
Development of a noSQL storage

solution for the Panda Monitoring

System

“Database Futures” Workshop at CERN
June 7th, 2011

Maxim Potekhin

Brookhaven National Laboratory

Physics Applications Software Group

potekhin@bnl.gov

2

Brief Intro: Panda Workload Management System (1)Brief Intro: Panda Workload Management System (1)

Panda is the principal workload management system used in

ATLAS. It is a “pilot-based” framework. Pilot jobs are started

remotely on participating sites, and after they are successfully

activated and perform validation of the environment on the

worker node, the payload is acquired and executed. The job

(payload) is matched to a pilot by the central service based on

a number of criteria (“brokerage”).

Pilots, jobs and other entities in Panda transition between their

various states as this cycle is repeated over and over. The

state of object is recorded in RDBMS (Oracle) and guaranteed

consistency of these data is crucial for operation of Panda.

3

Brief Intro: Panda Workload Management System (2)Brief Intro: Panda Workload Management System (2)

After a Panda job is finished, the data associated with its

attributes is preserved for troubleshooting, accounting,

optimization and other purposes. It is accessed by the Panda

Monitor web service and a few other systems. We note that

archive-type data is largely de-normalized, does not require

most of the features of RDBMS and

• There are classes of queries which include time and date

ranges where Oracle typically does not perform too well

• An option to unload significant amounts of archived

reference data from Oracle to a highly performing, scalable

system based on commodity hardware appears attractive

4

Brief Intro: Panda Workload Management System (3)Brief Intro: Panda Workload Management System (3)

5

MotivationMotivation

We need to scale out as the number of jobs processed daily by

Panda is steadily growing with peak capacity of about 840k

jobs per day. Using a noSQL solution allows us to solve

scalability issues without putting more demands and load on

the mission-critical Oracle infrastructure of ATLAS. In addition,

this gives us an opportunity to optimally index data, with

resulting performance improvements (more details below).

Cassandra is one of many noSQL platforms available today,

and we chose it because of existing expertise in ATLAS, and

ease of installation and configuration.

6

Objectives of the projectObjectives of the project

Ultimately, we aim to create of a noSQL-based data store for

archived reference data in Panda. In the validation stage, it

would be the data source for Panda Monitor and will

continuously function in parallel with the Oracle DB in order to

ascertain the performance and characteristics of such system

under real life data volume and query loads.

To this end, we are pursuing multiple objectives, in the context

of Cassandra DB:

• to create an optimal data design for the data generated by

the Panda server as well as indexes

• to perform a performance comparison of the recently built

cluster at BNL to the existing Oracle facility at CERN

• To determine the optimal hardware configuration of that

system and its tuning parameters

7

History of the projectHistory of the project

• In Jan-Feb 2011, using the 4-VM Cassandra R&D cluster at

CERN (created by ATLAS DDM team), gained experience

in data design and indexing of Panda data, as well as

operational experience with Cassandra

• Demonstrated usefulness of map-reduce approach to

generation of date range indexes into Cassandra data,

which results in marked performance improvement

• In March 2011: commissioned a 3-node real hardware

cluster at BNL and loaded a year worth of real Panda data

in a modified format (based on initial CERN experience).

Ran a series of performance tests aimed at the “worst-case

performance” estimation, to set the baseline for further

optimization.

• May 2011: upgraded to SSD, testing in progress

8

The Cassandra Cluster at BNLThe Cassandra Cluster at BNL

Currently we have 3 high-spec nodes and tested the cluster in

2 data storage configurations.

Each node:

• two Xeon X5650 processors, 6 cores each

• due to hyper-threading – effectively 24 cores

• 48GB RAM on a 1333MHz bus

• Storage Configuration 1: six 500GB, 7200RM SATA RAID0

• Storage Configuration 2: five consumer-grade 240GB SSD

in RAID0 configuration (recent)

We also have a separate client machine from which to do

queries against the Cassandra DB.

9

Mapping/indexing of the Data (1)Mapping/indexing of the Data (1)

Note on indexing: native ability to index individual columns is a

relatively new feature in Cassandra, introduced in mid-2010.

Since our data is mostly write-once, read-many, we can do a

better job by indexing data in map-reduce fashion, and we don’t

need to create extraneous columns to implement an equivalent

of composite indexes (so we save space).

