Precise light quark masses from lattice QCD in the RI/SMOM scheme

Sebastian Jäger
US
University of Sussex
Workshop "Colour meets flavour" in celebration of Alexander Khodjamirian's 60th birthday 13-14 October 2011

Mass of the strange quark

```
WEIGHTED AVERAGE 
```



```
PDG 2010
```


Quantum field theory

- correlation functions given by path integrals

$$
\begin{aligned}
& \langle 0| O_{1}\left(x_{1}\right) \cdots O_{n}\left(x_{n}\right)|0\rangle= \\
& \quad \int\left(\prod_{x} d A(x)\right)\left(\prod_{x} d \psi(x) d \bar{\psi}(x)\right) O\left(x_{1}\right) \ldots O\left(x_{n}\right) e^{(i / \hbar) \int d^{4} x \mathcal{C}_{\mathrm{QCD}}}
\end{aligned}
$$

- O_{i} local operators constructed from quark and gluon fields either gauge invariant; or one has to fix a gauge and the correlation functions depend on the gauge fixing
- perturbation theory (small g_{s} expansion): Feynman diagrams

- this does not produce confinement, chiral SB, etc, which are non-perturbative phenomena

Lattice QCD

- spacetime replaced by discrete lattice of points
gives well-defined path integral
- numerical evaluation including non-perturbative physics
- continuum (a->0) and infinite volume limits (extrapolation)

- due to relatively recent progress, chiral symmetry can be preserved by the lattice regularisation all symmetries of QCD are then preserved

Quark mass on the lattice

- general idea: mass spectrum depends on quark masses

$$
m_{\pi, K, \ldots}=f\left(m_{u}, m_{d}, m_{s} ; g_{s}\right)
$$

- r.h.s numerically calculated on the lattice (by studying suitable 2-point functions) use measured meson mass spectrum to determine m_{u}, m_{d}, m_{s}
- These parameters are 'bare' and need to be renormalized to be of any use outside this particular lattice calculation

Renormalization

- bare parameters depend on details of regularization (lattice), diverge in continuum limit if physical quantities (meson masses) held fixed
- renormalize: $\mathrm{m}=\mathrm{Z}_{\mathrm{m}} \mathrm{m}_{\text {bare }}$
- properly defining $Z_{m}\left(g_{s} ; a\right)$ gives a finite continuum limit for m
- many ways to specify a renormalization scheme, e.g.
- physical renormalization scheme (e.g. mass parameter = observed particle mass) not possible for confined quarks
- minimal subtraction $Z_{m}=1-g_{s}{ }^{2} /\left(2 \pi^{2}\right) \ln (a)+\ldots$ divergent terms only
preferred in perturbation theory ($\overline{M S}$), not defined beyond
- Schroedinger functional method difficult/impractical to implement perturbatively possible in principle to determine RGI quark mass from step scaling process

Momentum-space subtraction

- Renormalization conditions imposed on Green's functions
- consider two-point function

$$
-i S(p)=\int d x e^{i p x}\langle T[\Psi(x) \bar{\Psi}(0)]\rangle=\frac{i}{p-m+i \epsilon-\Sigma(p)}
$$

- The RI-MOM and Rl'-MOM schemes renormalize the fields and masses by requiring, in Landau gauge,

$$
\begin{array}{ll}
\left.\lim _{m_{R} \rightarrow 0} \frac{1}{12 m_{R}} \operatorname{Tr}\left[S_{R}^{-1}(p)\right]\right|_{p^{2}=-\mu^{2}}=1 & \\
\left.\lim _{m_{R} \rightarrow 0} \frac{1}{48} \operatorname{Tr}\left[\gamma^{\mu} \frac{\partial S_{R}^{-1}(p)}{\partial p^{\mu}}\right]\right|_{p^{2}=-\mu^{2}}=-1 . & \text { RI-MOM } \\
\left.\lim _{m_{R} \rightarrow 0} \frac{1}{12 p^{2}} \operatorname{Tr}\left[S_{R}^{-1}(p) \not p\right]\right|_{p^{2} \rightarrow-\mu^{2}}=-1 & \text { RI'-MOM }
\end{array}
$$

