CMS Oftline experience with
NoSQI. data stores

Valentin Kuznetsov, Cornell University, on behalf of CMS collaboration

Database Futures Workshop, CERN, June 2011

Outlines

* CMS experiment and its software

* NoSQL technologies used in CMS
* Data Aggregation System (MongoDB)
* WMAgent (CouchDB/MySQL)

+ IgProf (KyotoCabinet/SQLite)

CMS software

* CMS software has been around for last 10 years

* C++ (framework), python (web && data management), Java (web
&& data services)

* Major data-services, such as PhEDEx, Data Bookkeeping System, Run
Summary are based on ORACLE back-end

* MySQL and SQLite has been used during development phase

* NoSQL solutions have started being used in the last 2 years

Projects based on NoSQL.

* Data Aggregation System
* An intelligent cache in front of CMS data-services; fetch and

aggregate data on demand upon user queries; next generation of
data discovery in experiment

* WMAgent

* Data and Workflow management tool for job submission and
execution engine; dispatch and manage jobs

* JgProt

* Main tool for performance tuning of CMS software (core framework)

DAS & MongoDB

* Requirements

* Fetch meta-data from distributed data-services and allow precise
queries to discover CMS data

* Fast read / write; store/aggregate unstructured documents; Query
Language; simple to scale horizontally

* Be data agnostic
* Implementation

* Python web framework (CherryPy) and MongoDB back-end

Why MongoDB?

* Fast database with plenty of native language drivers

* Storage of JSON documents via BSON (binary JSON)

* Simple querying via flexible Query Language (on par w/ SQL)
* Support multiple indexing

* Data organized in collections (a la databases)

* Replication and sharding

* Open source, commercial support via http:/ /www.10gen.com /
support

http://www.10gen.com/support
http://www.10gen.com/support
http://www.10gen.com/support
http://www.10gen.com/support

DAS & MongoDB, cont'd

Mongo DB

Analytics
DB

S Document
ite=AAA,

=1, n_disk=5

query site=AAA

Mappping
DB

-
-
-
-

XML Document
<SiteName>AAA</SiteName>
<nDisk>5</nDisk>

JSON Document
{site_name:AAA,
nfiles:1}

provider

A
DB
back-end

provider

DAS & MongoDB, cont'd

* Currently DAS runs on a single node (8 CPU, 16GB RAM) together
with other services

* 6K docs/ sec for raw cache population; 7.5K docs/ sec for reading/
writing records to disk; 20K docs/sec read access rate

10* 3

Avg time per DAS request (sec)

10° £

107 ¢

Read performance using 500
clients to look-up random
records in DAS populated
with 50M documents from

PhEDEx/DBS data-services
(100x of current statistics).

DAS & MongoDB, cont'd

* DAS holds no unique data, can be repopulated from scratch at any
time (MongoDB uses memory mapped files).

* Its performance based on fitting DB index in RAM
* Excellent read and moderate write performance
* MongoDB supports sharding and replica sets
* Replication is designed for redundancy and easy to setup

* DAS development version can rely on it; data spread across shards

allowing horizontal scale (not yet in production); tested with 6
CERN VM and 5M documents

MongoDB experience

* We are in commissioning phase and our experience is limited
* MongoDB serves the job and fits nicely into DAS architecture

* DAS is capable to aggregate information from dozen ot CMS data-
services, whose size above 100GB

Current cache size around 40GB
* Users slowly migrated, expecting to finish by end summer
* No operational issues (yet)

* Data sharding and horizontal scaling our next target

10

WMAgent & CouchDB

* Requirements

* Jobs submission to/across all CMS tier centers, monitoring,
management. Low insert/read rate; job look-up via job ID. Job
submission should be supported in distributed environment and
provides durability with respect to system failures.

* Implementation

* Python, MySQL and CouchDB

11

Why CouchDB?

