
Automatic Differentiation 
(under the Hood)

HighRR Lecture Week

The point of Architecture

Why introduce architecture despite 
universal function approximatation?

• Data and Training Efficiency

• Physics Inductive Bias

Start

End

Target

x

no structure

structure

Data

Pe
rf

or
m

an
ce

The point of Architecture
 
So we want structure, but we also want learning…  
… and that means gradients differentiable structures
→

inputs ML Model fϕ output

labels

parameters

Assessment objective

Optimization

The point of Architecture
Adding physics information may be much more than just
adding symmetries

Dynamical Layers

(ODE)

Actual Physics Computation

(Matrix Elements)

So what we really want is gradients of arbitrary programs

A big underlying reason for the success of Deep Learning

Differentiable Programming

Gradients

inputs

params ϕcomputer 
program

outputs

∇ϕ ?

Consider a simple function

Start Simple

<latexit sha1_base64="8KnyQhTxvQgQwca03DNtxhXdT5Q=">AAACG3icbVBNSwMxFMzWr1q/qh69BIvgqeyWoh6LXjyqWBW6tWTTbBuaTZbkrVCW/R9e/CtePCjiSfDgvzFb92BbBwLDzDzy3gSx4AZc99spLSwuLa+UVytr6xubW9XtnRujEk1Zmyqh9F1ADBNcsjZwEOwu1oxEgWC3wegs928fmDZcyWsYx6wbkYHkIacErNSrNvyIwDAI0qvsPpU9L8O+yvMM0jBLfVBWmEo0sl615tbdCfA88QpSQwUuetVPv69oEjEJVBBjOp4bQzclGjgVLKv4iWExoSMyYB1LJYmY6aaT2zJ8YJU+DpW2TwKeqH8nUhIZM44Cm8z3NLNeLv7ndRIIT7opl3ECTNLfj8JEYFA4Lwr3uWYUxNgSQjW3u2I6JJpQsPVUbAne7Mnz5KZR947qzctmrXVa1FFGe2gfHSIPHaMWOkcXqI0oekTP6BW9OU/Oi/PufPxGS04xs4um4Hz9ABQ5orI=</latexit>

Rn1
f! Rn2

What can we say about the differentials? dx

x

da

a

??

f

Consider a simple function

Start Simple

<latexit sha1_base64="8KnyQhTxvQgQwca03DNtxhXdT5Q=">AAACG3icbVBNSwMxFMzWr1q/qh69BIvgqeyWoh6LXjyqWBW6tWTTbBuaTZbkrVCW/R9e/CtePCjiSfDgvzFb92BbBwLDzDzy3gSx4AZc99spLSwuLa+UVytr6xubW9XtnRujEk1Zmyqh9F1ADBNcsjZwEOwu1oxEgWC3wegs928fmDZcyWsYx6wbkYHkIacErNSrNvyIwDAI0qvsPpU9L8O+yvMM0jBLfVBWmEo0sl615tbdCfA88QpSQwUuetVPv69oEjEJVBBjOp4bQzclGjgVLKv4iWExoSMyYB1LJYmY6aaT2zJ8YJU+DpW2TwKeqH8nUhIZM44Cm8z3NLNeLv7ndRIIT7opl3ECTNLfj8JEYFA4Lwr3uWYUxNgSQjW3u2I6JJpQsPVUbAne7Mnz5KZR947qzctmrXVa1FFGe2gfHSIPHaMWOkcXqI0oekTP6BW9OU/Oi/PufPxGS04xs4um4Hz9ABQ5orI=</latexit>

Rn1
f! Rn2

Differentials (small changes) transform 
linearly between input and output

• scale factor is the Jacobian Matrix

• transform is just a matrix multiplication

x

dai = Jijdxj

a

dxJij =
∂ai

∂xj
da =

f

How about composition?

Start Simple

<latexit sha1_base64="rQojxcvPJlyQsNlHV/O+KBZB7UI=">AAACY3icbZBLSwMxFIUz46vW11jdiRAsgqsyo0Vdim5cqtgHdGrJpJk2mEmG5I5Qh/mT7ty58X+YqQUf7YXA4dzvcm9OlApuwPffHXdpeWV1rbJe3djc2t7xdmttozJNWYsqoXQ3IoYJLlkLOAjWTTUjSSRYJ3q+KfudF6YNV/IRJinrJ2QkecwpAWsNvNcwITCOovyheMrlIChwqEqeQR4XeQjKGn+I0wL/IKOFyNlvZLwQaVpk4NX9hj8tPC+CmaijWd0NvLdwqGiWMAlUEGN6gZ9CPycaOBWsqIaZYSmhz2TEelZKkjDTz6cZFfjYOkMcK22fBDx1f0/kJDFmkkSWLC81/3uluajXyyC+7OdcphkwSb8XxZnAoHAZOB5yzSiIiRWEam5vxXRMNKFgA6raEIL/X54X7dNGcN5o3jfrV9ezOCroAB2hExSgC3SFbtEdaiGKPpxVZ8fxnE93w625+9+o68xm9tCfcg+/AGmuulM=</latexit>

Rn1
f! Rn2

g! Rn3 h! Rn4

xabc

dx??=

How about composition?