Conversion to $\overline{\mathrm{MS}}$ scheme

- The MOM renormalization prescription can be implemented in continuum perturbation theory, most conveniently in dimensional regularization. Then the quark mass can be converted from a MOM scheme to e.g. MS-bar

$$
C_{m}^{\mathrm{scheme}}=\frac{m^{\overline{\mathrm{MS}}}}{m^{\text {scheme }}}=\frac{Z^{\overline{\mathrm{MS}}}}{Z_{m}^{\text {scheme }}}
$$

- In practice, the conversion has been done for $\mathrm{Rl}^{\prime}-\mathrm{MOM}$ up to three loops, and the perturbation expansion does not behave well:
C_{m} (Rl' $\left.^{\prime}\right)=1-0.127$ [nLo] -0.069 [NnLo] -0.046 [Nnnlo]

for a perturbative correction

Ward identity

- By the (non-singlet) axial-vector ward identity,

$$
-i q_{\mu} \Lambda_{A, B}^{\mu}\left(p_{1}, p_{2}\right)=2 m_{B} \Lambda_{P, B}\left(p_{1}, p_{2}\right)-i \gamma_{5} S_{B}^{-1}\left(p_{1}\right)-S_{B}^{-1}\left(p_{2}\right) i \gamma_{5}
$$

where $\Lambda_{\mathrm{A}, \mathrm{B}}$ and $\Lambda_{\mathrm{P}, \mathrm{B}}$ are the bare three-point Green's functions involving the axial current and pseudoscalar density,
 respectively, the RI/MOM mass renormalization [fig. due to C Sachraidd] can alternatively be computed as

$$
Z_{m}^{\mathrm{RI} / \mathrm{MOM}}=\frac{-\left.p^{2} \operatorname{tr}\left[\Lambda_{P, B}\left(p, p^{\prime}\right) \gamma_{5}\right]\right|_{p^{2}=p^{\prime 2}=-\mu^{2}}}{\operatorname{tr}\left[S_{B}^{-1} p\right]}
$$

where $q^{2}=\left(p-p^{\prime}\right)^{2}=0$

RI-SMOM

- Origin of the bad perturbative behaviour unclear. However, nonperturbatively, at $q^{2}=0$ there are $1 / p^{2}$ power corrections, and also the chiral limit does not exist because of a "pseudo-goldstone pole" term

$$
\Lambda\left(p, p^{\prime} ; q^{2}=0\right)=\frac{\text { const }}{m_{K}^{2}}\left\langle K^{+}\right| s(p) \bar{u}\left(p^{\prime}\right)|0\rangle+\ldots
$$

(the pseudoscalar density P has the correct quantum numbers to create pions or kaons, which become massless in the chiral limit)

- a practical issue in lattice simulations involving light quarks
[Aoki et al 2008]
- the nonperturbative issues can be addressed by going to more general kinematics

$$
p^{2}=\left(p^{\prime}\right)^{2}=-\mu^{2}, \quad q^{2}=\omega p^{2}
$$

SMOM ("symmetric MOM") : $\omega=1$

RI-SMOM to $\overline{\mathrm{MS}}$

- one-loop conversion factor at the SMOM point
C_{m} (RI-SMOM) $=1-0.015[$ [NLO]
a tiny one-loop correction
(recall C_{m} (R') $\left.^{\prime}\right)=1-0.127$ [nLo] -0.069 [NNLo] -0.046 [NNnLo] $)$
- as a function of $\omega=q^{2} / \mathrm{p}^{2}$ and the gauge parameter

Two-loop (NNLO) calculation

[Gorbahn, SJ I 004.3997]

[Almeida, Sturm I004.46I3]

+ recursively one-loop

+ recursively one-loop
- straightforward evaluation of traces over numerators
- express numerators as polynomials of the denominators
- Feynman integrals with general propagator powers

$$
\int \frac{d^{d} k}{(2 \pi)^{d}} \frac{d^{d} l}{(2 \pi)^{d}} \prod_{i}\left(P_{i}^{n}\right)^{-a_{i}} \equiv\left(\frac{i}{16 \pi^{2}}\right)^{2}\left(\frac{\mu^{2}}{4 \pi} e^{\gamma}\right)^{2 \epsilon}{\underset{\sim}{t}}_{\text {topology }}^{k_{n}\left(a_{1}, \ldots, a_{m} ;\right.} \underset{\substack{\text { propagator } \\ \text { powers }}}{\left.\left\{s_{k}\right\}\right)} \underset{\substack{\text { kinematic } \\ \text { invariants }}}{ }
$$

