
Database Futures Workshop, CERN, June 2011

CMS Offline experience with 
NoSQL data stores
Valentin Kuznetsov, Cornell University, on behalf of CMS collaboration

1



Outlines

✤ CMS experiment and its software

✤ NoSQL technologies used in CMS

✤ Data Aggregation System (MongoDB)

✤ WMAgent (CouchDB/MySQL)

✤ IgProf (KyotoCabinet/SQLite)

2



CMS software

✤ CMS software has been around for last 10 years

✤ C++ (framework), python (web && data management), Java (web 
&& data services)

✤ Major data-services, such as PhEDEx, Data Bookkeeping System, Run 
Summary are based on ORACLE back-end

✤ MySQL and SQLite has been used during development phase

✤ NoSQL solutions have started being used in the last 2 years

3



Projects based on NoSQL

✤ Data Aggregation System

✤ An intelligent cache in front of CMS data-services; fetch and 
aggregate data on demand upon user queries; next generation of 
data discovery in experiment

✤ WMAgent

✤ Data and Workflow management tool for job submission and 
execution engine; dispatch and manage jobs

✤ IgProf

✤ Main tool for performance tuning of CMS software (core framework)
4



DAS & MongoDB

✤ Requirements

✤ Fetch meta-data from distributed data-services and allow precise 
queries to discover CMS data

✤ Fast read/write; store/aggregate unstructured documents; Query 
Language; simple to scale horizontally

✤ Be data agnostic

✤ Implementation

✤ Python web framework (CherryPy) and MongoDB back-end

5



Why MongoDB?

✤ Fast database with plenty of native language drivers

✤ Storage of JSON documents via BSON (binary JSON)

✤ Simple querying via flexible Query Language (on par w/ SQL)

✤ Support multiple indexing

✤ Data organized in collections (a la databases)

✤ Replication and sharding

✤ Open source, commercial support via http://www.10gen.com/
support

6

http://www.10gen.com/support
http://www.10gen.com/support
http://www.10gen.com/support
http://www.10gen.com/support


DAS & MongoDB, cont’d

DAS

data-
provider

DB
back-end

JSON Document
{site_name:AAA, 

nfiles:1}

data-
provider

DAS Document
site=AAA, 

nfiles=1, n_disk=5

Mappping
DB

!"#$

XML Document
<SiteName>AAA</SiteName> 

<nDisk>5</nDisk>

http://a
.b.com/se=AAA

http://c.com/site_name=AAA

qu
er

y 
si

te
=

A
A

A
JSON

JSON
DAS

cache

Analytics
DB

Mongo DB

7



DAS & MongoDB, cont’d

✤ Currently DAS runs on a single node (8 CPU, 16GB RAM) together 
with other services

✤ 6K docs/sec for raw cache population; 7.5K docs/sec for reading/
writing records to disk; 20K docs/sec read access rate

DAS

MongoDB 

Read performance using 500 
clients to look-up random 
records in DAS populated 
with 50M documents from 
PhEDEx/DBS data-services 
(100x of current statistics).

8



DAS & MongoDB, cont’d

✤ DAS holds no unique data, can be repopulated from scratch at any 
time (MongoDB uses memory mapped files).

✤ Its performance based on fitting DB index in RAM

✤ Excellent read and moderate write performance

✤ MongoDB supports sharding and replica sets

✤ Replication is designed for redundancy and easy to setup

✤ DAS development version can rely on it; data spread across shards 
allowing horizontal scale (not yet in production); tested with 6 
CERN VM and 5M documents

9



MongoDB experience

✤ We are in commissioning phase and our experience is limited

✤ MongoDB serves the job and fits nicely into DAS architecture

✤ DAS is capable to aggregate information from dozen of CMS data-
services, whose size above 100GB

✤ Current cache size around 40GB

✤ Users slowly migrated, expecting to finish by end summer

✤ No operational issues (yet)

✤ Data sharding and horizontal scaling our next target
10



WMAgent & CouchDB

✤ Requirements

✤ Jobs submission to/across all CMS tier centers, monitoring, 
management. Low insert/read rate; job look-up via job ID. Job 
submission should be supported in distributed environment and 
provides durability with respect to system failures.

✤ Implementation

✤ Python, MySQL and CouchDB

11



Why CouchDB?

