatives

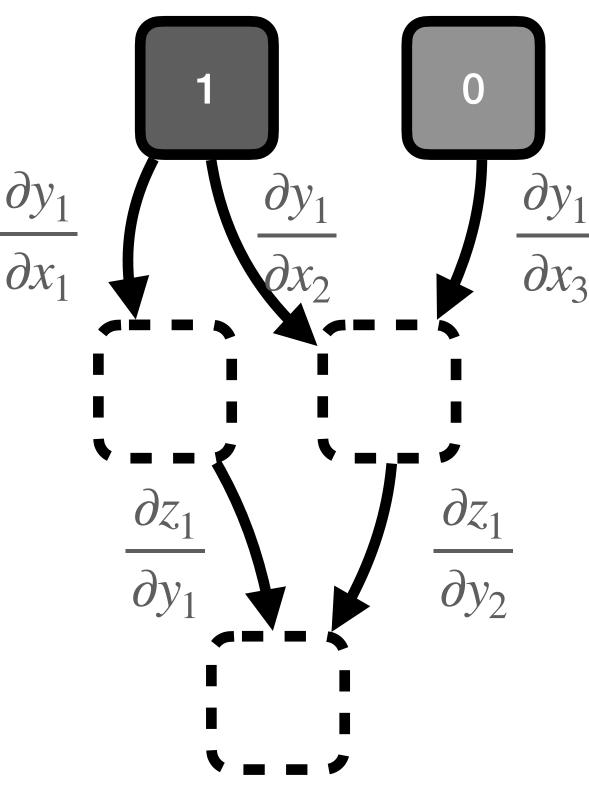


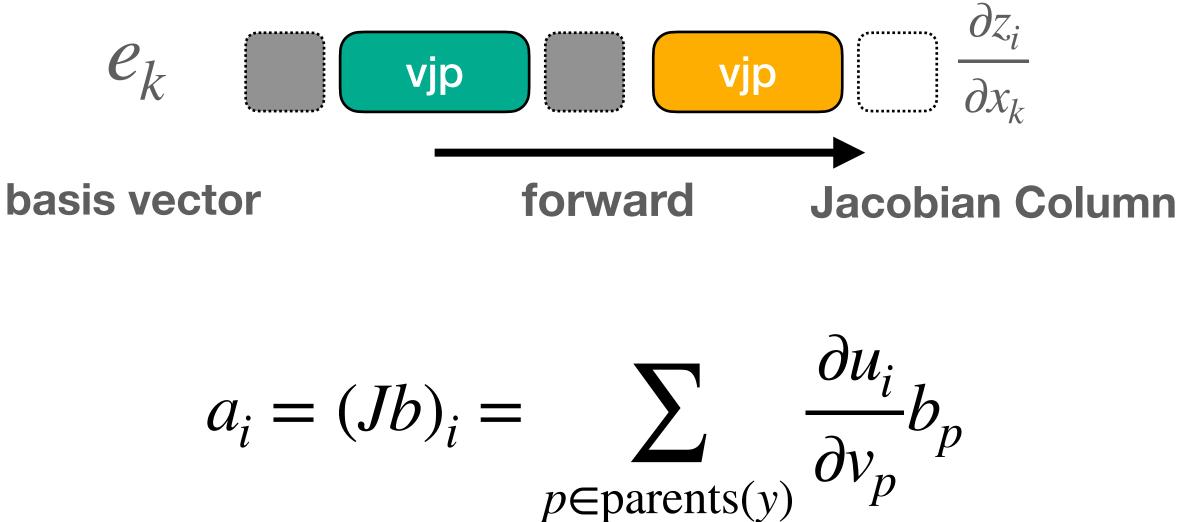




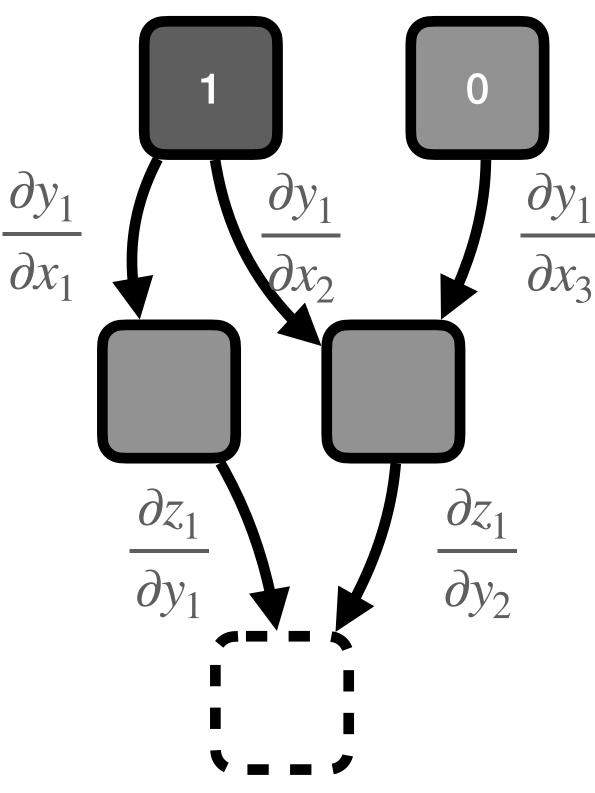


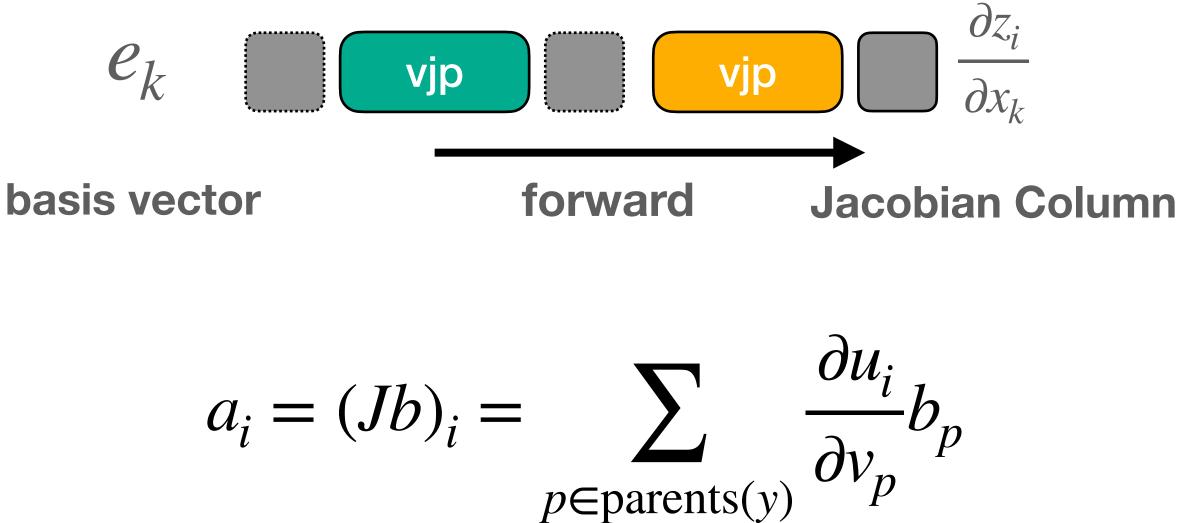
$$\frac{\partial u_i}{\partial v_p} b_p$$