Start Simple

<latexit sha1_base64="rQojxcvPJlyQsNlHV/O+KBZB7UI=">AAACY3icbZBLSwMxFIUz46vW11jdiRAsgqsyo0Vdim5cqtgHdGrJpJk2mEmG5I5Qh/mT7ty58X+YqQUf7YXA4dzvcm9OlApuwPffHXdpeWV1rbJe3djc2t7xdmttozJNWYsqoXQ3IoYJLlkLOAjWTTUjSSRYJ3q+KfudF6YNV/IRJinrJ2QkecwpAWsNvNcwITCOovyheMrlIChwqEqeQR4XeQjKGn+I0wL/IKOFyNlvZLwQaVpk4NX9hj8tPC+CmaijWd0NvLdwqGiWMAlUEGN6gZ9CPycaOBWsqIaZYSmhz2TEelZKkjDTz6cZFfjYOkMcK22fBDx1f0/kJDFmkkSWLC81/3uluajXyyC+7OdcphkwSb8XxZnAoHAZOB5yzSiIiRWEam5vxXRMNKFgA6raEIL/X54X7dNGcN5o3jfrV9ezOCroAB2hExSgC3SFbtEdaiGKPpxVZ8fxnE93w625+9+o68xm9tCfcg+/AGmuulM=</latexit>

Rn1
f! Rn2

g! Rn3 h! Rn4

xab

dxJij =
∂ci

∂xj

c

=dc

How about composition?

Start Simple

<latexit sha1_base64="rQojxcvPJlyQsNlHV/O+KBZB7UI=">AAACY3icbZBLSwMxFIUz46vW11jdiRAsgqsyo0Vdim5cqtgHdGrJpJk2mEmG5I5Qh/mT7ty58X+YqQUf7YXA4dzvcm9OlApuwPffHXdpeWV1rbJe3djc2t7xdmttozJNWYsqoXQ3IoYJLlkLOAjWTTUjSSRYJ3q+KfudF6YNV/IRJinrJ2QkecwpAWsNvNcwITCOovyheMrlIChwqEqeQR4XeQjKGn+I0wL/IKOFyNlvZLwQaVpk4NX9hj8tPC+CmaijWd0NvLdwqGiWMAlUEGN6gZ9CPycaOBWsqIaZYSmhz2TEelZKkjDTz6cZFfjYOkMcK22fBDx1f0/kJDFmkkSWLC81/3uluajXyyC+7OdcphkwSb8XxZnAoHAZOB5yzSiIiRWEam5vxXRMNKFgA6raEIL/X54X7dNGcN5o3jfrV9ezOCroAB2hExSgC3SFbtEdaiGKPpxVZ8fxnE93w625+9+o68xm9tCfcg+/AGmuulM=</latexit>

Rn1
f! Rn2

g! Rn3 h! Rn4

xabc

dxdc = db da Jf
mj =

∂am

∂xj
Jg

km =
∂bk

∂am
Jh

ik =
∂ci

∂bk

fgh

How about composition?

Just the Chain Rule

<latexit sha1_base64="rQojxcvPJlyQsNlHV/O+KBZB7UI=">AAACY3icbZBLSwMxFIUz46vW11jdiRAsgqsyo0Vdim5cqtgHdGrJpJk2mEmG5I5Qh/mT7ty58X+YqQUf7YXA4dzvcm9OlApuwPffHXdpeWV1rbJe3djc2t7xdmttozJNWYsqoXQ3IoYJLlkLOAjWTTUjSSRYJ3q+KfudF6YNV/IRJinrJ2QkecwpAWsNvNcwITCOovyheMrlIChwqEqeQR4XeQjKGn+I0wL/IKOFyNlvZLwQaVpk4NX9hj8tPC+CmaijWd0NvLdwqGiWMAlUEGN6gZ9CPycaOBWsqIaZYSmhz2TEelZKkjDTz6cZFfjYOkMcK22fBDx1f0/kJDFmkkSWLC81/3uluajXyyC+7OdcphkwSb8XxZnAoHAZOB5yzSiIiRWEam5vxXRMNKFgA6raEIL/X54X7dNGcN5o3jfrV9ezOCroAB2hExSgC3SFbtEdaiGKPpxVZ8fxnE93w625+9+o68xm9tCfcg+/AGmuulM=</latexit>

Rn1
f! Rn2

g! Rn3 h! Rn4

xabc

Jx→y
ij =

∂ci

∂xj
=

dc = Jx→ydx = JhJgJfdx

This is just the chain rule ∂x f(y = g(x)) = ∂y f ⋅ ∂xg

Jf
mj =

∂am

∂xj
Jg

km =
∂bk

∂am
Jh

ik =
∂ci

∂bk

To know the gradients (i.e. Jacobians) of a composed program, we
need a good way to characterize products of Jacobians matrices

So, it’s just about Matrix Multiplication

∂ci

∂xj
= Jx→y = JhJgJf

It’s all about Matrices

?