Typically, the indexing process is run at the same time as the

data is loaded into Cassandra, however we can add more

indexes later if and when needed.

Proper index design helps to dramatically improve

performance. Example: find number of failed jobs for user XYZ

in a range of dates, in cloud ABC. Can takes minutes in

standard SQL query vs tens of milliseconds on Cassandra with

map/reduce.

10

Mapping/indexing of the Data (2)Mapping/indexing of the Data (2)

We identify popular/high demand queries made against the

database, and create MAPS. In the above example,

USER::CLOUD::STATUS::DATE LIST of IDs

Index thus created takes up approx. ~1% of space compared to

the data that’s being indexed – affordable.

The above is just one example, in reality we create many maps

to reflect the queries made by users.

11

Patterns in the DataPatterns in the Data

In Panda, jobs are often submitted not individually, but in

batches which can measure anywhere from 2 to hundreds of

jobs. This is demonstrated by the following plot which shows

the distribution of lengths of continuous ID ranges as they are

found in the database.

Exploit the pattern:

Use bucketing for

optimal performance!

One trip to DB instead of

ten or a hundred.

12

Packaging of the dataPackaging of the data

Cassandra provides a lot of flexibility in how the data may be

formatted and stored. In the application being considered, we

could use any of the following

• Simple dictionary of key-value pairs for each attribute

(storage penalty as key names are stored for each object)

• JSON strings (same issue)

• CSV (low storage overhead, but necessitates parsing in the

client)

We have opted to use the latter option in most recent

configuration.

13

Data sources used to load the Cassandra Data sources used to load the Cassandra

instanceinstance

Oracle DB

Automated

backup on

Amazon S3

Local file cache

CassandraHTTP

14

Testing/Benchmarking CommentsTesting/Benchmarking Comments

• Using a multithreaded client for data load, with Amazon S3

as current primary source

• Write performance: with proper separation of the commit log

and primary data store, in all of our testing, Cassandra was

able to handle all data that we could provide from our

network sources – hard or impossible to saturate at this point.

• Indexed queries perform on par with Oracle or better, under

moderate load

• Our focus now is to consider the worst case scenario with

simple primary key queries under moderate to high load

(~1000 queries per second), because this will determine the

behavior of most applications.

• The Oracle cluster that we use in our benchmarks has >100

spindles of the Raptor class. In Phase 1 of testing at BNL, we

only had 18.

15

Testing with BNL cluster: phase 1, rotational mediaTesting with BNL cluster: phase 1, rotational media

Case #1: Large query load, primary key (ID) queries.

Data load: 1 year worth of job data.

Looking at throughput in a random query of 10k items

over the past year, vs the number of concurrent clients.

Numbers are seconds to query completion.

Using iostat and Ganglia, we observe disk bound I/O

behavior and corresponding scaling in Cassandra. Disk is

close to saturation at about 10 concurrent clients, and

client network bandwidth also becomes a limiting factor.

1 10 30

Cassandra 200 300 600

Oracle 500 500 500

16

Testing with BNL cluster: phase 2, SSDTesting with BNL cluster: phase 2, SSD

In the table below, we list time to query completion and

disk utilization percentages as reported by iostat. As in the

previous case, each client runs 10k random job queries

against a year worth of data.

We weren’t able stress the disk I/O further because of the

network constraints (work in progress).

1 10 30

Cassandra 135s/2% 150s/15% 220s /27%

Oracle 500s 500s 500s

17

Conclusions and plansConclusions and plans

• With hi-spec machines and SSD we aren’t quite scaling

horizontally, rather diagonally – however cost/benefit of either

approach is still to be evaluated – maintenance and

administration of a few dozen low spec machines doesn’t

come for free either.

• We observe that we have plenty of headroom with the current

setup while handling the load of the order of 1500 queries per

second that is higher than the current load on the ATLAS

Oracle server used for similar purposes.

• At this point, we are satisfied with characteristics of the

Cassandra cluster built for the purpose of serving Panda job

archive data, and our focus will be on building a functional

high performance data store for Panda Monitor and other

related systems.

• Will serve JSON to clients, most likely use Django.