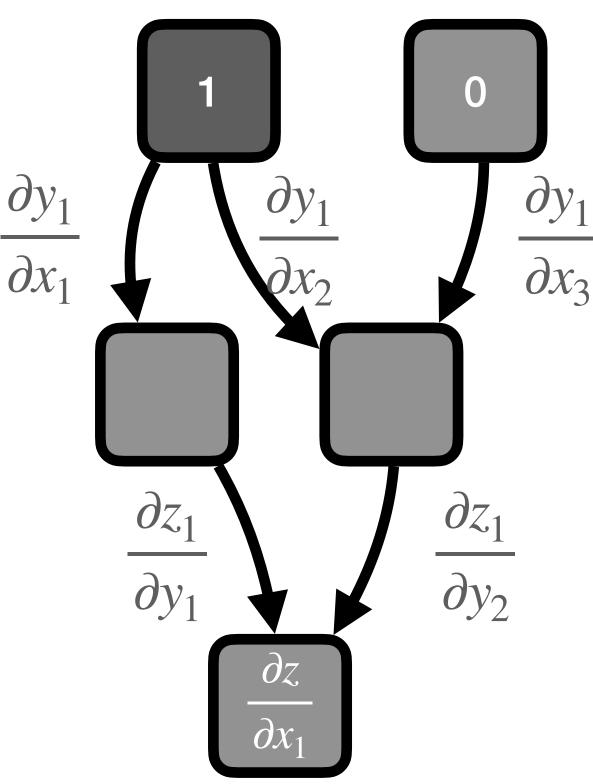


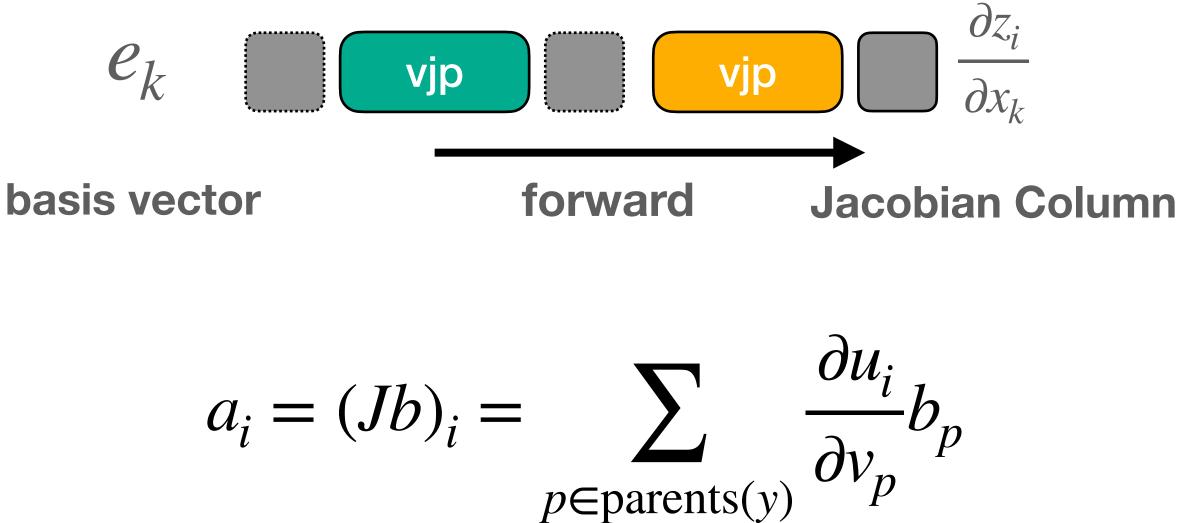
$$\frac{\partial u_i}{\partial v_p} b_p$$