?

?

?

?

?

?

?

?

?

?

?

=

Explicitly constructing matrices and naively multiplying doesn’t scale,
details on how we compute matter

Naive Multiplication

50 x 100 100 x 2002 x 50

(AB)C A(BC)
2M FLOPS100k FLOPS

Best option: Matrix Multiply without multiplying Matrices

So let’s talk about Matrices

Inspecting a Matrix

?

?

?

?

?

?

?

?

?

?

?

?

=

Matrices encode transformations of vectors

Conversely: we can recover all information about a matrix by
observing how vectors get transformed

• i.e. through Matrix-Vector Products.

=

Inspecting a Matrix
Matrices encode transformations of vectors

Conversely: we can recover all information about a matrix by
observing how vectors get transformed

• i.e. through Matrix-Vector Products.

Inspecting a Matrix

1

0

0

0

=

Matrices encode transformations of vectors

Conversely: we can recover all information about a matrix by
observing how vectors get transformed

• i.e. through Matrix-Vector Products.

0

1

0

0

=

Inspecting a Matrix
Matrices encode transformations of vectors

Conversely: we can recover all information about a matrix by
observing how vectors get transformed

• i.e. through Matrix-Vector Products.

0

0

1

0

=

Inspecting a Matrix
Matrices encode transformations of vectors

Conversely: we can recover all information about a matrix by
observing how vectors get transformed

• i.e. through Matrix-Vector Products.

0

0

0

1

=

Inspecting a Matrix
Matrices encode transformations of vectors

Conversely: we can recover all information about a matrix by
observing how vectors get transformed

• i.e. through Matrix-Vector Products.

Gives us an efficient way to "store"/express matrices:

matrix ↔ a program that computes transforms vectors

A Matrix as a Program

<latexit sha1_base64="UvRqwseuRHepxUl6TPozPZz3bSQ=">AAACH3icbVDLSgMxFM34rONr1KWbYFFclZm2VpdFNy4r2Ad0Ssmkt21oJjMkGbEM/RM3/oobF4qIu/6N6QPU1guHHM65l9x7gpgzpV13bK2srq1vbGa27O2d3b195+CwpqJEUqjSiEeyERAFnAmoaqY5NGIJJAw41IPBzcSvP4BULBL3ehhDKyQ9wbqMEm2ktlOy/QB6TKRBSLRkjyM7j89wwcD1fds174VB0fZBdH567LaTdXPutPAy8eYki+ZVaTtffieiSQhCU06UanpurFspkZpRDiPbTxTEhA5ID5qGChKCaqXT+0b41Cgd3I2kgdB4qv6eSEmo1DAMTKfZsK8WvYn4n9dMdPeqlTIRJxoEnX3UTTjWEZ6EhTtMAtV8aAihkpldMe0TSag2kU5C8BZPXia1fM4r5Qp3xWz5eh5HBh2jE3SOPHSJyugWVVAVUfSEXtAbereerVfrw/qcta5Y85kj9Kes8TeU8J5b</latexit>
2 3 0
0 5 4

�

A Matrix as a Program

<latexit sha1_base64="UvRqwseuRHepxUl6TPozPZz3bSQ=">AAACH3icbVDLSgMxFM34rONr1KWbYFFclZm2VpdFNy4r2Ad0Ssmkt21oJjMkGbEM/RM3/oobF4qIu/6N6QPU1guHHM65l9x7gpgzpV13bK2srq1vbGa27O2d3b195+CwpqJEUqjSiEeyERAFnAmoaqY5NGIJJAw41IPBzcSvP4BULBL3ehhDKyQ9wbqMEm2ktlOy/QB6TKRBSLRkjyM7j89wwcD1fds174VB0fZBdH567LaTdXPutPAy8eYki+ZVaTtffieiSQhCU06UanpurFspkZpRDiPbTxTEhA5ID5qGChKCaqXT+0b41Cgd3I2kgdB4qv6eSEmo1DAMTKfZsK8WvYn4n9dMdPeqlTIRJxoEnX3UTTjWEZ6EhTtMAtV8aAihkpldMe0TSag2kU5C8BZPXia1fM4r5Qp3xWz5eh5HBh2jE3SOPHSJyugWVVAVUfSEXtAbereerVfrw/qcta5Y85kj9Kes8TeU8J5b</latexit>
2 3 0
0 5 4

�

Recover full Matrix
through three MVPs

Ability to compute Matrix-Vector Products (MVP) is sufficient to
extract any information we want from a matrix. Note:

• do not need the explicit matrix, just ability to compute MVPs

• to get full matrix we need do Ncolumn MVPs computations

== ==

Inspecting a Matrix

Or we can go the other way around…
Matrices encode transformations of vectors

Conversely: we can recover all information about a matrix by
throwing specific vectors at it, from the left.