* Effective key-value store; data in JSON

* RESTful HTTP API - in common w/ service we write, no needs to maintain
DAQ’s

* Limited relationships between data, map/reduce data look-up is sufficient
our uses

* Incremental index building maintains performance
* Replication is built in and very simple
* Back-up is simple due to append only file format

* (Can either replicate DB to another node or write DB file to CASTOR

12

Why CouchDB, cont'd

* CouchDB is written in Erlang: high concurrency natively supported
* Apache open source project

* Clustering solution exists (BigCouch), but not yet used in our
environment

* Commercial support is available via http:/ /www.cloudant.com
and http:/ /www.couchbase.com

13

http://www.cloudant.com
http://www.cloudant.com
http://www.couchbase.com
http://www.couchbase.com

WMAgent & CouchDB, cont'd

* WMAgent is designed to support high load job submission and
monitoring:

* 3K jobs @ Tier-0, 10K jobs @ Tier-1’s, 15K simulation jobs @ Tier-2’s
and 15K analysis jobs @ Tier-2’s

* Jobs submission can be done by different teams at ditferent geo
locations

* Expect to have several WMAgent instances running, each handling
~50 jobs/second (limited by grid middleware and data access
obstacles)

14

5 X

WMAgent

\\\\\\\\
‘\\Q\\\\\\
\\'\\\\\

APPROVED

e N &
* WMBS/MySQL job > d
definitions and dependencies é ~ Queue
@)
* JobStateMachine /CouchDB @
keeps jobs progress N
_g

* JobDump /CouchDB job

t t t WMBS JobStateMachine
e pu repor 2 manage manage
dependencies work

JobDump

* WorkloadSummary /CouchDB

job summaries Coneton
Workload

summary

MySQL & CouchDB usage

MySQL CouchDB

* Contains relational data, e.g. * Contains non-structural data,
job definitions, input/output e.g. meta information about
file mappings jobs as they progress

* Job states: created, running, * State change times, completion
completed reports

Used for strongly correlated * Aggregated monitoring
information, e.g. file N information

processed by job J, produces
file M * Reduce & sum over time

16

WMAgent performance

* Under commissioning phase now
* Single Agent is capable of high rate of jobs: ~10Hz
* For Tier] tests
* 10-20K job executing in agent, 7500 batch slots
* MySQL: tew MB, 20M rows

* CouchDB: ~6GB JobDump docs, 12GB in views

17

lgProf & KyotoCabinet

* JgProf (Ignominous Profiler) is a stand-
alone tool for measuring and analyzing

application memory and performance | GuI | |w@b interface' | Book

characteristics

* O(100) profiles/build, O(100M) of keys
into simple DB

* JgProf uses SQLite and KyotoCabinet

* SQLite to store build profiles

* Kyoto to analyze profile results
(compare multiple one)

18

Why KyotoCabinet?

* KyotoCabinet is a library of routines for managing a database

* Choose your DB type depending on your app (HashDB, DirDB,
etc)

* The database is a simple data file containing records, each is a pair of
a key and a value

* Runs very fast, elapsed time to store/search 1M records ~1 sec for
hash or B+ tree databases

* Multi-thread safe, supports transaction and ACID properties

* Written in C++ and provides API for C/C++, Python, Ruby, Java

19

Dark side of the moon

MongoDb

CouchDB

KyotoCabinet

+ performance greatly
degrades if indexes are
not fit in RAM

+ corruption issues (in
sharding environment)
were reported in a past on
MongoDB forum

* data is uncompressed
(requested feature) and
there is no automated
data/ index compression

* map-reduce views can be
large and slow if poorly
constructed

* error messages can be
opaque (erlang is not user
friendly)

* quite new in a “marker”
*+ developed and supported
by couple of individuals
* crashes and corrupted

data are reported (but
rare)

20

Summary

* Usage of NoSQL is only started in CMS
* 5o far it is driven by use cases

* We carefully evaluated existing technologies (including RDMS ones)
and pick up NoSQL solutions to fit our application requirements

* The NoSQL solutions represent complementary stack of software
which co-exist with RDMS naturally

21