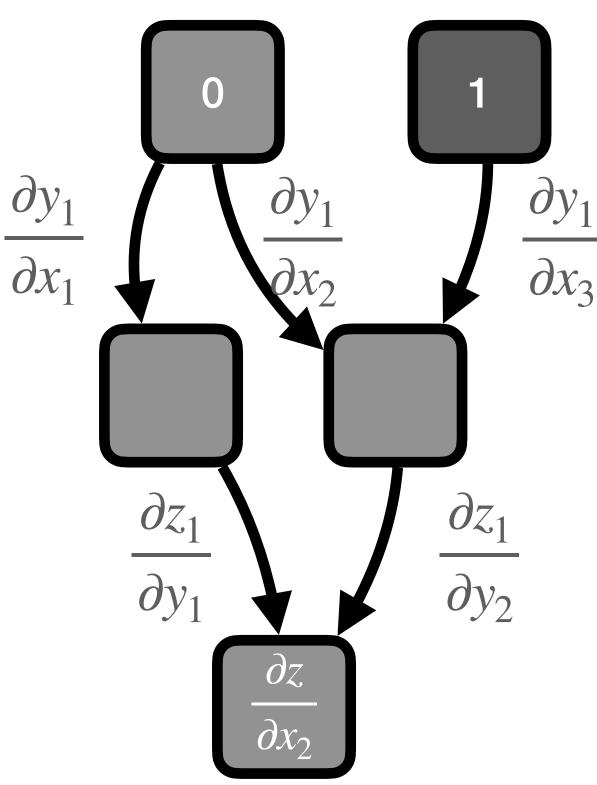


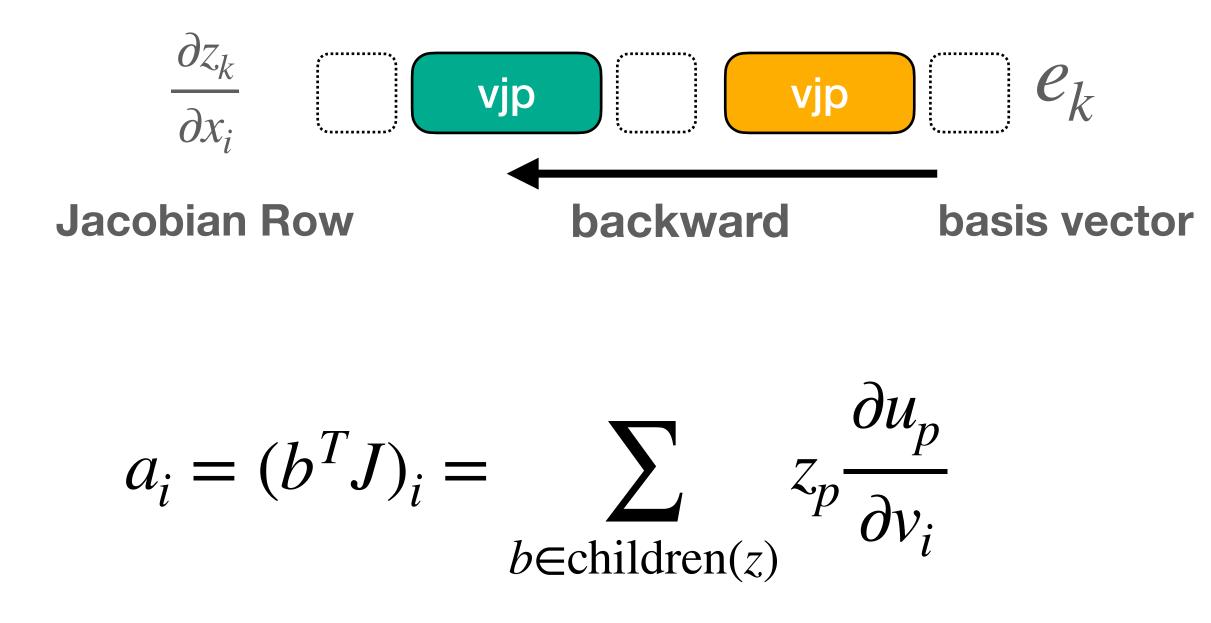
$$\frac{\partial u_i}{\partial v_p} b_p$$

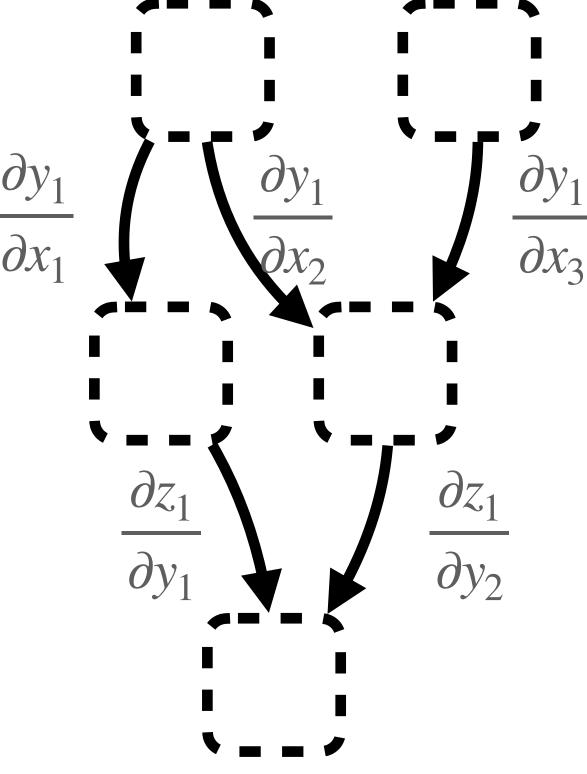


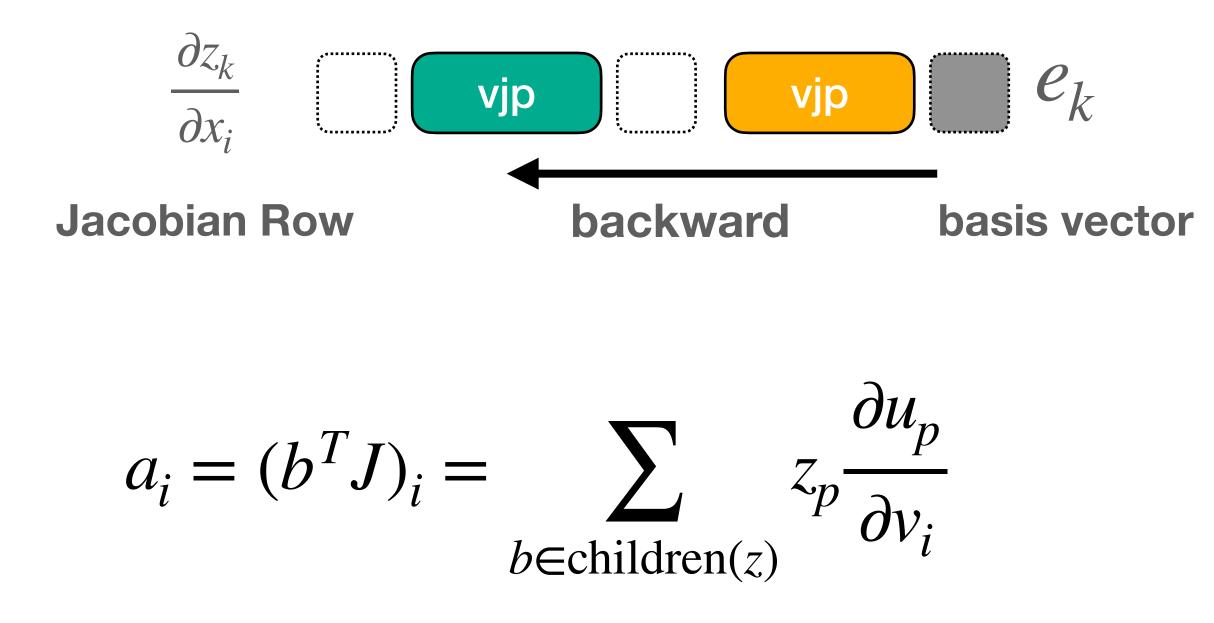


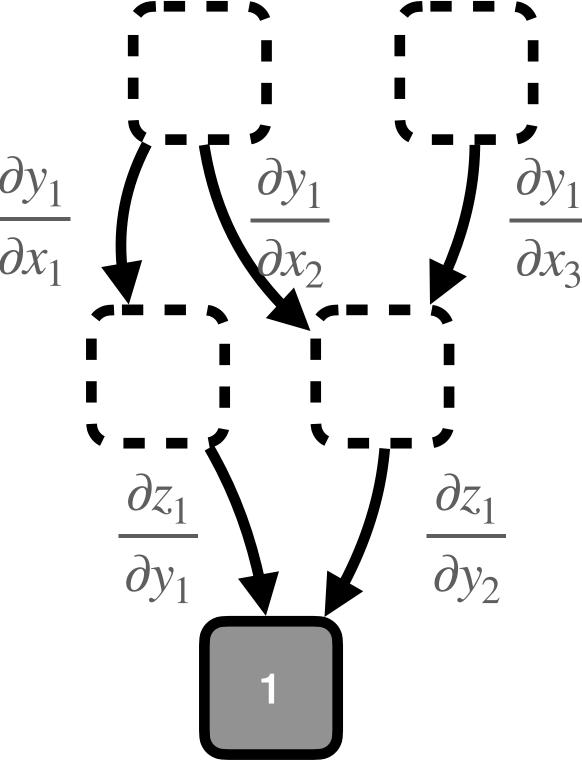
$$\frac{\partial u_i}{\partial v_p} b_p$$