• i.e. through Vector-Matrix Products.

?

?

?

?

?

?

?

?

?

?

?

?

=

Or we can go the other way around…
Matrices encode transformations of vectors

Conversely: we can recover all information about a matrix by
throwing specific vectors at it, from the left.

• i.e. through Vector-Matrix Products.

= 00

1

Or we can go the other way around…
Matrices encode transformations of vectors

Conversely: we can recover all information about a matrix by
throwing specific vectors at it, from the left.

• i.e. through Vector-Matrix Products.

= 0

10

Or we can go the other way around…
Matrices encode transformations of vectors

Conversely: we can recover all information about a matrix by
throwing specific vectors at it, from the left.

• i.e. through Vector-Matrix Products.

= 100

Ability to compute Vector Products (MVP) is sufficient to extract any
information we want from a matrix. Note:

• do not need the explicit matrix, just ability to compute VMPs

• to get full matrix we need to compute Nrow VMPs computations

Or we can go the other way around…

=

==

Again as Programs
Again, having a program that computes vector-matrix products
(VMPs) is equivalent to having the full matrix.

<latexit sha1_base64="UvRqwseuRHepxUl6TPozPZz3bSQ=">AAACH3icbVDLSgMxFM34rONr1KWbYFFclZm2VpdFNy4r2Ad0Ssmkt21oJjMkGbEM/RM3/oobF4qIu/6N6QPU1guHHM65l9x7gpgzpV13bK2srq1vbGa27O2d3b195+CwpqJEUqjSiEeyERAFnAmoaqY5NGIJJAw41IPBzcSvP4BULBL3ehhDKyQ9wbqMEm2ktlOy/QB6TKRBSLRkjyM7j89wwcD1fds174VB0fZBdH567LaTdXPutPAy8eYki+ZVaTtffieiSQhCU06UanpurFspkZpRDiPbTxTEhA5ID5qGChKCaqXT+0b41Cgd3I2kgdB4qv6eSEmo1DAMTKfZsK8WvYn4n9dMdPeqlTIRJxoEnX3UTTjWEZ6EhTtMAtV8aAihkpldMe0TSag2kU5C8BZPXia1fM4r5Qp3xWz5eh5HBh2jE3SOPHSJyugWVVAVUfSEXtAbereerVfrw/qcta5Y85kj9Kes8TeU8J5b</latexit>
2 3 0
0 5 4

�

Recover full Matrix through two VMPs

Again as Programs

<latexit sha1_base64="UvRqwseuRHepxUl6TPozPZz3bSQ=">AAACH3icbVDLSgMxFM34rONr1KWbYFFclZm2VpdFNy4r2Ad0Ssmkt21oJjMkGbEM/RM3/oobF4qIu/6N6QPU1guHHM65l9x7gpgzpV13bK2srq1vbGa27O2d3b195+CwpqJEUqjSiEeyERAFnAmoaqY5NGIJJAw41IPBzcSvP4BULBL3ehhDKyQ9wbqMEm2ktlOy/QB6TKRBSLRkjyM7j89wwcD1fds174VB0fZBdH567LaTdXPutPAy8eYki+ZVaTtffieiSQhCU06UanpurFspkZpRDiPbTxTEhA5ID5qGChKCaqXT+0b41Cgd3I2kgdB4qv6eSEmo1DAMTKfZsK8WvYn4n9dMdPeqlTIRJxoEnX3UTTjWEZ6EhTtMAtV8aAihkpldMe0TSag2kU5C8BZPXia1fM4r5Qp3xWz5eh5HBh2jE3SOPHSJyugWVVAVUfSEXtAbereerVfrw/qcta5Y85kj9Kes8TeU8J5b</latexit>
2 3 0
0 5 4