✤ Effective key-value store; data in JSON

✤ RESTful HTTP API - in common w/ service we write, no needs to maintain 
DAO’s

✤ Limited relationships between data, map/reduce data look-up is sufficient 
our uses

✤ Incremental index building maintains performance

✤ Replication is built in and very simple

✤ Back-up is simple due to append only file format

✤ Can either replicate DB to another node or write DB file to CASTOR
12



Why CouchDB, cont’d

✤ CouchDB is written in Erlang: high concurrency natively supported

✤ Apache open source project

✤ Clustering solution exists (BigCouch), but not yet used in our 
environment

✤ Commercial support is available via http://www.cloudant.com 
and http://www.couchbase.com

13

http://www.cloudant.com
http://www.cloudant.com
http://www.couchbase.com
http://www.couchbase.com


WMAgent & CouchDB, cont’d

✤ WMAgent is designed to support high load job submission and 
monitoring:

✤ 3K jobs @ Tier-0, 10K jobs @ Tier-1’s, 15K simulation jobs @ Tier-2’s 
and 15K analysis jobs @ Tier-2’s

✤ Jobs submission can be done by different teams at different geo 
locations

✤ Expect to have several WMAgent instances running, each handling 
~50 jobs/second (limited by grid middleware and data access 
obstacles)

14



Request
Manager

Work
Queue

WMAgent

MySQL

WMBS
manage

dependencies

JobStateMachine
manage
work

CouchDB

JobDump

Workload
summary

L1, L2
Manager

APPROVED

O
P
E
R
A
T
O
R
S

WMAgent

✤ WMBS/MySQL job 
definitions and dependencies

✤ JobStateMachine/CouchDB 
keeps jobs progress

✤ JobDump/CouchDB job 
output reports

✤ WorkloadSummary/CouchDB 
job summaries 

15



MySQL & CouchDB usage

✤ Contains relational data, e.g. 
job definitions, input/output 
file mappings

✤ Job states: created, running, 
completed

✤ Used for strongly correlated 
information, e.g. file N 
processed by job J, produces 
file M

✤ Contains non-structural data, 
e.g. meta information about 
jobs as they progress

✤ State change times, completion 
reports

✤ Aggregated monitoring 
information

✤ Reduce & sum over time

MySQL CouchDB

16



WMAgent performance

✤ Under commissioning phase now

✤ Single Agent is capable of high rate of jobs: ~10Hz

✤ For Tier1 tests

✤ 10-20K job executing in agent, 7500 batch slots

✤ MySQL: few MB, 20M rows

✤ CouchDB: ~6GB JobDump docs, 12GB in views

17



IgProf & KyotoCabinet

✤ IgProf (Ignominous Profiler) is a stand-
alone tool for measuring and analyzing 
application memory and performance 
characteristics

✤ O(100) profiles/build, O(100M) of keys 
into simple DB

✤ IgProf uses SQLite and KyotoCabinet

✤ SQLite to store build profiles

✤ Kyoto to analyze profile results 
(compare multiple one)

Profiling data analysis tool

Generic event collector and
dynamic function instrumentation 

core

Profile
module

Profile
module

Profile
module

DB

Web interfaceGUI Book Kyto
Cabinet

18



Why KyotoCabinet?

✤ KyotoCabinet is a library of routines for managing a database

✤ Choose your DB type depending on your app (HashDB, DirDB, 
etc)

✤ The database is a simple data file containing records, each is a pair of 
a key and a value

✤ Runs very fast, elapsed time to store/search 1M records ~1 sec for 
hash or B+ tree databases

✤ Multi-thread safe, supports transaction and ACID properties

✤ Written in C++ and provides API for C/C++, Python, Ruby, Java
19



Dark side of the moon

MongoDB CouchDB KyotoCabinet

✤ performance greatly 
degrades if indexes are 
not fit in RAM

✤ corruption issues (in 
sharding environment) 
were reported in a past on 
MongoDB forum

✤ data is uncompressed 
(requested feature) and 
there is no automated 
data/ index compression

✤ map-reduce views can be 
large and slow if poorly 
constructed

✤ error messages can be 
opaque (erlang is not user 
friendly)

✤ quite new in a “marker”
✤ developed and supported 

by couple of individuals
✤ crashes and corrupted 

data are reported (but 
rare)

20



Summary

✤ Usage of NoSQL is only started in CMS

✤ So far it is driven by use cases

✤ We carefully evaluated existing technologies (including RDMS ones) 
and pick up NoSQL solutions to fit our application requirements

✤ The NoSQL solutions represent complementary stack of software 
which co-exist with RDMS naturally

21