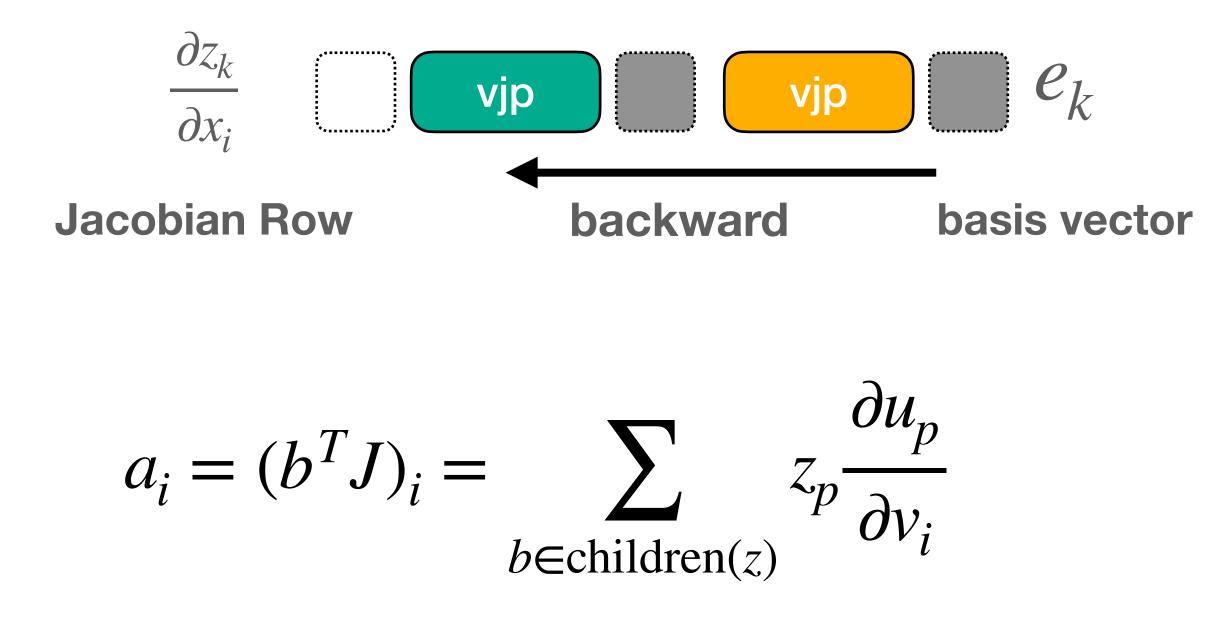


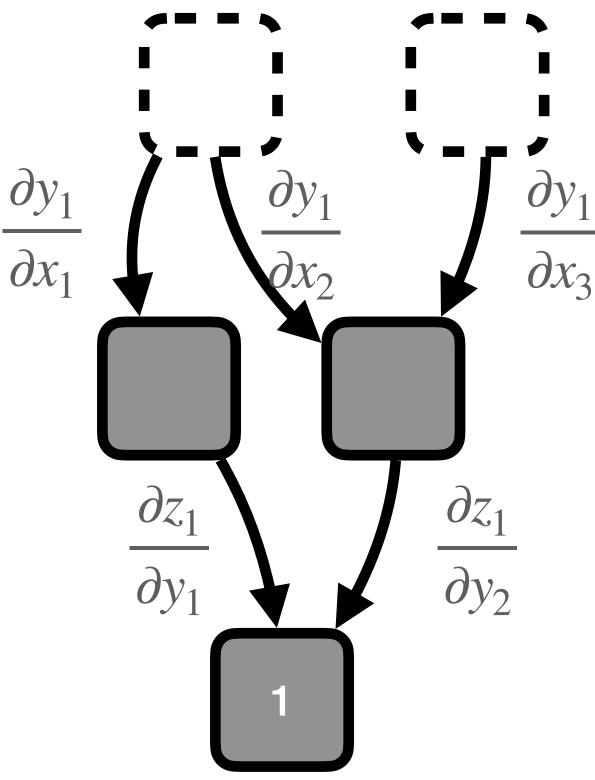


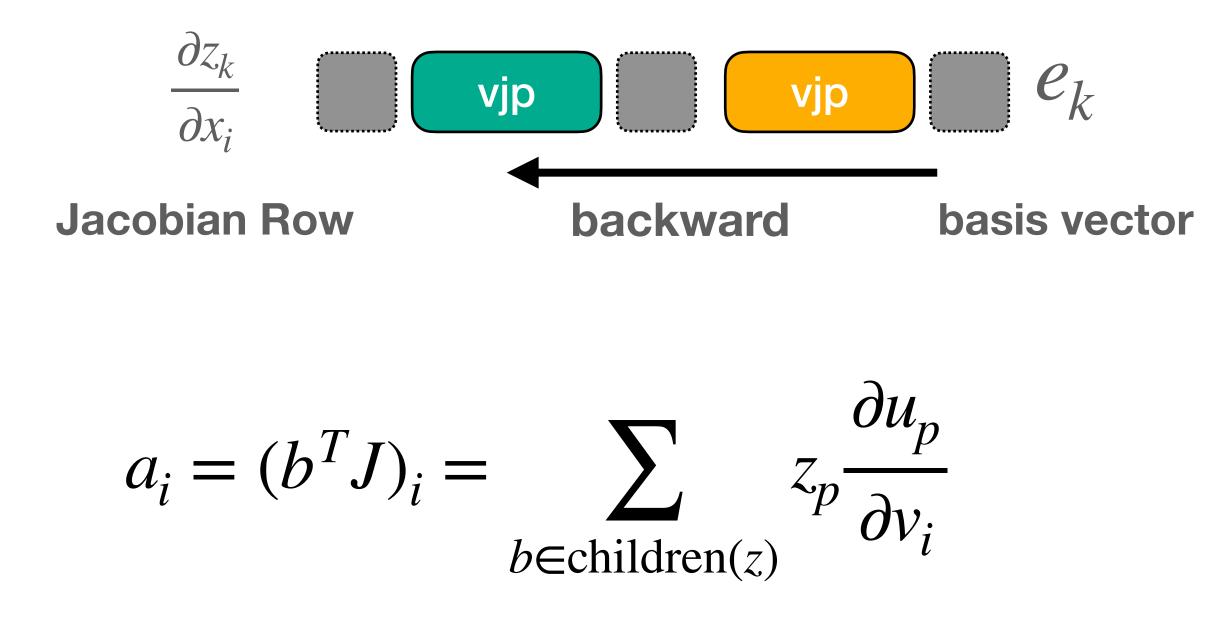


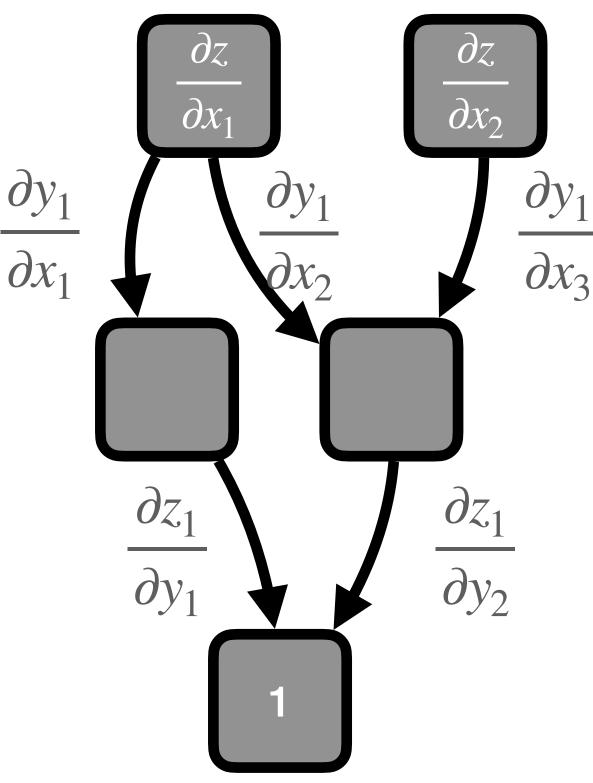