�

Composition of Matrices

The MVP, VMP picture still works if we have compositions

• to characterize we just need MVP/MVP with M = M3M2M1 Mi

=

M M3M2M1

1

0

0

0

1

0

0

0

= =

ci = Mei ci = Mei = M3M2M1ei

Composition of Matrices

The MVP, VMP picture still works if we have compositions

• to characterize we just need MVP/MVP with M = M3M2M1 Mi

1

0

0

0

1

0

0

0

= =

ci = Mei ci = Mei = M3M2M1ei

Composition of Matrices

The MVP, VMP picture still works if we have compositions

• to characterize we just need MVP/MVP with M = M3M2M1 Mi

1

0

0

0

= =

ci = Mei ci = Mei = M3M2v1

Composition of Matrices

The MVP, VMP picture still works if we have compositions

• to characterize we just need MVP/MVP with M = M3M2M1 Mi

1

0

0

0

= =

ci = Mei ci = Mei = M3M2v1

Composition of Matrices

The MVP, VMP picture still works if we have compositions

• to characterize we just need MVP/MVP with M = M3M2M1 Mi

1

0

0

0

= =

ci = Mei ci = Mei = M3v2

Composition of Matrices

The MVP, VMP picture still works if we have compositions

• to characterize we just need MVP/MVP with M = M3M2M1 Mi

1

0

0

0

= =

ci = Mei ci = Mei = M3v2

Composition of Matrices

The MVP, VMP picture still works if we have compositions

• to characterize we just need MVP/MVP with M = M3M2M1 Mi

1

0

0

0

= =

ci = Mei ci = Mei = M3v2

Composition of Matrices

The MVP, VMP picture still works if we have compositions

• to characterize we just need MVP/MVP with M = M3M2M1 Mi

1

0

0

0

= =

ci = Mei ci = Mei = v3

Composition of Matrices

The MVP, VMP picture still works if we have compositions

• to characterize we just need MVP/MVP with M = M3M2M1 Mi

The MVP, VMP picture still works if we have compositions

• to characterize we just need MVP/MVP with M = M3M2M1 Mi

M M = M1M2M3

=

Composition of Matrices

=

ri = eT
i M ri = eT

i M = eT
i M3M2M1

00

1

00

1=

Composition of Matrices

The MVP, VMP picture still works if we have compositions

• to characterize we just need MVP/MVP with M = M3M2M1 Mi

=

ri = eT
i M

00

1

00

1=

ri = eT
i M = eT

i M3M2M1

The MVP, VMP picture still works if we have compositions

• to characterize we just need MVP/MVP with M = M3M2M1 Mi

Composition of Matrices

=

ri = eT
i M ri = eT

i M = v̄1M2M1

00

1 =

Composition of Matrices

The MVP, VMP picture still works if we have compositions

• to characterize we just need MVP/MVP with M = M3M2M1 Mi

=

ri = eT
i M ri = eT

i M = v̄1M2M1

00

1 =

Composition of Matrices

The MVP, VMP picture still works if we have compositions

• to characterize we just need MVP/MVP with M = M3M2M1 Mi

=

ri = eT
i M ri = eT

i M = v̄2M1

00

1 =

Composition of Matrices

The MVP, VMP picture still works if we have compositions

• to characterize we just need MVP/MVP with M = M3M2M1 Mi

=

ri = eT
i M ri = eT

i M = v̄2M1

00

1 =

Composition of Matrices

The MVP, VMP picture still works if we have compositions

• to characterize we just need MVP/MVP with M = M3M2M1 Mi

=

ri = eT
i M ri = eT

i M = v̄3

00

1 =

Composition of Matrices

The MVP, VMP picture still works if we have compositions

• to characterize we just need MVP/MVP with M = M3M2M1 Mi

Upshot: Forward and Backward
With MVPs/VMPs can characterize a Products of Matrices

• to get a row/column we never need explicit representations of .

• programs for MVP/VMPs is all we need (“matrix-free” approach)

Mi

ri = eT
i M = eT

i M3M2M1

ri = eT
i M = v̄1M2M1

ri = eT
i M = v̄2M1

ri = eT
i M = v̄3

ci = Mei = M3M2M1ei

ci = Mei = M3M2v1

ci = Mei = M3v2

ci = Mei = v3

backward (or reverse)forward

Back to Derivatives

A strategy for Derivatives of Programs
Our main job is to characterize the product of Jacobians:

We know know that we compute it purely through programs that give
us Jacobian Vector Products (JVP) or Vector-Jacobian products (VJP)

∂ci

∂xj
= Jx→y = JhJgJf

jvpf(x) = Jf x vjpf(x) = xTJf

A strategy for Derivatives of Programs

If we have all the for all transforms we can 
easily and mechanically create programs that compute derivatives

jvp(x), vjp(x) h, g, f

A strategy for Derivatives of Programs

If we have all the for all transforms we can 
easily and mechanically create programs that compute derivatives

jvp(x), vjp(x) h, g, f

Jx→yei = JhJgJfei

Forward-Mode Differentiation

A strategy for Derivatives of Programs

If we have all the for all transforms we can 
easily and mechanically create programs that compute derivatives

jvp(x), vjp(x) h, g, f

Jx→yei = JhJgJfeieT
i Jx→y = eT

i JhJgJf

Forward-Mode DifferentiationReverse-Mode Differentiation

A strategy for Derivatives of Programs
For example, we can collect all the right programs while we are
running through our main program as additional output

Main Program

jvpf(x)

A strategy for Derivatives of Programs
For example, we can collect all the right programs while we are
running through our main program as additional output

Main Program

For example, we can collect all the right programs while we are
running through our main program as additional output

jvpf(x)

jvpg(x)

A strategy for Derivatives of Programs

Main Program

jvpf(x)

jvpg(x)

jvph(x)

A strategy for Derivatives of Programs
For example, we can collect all the right programs while we are
running through our main program as additional output

Main Program

For example, we can collect all the right programs while we are
running through our main program as additional output

… and from those assemble the derivative program

jvpf(x)

jvpg(x)

jvph(x)

A strategy for Derivatives of Programs

Main Program Derivative Program

A strategy for Derivatives of Programs
Or we can go backwards as well…

Main Program

Or we can go backwards as well…

vjpf(x)

A strategy for Derivatives of Programs

Main Program

Or we can go backwards as well…

vjpf(x)

vjpg(x)

A strategy for Derivatives of Programs

Main Program

Or we can go backwards as well…

vjpf(x)

vjpg(x)

vjph(x)

A strategy for Derivatives of Programs

Main Program

Or we can go backwards as well…

A strategy for Derivatives of Programs

Main Program Derivative Program

vjpf(x)

vjpg(x)

vjph(x)

That means, if we have a system that can modify a function such that 
it returns not only the output value but also a vjp/jvp function

Then, we can almost blindly assemble a 
corresponding derivative program!

A strategy for Derivatives of Programs

x yf

vjp/jvp

x yf

program 
transform

That means, if we have a system that can modify a function such that 
it returns not only the output value but also a vjp/jvp function

A strategy for Derivatives of Programs

x yf

jvp

That means, if we have a system that can modify a function such that 
it returns not only the output value but also a vjp/jvp function

A strategy for Derivatives of Programs

x yf

jvp

zg

jvp

That means, if we have a system that can modify a function such that 
it returns not only the output value but also a vjp/jvp function

A strategy for Derivatives of Programs

x yf

jvp

zg

jvp

wh

jvp

That means, if we have a system that can modify a function such that 
it returns not only the output value but also a vjp/jvp function

A strategy for Derivatives of Programs

x yf

jvp

zg

jvp

wh

jvpei
∂wi

∂xk

basis vector Jacobian Columnforward

That means, if we have a system that can modify a function such that 
it returns not only the output value but also a vjp/jvp function

A strategy for Derivatives of Programs

x yf

vjp

That means, if we have a system that can modify a function such that 
it returns not only the output value but also a vjp/jvp function

A strategy for Derivatives of Programs

x yf

vjp

zg

vjp

That means, if we have a system that can modify a function such that 
it returns not only the output value but also a vjp/jvp function

A strategy for Derivatives of Programs

x yf

vjp

zg

vjp

wh

vjp

That means, if we have a system that can modify a function such that 
it returns not only the output value but also a vjp/jvp function

A strategy for Derivatives of Programs

x yf

vjp

zg

vjp

wh

vjp

basis vectorJacobian Row backward

ek
∂wk

∂xi

We have two methods to derive gradients, which one should we use?

For ML, what’s ?

It’s our empirical risk as function of parameters, i.e.

f : ℝn → ℝm

L(ϕ) : ℝa lot → ℝ1

Forward vs Backward

Given , what’s the shape of the Jacobian?

A single row

L(ϕ) : ℝa lot → ℝ1

Forward vs Backward

dϕJL = ∇ϕL=dLL ϕ

Non-Linear 
Loss Linear Gradients

Can compute it with a single pass of reverse-mode differentiation

By using reverse-mode, we can scale to billions of dimensions

• gradient computation requires roughly same time as main program

Scaling to Billions of Parameters

To deal with hyper-planes in a 14-dimensional space, visualize a 3D  
space and say 'fourteen' to yourself very loudly. -Hinton

Gives us a good sense of 
direction in billion-D spaces

🤯

For Machine Learning, mostly the reverse-mode differentiation via
vector-Jacobian products is relevant. Rediscovered by ML in 80s.

 
Backpropagation

Forward vs Backward

Geoff Hinton
Seppo Linnainmaa

1970 1986

Ok, but…

Beyond Sequences
You might ask: “My programs look a bit more complicated than a
sequence of function calls”: control flow, loops, ..

We know how to do this How do we do this?