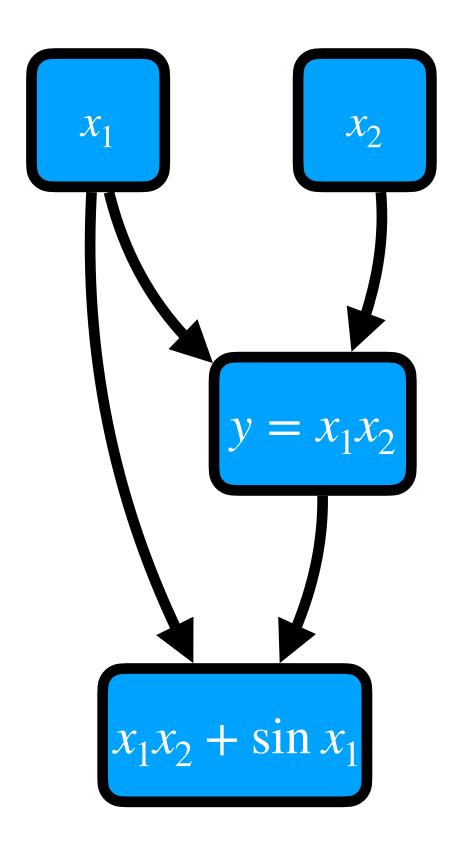




Let's take a simple example:

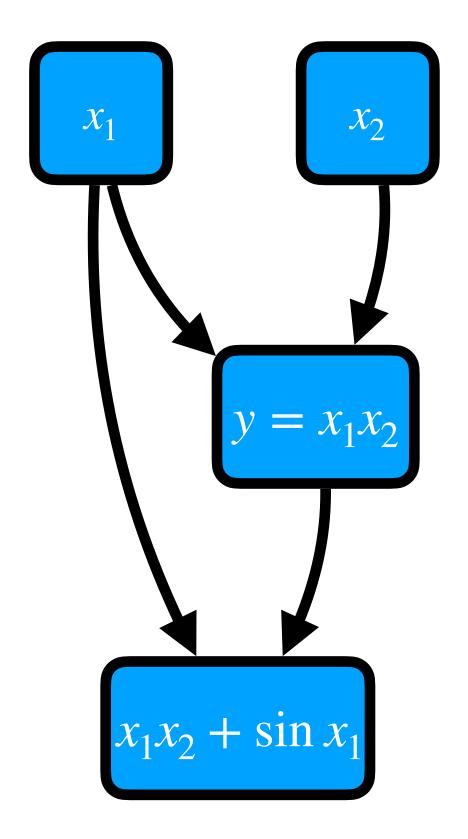
$z = x_1 x_2 + \sin x_1 = y + \sin x_1$

Express as a graph:

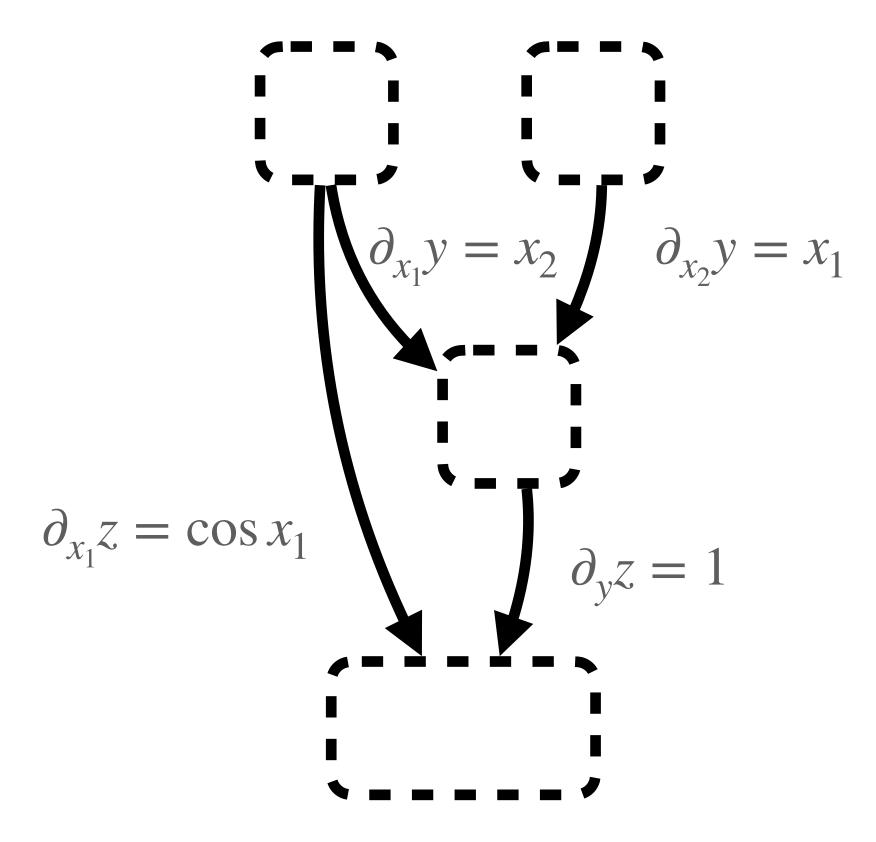


 $z = x_1 x_2 + \sin x_1 = y + \sin x_1$

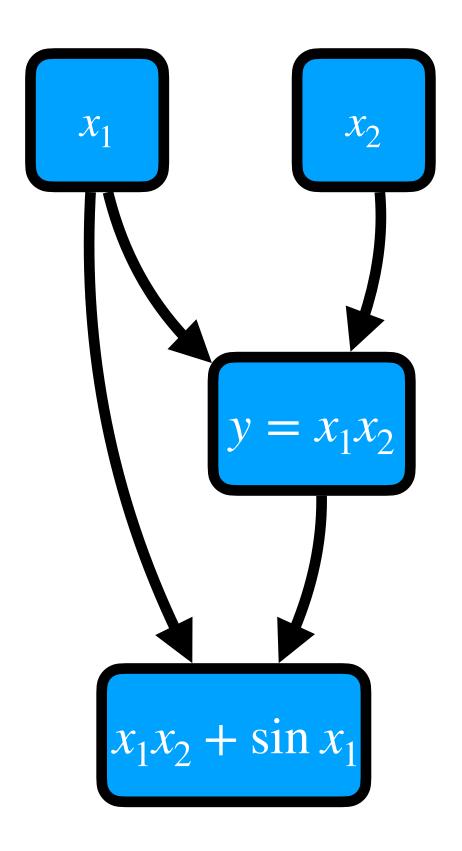
Annotate Edges: (add JVP/JVP information)



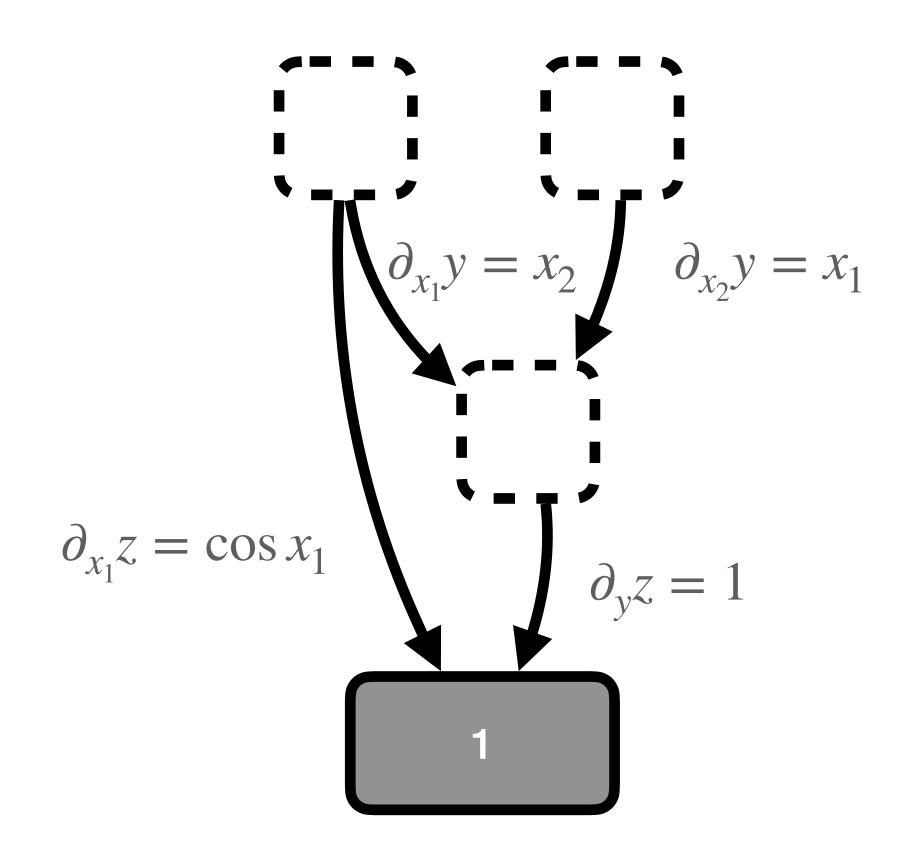
 $z = x_1 x_2 + \sin x_1 = y + \sin x_1$