A Graph Picture of Matrix Multiplication
We can get a hint, by looking at Matrix Multiplication as a graph

= y1 y2 y3 y3

x1 x2 x3

z1 z2

y = M1x

z = M2y

z = M2M1x

What do Matrix-Vector Products look in this picture ?

A Graph Picture of Matrix Multiplication

=

yi = (Mx)i = ∑
k

Mikxk yi = (Mx)i = ∑
p∈parents(yi)

Mipxp

y1 y2 y3 y3

x1 x2 x3

z1 z2

y = M1x

z = M2y

z = M2M1x

What do Vector-Matrix Products look like?

A Graph Picture of Matrix Multiplication

y1 y2 y3 y3

x1 x2 x3

z1 z2

y = M1x

z = M2y

z = M2M1x

yi = (zTM)i = ∑
p∈children(yi)

zpMpi
yi = (zTM)i = ∑

k

zkMki

=

JVP/VJP in graph
There is a correspondence between

• Matrix Elements and Edges

• Linear Programs <> Matrices <> annotated edges

  y1 y2 y3

z1 z2

<latexit sha1_base64="UvRqwseuRHepxUl6TPozPZz3bSQ=">AAACH3icbVDLSgMxFM34rONr1KWbYFFclZm2VpdFNy4r2Ad0Ssmkt21oJjMkGbEM/RM3/oobF4qIu/6N6QPU1guHHM65l9x7gpgzpV13bK2srq1vbGa27O2d3b195+CwpqJEUqjSiEeyERAFnAmoaqY5NGIJJAw41IPBzcSvP4BULBL3ehhDKyQ9wbqMEm2ktlOy/QB6TKRBSLRkjyM7j89wwcD1fds174VB0fZBdH567LaTdXPutPAy8eYki+ZVaTtffieiSQhCU06UanpurFspkZpRDiPbTxTEhA5ID5qGChKCaqXT+0b41Cgd3I2kgdB4qv6eSEmo1DAMTKfZsK8WvYn4n9dMdPeqlTIRJxoEnX3UTTjWEZ6EhTtMAtV8aAihkpldMe0TSag2kU5C8BZPXia1fM4r5Qp3xWz5eh5HBh2jE3SOPHSJyugWVVAVUfSEXtAbereerVfrw/qcta5Y85kj9Kes8TeU8J5b</latexit>
2 3 0
0 5 4

�
2 43 5

JVP/VJP in graph

1 2 3

8 22
yi = (Mx)i = ∑

p∈parents(y)

Mipxp

2 43 5

JVP/VJP in graph

4 21 12

2 3

2 43 5

yi = (zTM)i = ∑
p∈children(y)

zpMpi

JVP/VJP in graph
“creating a JVP/VJP program” is just annotating the graph edges 
with partial derivatives

x1 x2

y2

z1

y1

∂y1

∂x1

∂y1

∂x2

∂y1

∂x3

∂z1

∂y1

∂z1

∂y2

x yf

vjp/jvp

zg

vjp/jvp

main 
non-linear 
program

JVP/JVP 
graph

JVP/VJP in graph
Compute derivatives by propagating basis vectors through the graph

∂y1

∂x2

∂y1

∂x3

∂z1

∂y1

∂z1

∂y2

vjp vjp

basis vector forward

ek
∂zi

∂xk

Jacobian Column

∂y1

∂x1

ai = (Jb)i = ∑
p∈parents(y)

∂ui

∂vp
bp

JVP/VJP in graph
Compute derivatives by propagating basis vectors through the graph

1 0

∂y1

∂x2

∂y1

∂x3

∂z1

∂y1

∂z1

∂y2

vjp vjp

basis vector forward

ek
∂zi

∂xk

Jacobian Column

∂y1

∂x1

ai = (Jb)i = ∑
p∈parents(y)

∂ui

∂vp
bp

JVP/VJP in graph
Compute derivatives by propagating basis vectors through the graph

1 0

∂y1

∂x2

∂y1

∂x3

∂z1

∂y1

∂z1

∂y2

vjp vjp

basis vector forward

ek
∂zi

∂xk

Jacobian Column

∂y1

∂x1

ai = (Jb)i = ∑
p∈parents(y)

∂ui

∂vp
bp

JVP/VJP in graph
Compute derivatives by propagating basis vectors through the graph

1 0

∂z
∂x1

∂y1

∂x2

∂y1

∂x3

∂z1

∂y1

∂z1

∂y2

vjp vjp

basis vector forward

ek
∂zi

∂xk

Jacobian Column

∂y1

∂x1

ai = (Jb)i = ∑
p∈parents(y)

∂ui

∂vp
bp

JVP/VJP in graph
Compute derivatives by propagating basis vectors through the graph

0 1

∂z
∂x2

∂y1

∂x2

∂y1

∂x3

∂z1

∂y1

∂z1

∂y2

vjp vjp

basis vector forward

ek
∂zi

∂xk

Jacobian Column

∂y1

∂x1

ai = (Jb)i = ∑
p∈parents(y)

∂ui

∂vp
bp

JVP/VJP in graph
Compute derivatives by propagating basis vectors through the graph

∂y1

∂x2

∂y1

∂x3

∂z1

∂y1

∂z1

∂y2

vjp vjp

basis vectorJacobian Row backward

ek
∂zk

∂xi

∂y1

∂x1

ai = (bTJ)i = ∑
b∈children(z)

zp
∂up

∂vi

JVP/VJP in graph
Compute derivatives by propagating basis vectors through the graph

1

∂y1

∂x2

∂y1

∂x3

∂z1

∂y1

∂z1

∂y2

vjp vjp

basis vectorJacobian Row backward

ek
∂zk

∂xi

∂y1

∂x1

ai = (bTJ)i = ∑
b∈children(z)

zp
∂up

∂vi

JVP/VJP in graph
Compute derivatives by propagating basis vectors through the graph

1

∂y1

∂x2

∂y1

∂x3

∂z1

∂y1

∂z1

∂y2

vjp vjp

basis vectorJacobian Row backward

ek
∂zk

∂xi

∂y1

∂x1

ai = (bTJ)i = ∑
b∈children(z)

zp
∂up

∂vi

JVP/VJP in graph
Compute derivatives by propagating basis vectors through the graph

∂z
∂x1

∂z
∂x2

1

∂y1

∂x2

∂y1

∂x3

∂z1

∂y1

∂z1

∂y2

vjp vjp

basis vectorJacobian Row backward

ek
∂zk

∂xi

∂y1

∂x1

ai = (bTJ)i = ∑
b∈children(z)

zp
∂up

∂vi

Example
Let’s take a simple example:

z = x1x2 + sin x1 = y + sin x1

Example
Express as a graph:

x1 x2

y = x1x2

x1x2 + sin x1

z = x1x2 + sin x1 = y + sin x1

Example
Annotate Edges: (add JVP/JVP information)

x1 x2

x1x2

x1x2 + sin x1

∂x2
y = x1

∂yz = 1

∂x1
y = x2

∂x1
z = cos x1

x1 x2

y = x1x2

x1x2 + sin x1

z = x1x2 + sin x1 = y + sin x1

Example
Run backwards

x1 x2

x1x2

1

∂x2
y = x1

∂yz = 1

∂x1
y = x2

∂x1
z = cos x1

x1 x2

y = x1x2

x1x2 + sin x1

z = x1x2 + sin x1 = y + sin x1

Example
Run backwards

x1 x2

1

1

∂x2
y = x1

∂yz = 1

∂x1
y = x1

∂x1
z = cos x1

x1 x2

y = x1x2

x1x2 + sin x1

z = x1x2 + sin x1 = y + sin x1

Example
Run backwards

x1 x2

y = x1x2

x1x2 + sin x1

 x2 +
cos x1

x1

1

1

∂x2
y = x1

∂yz = 1

z = x1x2 + sin x1 = y + sin x1

∂x1
y = x2

∂x1
z = cos x1

Example
Voilà!

 x2 +
cos x1

x1

1

1

∂x2
y = x1

∂yz = 1

∂x1
y = x2

∂x1
z = cos x1

z = x1x2 + sin x1 = y + sin x1

∂z
∂x1

= x2 + cos x1

∂z
∂x2

= x1

With the graph picture, we can generalize differentiation to arbitrary
computation graphs, i.e. arbitrary programs!

A Graph Picture of Matrix Multiplication

∇ϕ

ai = (bTJ)i = ∑
b∈children(z)

zp
∂up

∂vi
ai = (Jb)i = ∑

p∈parents(y)

∂ui

∂vp
bp

Forward Propagation Backward Propagation

Let’s automate this!
We derived a strategy to efficiently compute the gradient of any given
well-defined program

But of course, we don’t want to do this ourselves

• in any case this is just mechanically putting together 

some JVP, VJP functions

• it’s something a computer can do!

Automatic Differentiation (AD)

Automatic Differentiation Systems
Most Deep Learning Framework are at their core Autodiff systems

• Differentiable Programming Languages first, ML Stuff second

Beyond Deep Learning
But there is a long list of non-DL focused AD frameworks as well

• idea exist in many language (C++, Julia, Fortran, ...)

Enzyme.jl (Julia)

autodiff (C++)

Remember: ML kind of rediscovered AD on its own

Beyond Deep Learning

Munich 2023

Differentiable 
MadGraph 

in FORTRAN

A general pattern

Differentiable Programming is a generic way to introduce
physics structure into ML without losing learnability

 
But most of our code is 
not (yet) differentiable

A program for the next 
few years

End.