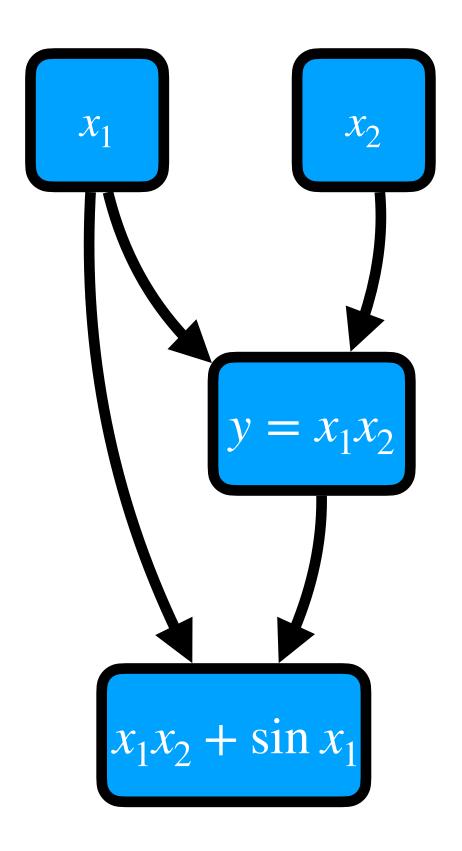
Run backwards



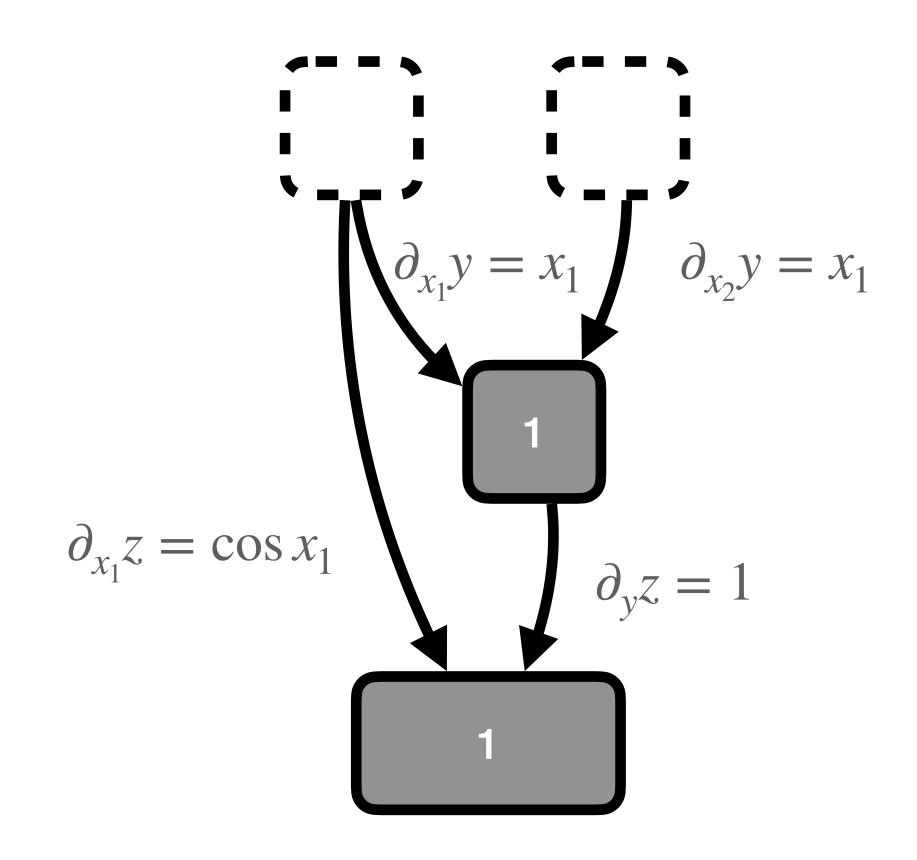
 $z = x_1 x_2 + \sin x_1 = y + \sin x_1$



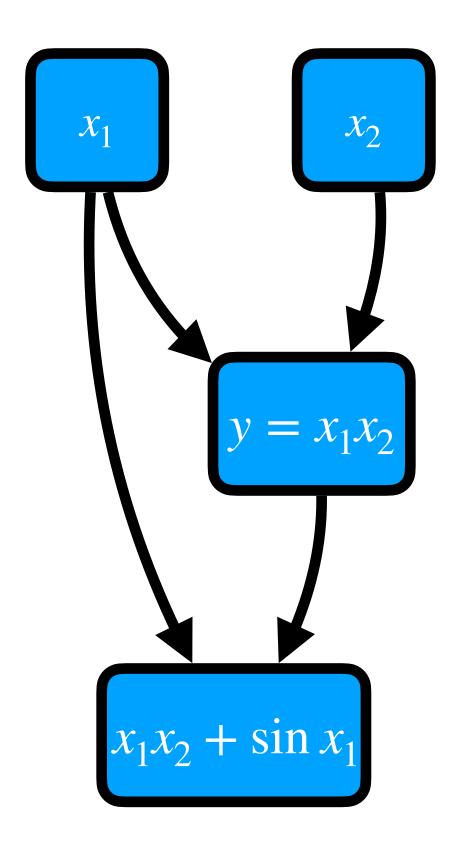
Run backwards



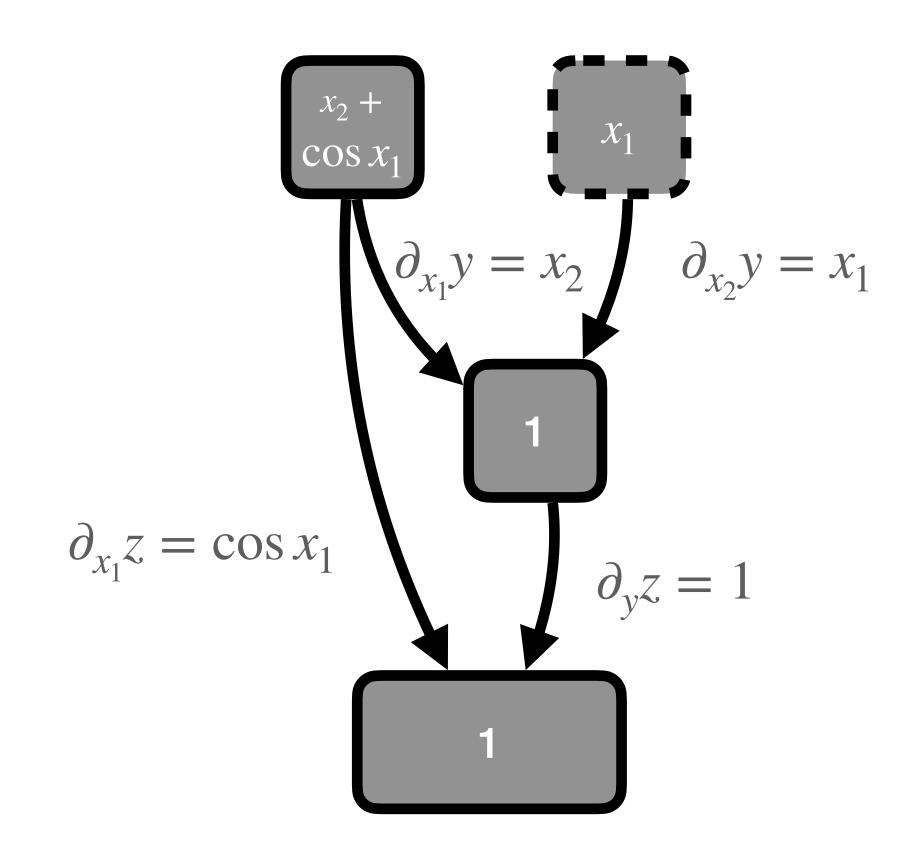
 $z = x_1 x_2 + \sin x_1 = y + \sin x_1$



Run backwards

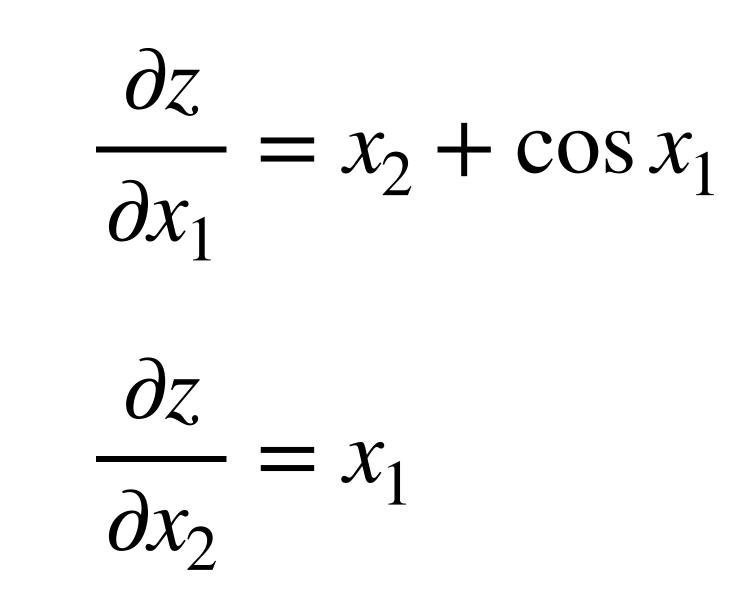


 $z = x_1 x_2 + \sin x_1 = y + \sin x_1$



Voilà!

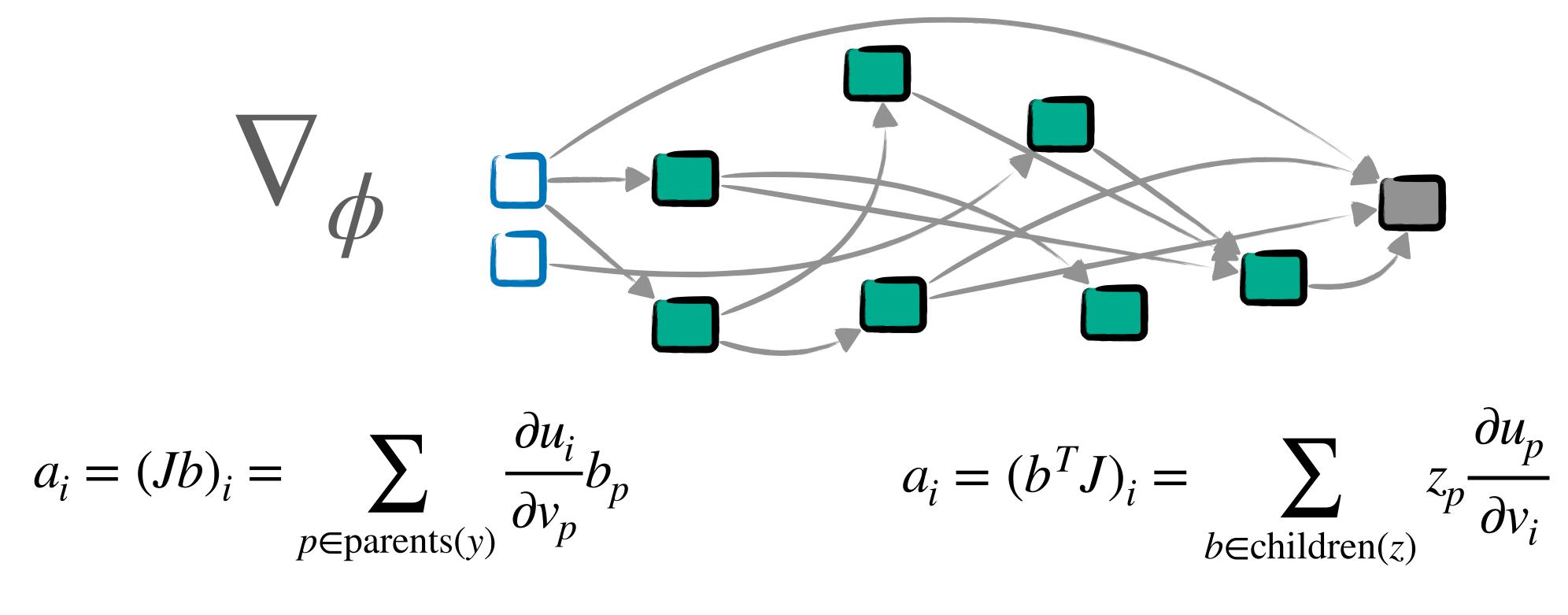
$z = x_1 x_2 + \sin x_1 = y + \sin x_1$



Example

*x*₂ + x_1 $\cos x_1$ $\partial_{x_1} y = x_2$ $\partial_{x_2} y = x_1$ $\partial_{x_1} z = \cos x_1$ $\partial_y z = 1$

With the graph picture, we can generalize differentiation to arbitrary computation graphs, i.e. arbitrary programs!



Forward Propagation

Backward Propagation

Let's automate this!

well-defined program

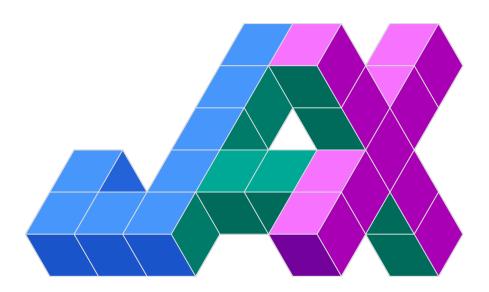
But of course, we don't want to do this ourselves

- in any case this is just mechanically putting together some JVP, VJP functions
- it's something a computer can do!

We derived a strategy to efficiently compute the gradient of any given

Automatic Differentiation (AD)

Automatic Differentiation Systems



Most Deep Learning Framework are at their core Autodiff systems • Differentiable Programming Languages first, ML Stuff second

TensorFlow

PYTÖRCH

Beyond Deep Learning

But there is a long list of non-DL focused AD frameworks as well idea exist in many language (C++, Julia, Fortran, ...)

autodiff (C++)

Remember: ML kind of rediscovered AD on its own

Enzyme.jl (Julia)

Munich 2023

ent:conjg, exp

expressions[if

none(), mul(ca

(none(), ident

xpressions[if

essions[ident:

Differentiable MadGraph in FORTRAN

CALL PUSHCO ITROL1B(1)

CALL GET_MOMENTA(sqrts, pmass, p) e information on the four momenta write CALL SMATRIX_B(p, matelem, matelemb) CALL POPCONTROL1B(branch) CALL POPREAL8(md1_ee) CALL POPREAL8 (md1_cw) CALL POPREAL8 (md1_sw) CALL POPCOMPLEX16 (md1_complexi)

A general pattern

physics structure into ML without losing learnability

But most of our code is not (yet) differentiable

A program for the next tew years

Differentiable Programming is a generic way to introduce

Making the World Differentiable: On Using Self-Supervised Fully Recurrent Neural Networks for Dynamic Reinforcement Learning and Planning in Non-Stationary Environments

> Jürgen Schmidhuber* Institut für Informatik Technische Universität München Arcisstr. 21, 8000 München 2, Germany schmidhu@tumult.informatik.tu-muenchen.de

Abstract

ction to reinforcement learning and to supervised learning with recurrent ary environments is given. The introduction also covers the basic principle of h frozen model networks' as employed by Werbos, Jordan, Munro, Robinson en and Widrow. This principle allows supervised learning techniques to be ent learning.

ithm for a reinforcement learning neural network with internal and external nary reactive environment is described. Internal feedback is given by conc activation flow through the network. External feedback is given by output the state of the environment thus influencing subsequent input activations. l is to receive as much reinforcement (or as little 'pain') as possible.

time lags between actions and ulterior consequences are possible. The 'visi-