Integral reduction

- integration by part identities via Laporta's algorithm [S Laporta 2001] use the public Mathematica implementation FIRE [AV Smirnov 2008]
- two two-loop master integrals - known in terms of higher polylogarithms
[Davydychev and Usyukina 1994]
- recursively one-loop diagrams with spurios poles -> sensitivity to higher orders in ϵ

Masterly inactivity

- only unknown "master" ingredient is one-loop integral !
$j\left(d ; \nu_{1}, \nu_{2}, \nu_{3} ; p_{1}^{2}, p_{2}^{2}, p_{3}^{2}\right) \equiv$

$$
\left(\frac{i}{16 \pi^{2}}\right)^{-1}\left(\frac{\mu^{2}}{4 \pi} e^{\gamma}\right)^{\epsilon} \int \frac{d^{d} k}{(2 \pi)^{d}} \frac{1}{\left[-k^{2}\right]^{\nu_{3}}\left[-\left(k+p_{1}\right)^{2}\right]^{\nu_{2}}\left[-\left(k-p_{2}\right)^{2}\right]^{\nu_{1}}}
$$

- in particular, need $j\left(d ; 1,1,2+\epsilon ; p^{2}, x p^{2}, y p^{2}\right)$, proportional to:

$$
\frac{1}{x y}\left(-\frac{1}{\epsilon}+2 \ln x+2 \ln y-\epsilon\left(2 \ln ^{2} x+2 \ln ^{2} y+\ln x \ln y+3(1-x-y) \Phi^{(1)}(x, y)-\frac{\pi^{2}}{6}\right)+\epsilon^{2} \beta(x, y)+\mathcal{O}\left(\epsilon^{2}\right)\right)
$$

(actually needed only for $\mathrm{y}=1$ or $\mathrm{y}=\mathrm{x}$)

- Need $O\left(\varepsilon^{2}\right)$ term $\beta(x, y)$ - not known and difficult to compute [at least for us]
- can avoid computation - reducing the known 2-loop masters \& using an identity from rotating the triangle by 120 degrees, one can obtain sufficient (algebraic) constraints on it

Analytical result

$$
\begin{aligned}
& C_{m}^{\mathrm{RI} / \mathrm{SMOM}}(\omega)=1+\frac{\alpha_{s}}{4 \pi} C_{F}\left(\frac{3+\xi}{2} \Phi^{(1)}\left(\frac{1}{\omega}, \frac{1}{\omega}\right)-4-\xi+3 \ln r\right)+\left(\frac{\alpha_{s}}{4 \pi}\right)^{2} C_{F}\left\{N _ { c } \left(-\frac{2513}{48}-\frac{3 \xi}{2}-\frac{\xi^{2}}{4}+12 \zeta(3)\right.\right. \\
& \quad+\frac{307+6 \xi^{2}}{12} \ln r-\frac{13}{4} \ln ^{2} r+\left[\frac{301}{24}+\frac{3 \xi}{4}-\frac{\xi^{2}}{8}-\frac{13+\xi^{2}}{4} \ln r-\frac{7+3 \xi}{4} \ln \omega\right] \Phi^{(1)}\left(\frac{1}{\omega}, \frac{1}{\omega}\right)+\frac{9+6 \xi+\xi^{2}}{8} \Phi^{(1)}\left(\frac{1}{\omega}, \frac{1}{\omega}\right)^{2} \\
& \left.+\omega \Phi^{(2)}(1, \omega)-\frac{3+\xi}{2} \Phi^{(2)}\left(\frac{1}{\omega}, \frac{1}{\omega}\right)\right)+n_{f}\left(\frac{83}{12}+\left[\ln r-\frac{5}{3}\right] \Phi^{(1)}\left(\frac{1}{\omega}, \frac{1}{\omega}\right)-\frac{13}{3} \ln r+\ln ^{2} r\right) \\
& +\frac{1}{N_{c}}\left(-\frac{19}{16}-2 \xi-\frac{\xi^{2}}{2}+\left[\frac{7}{2}+\xi+\frac{\xi^{2}}{2}-\frac{9+3 \xi}{4} \ln r+\frac{5+3 \xi}{4} \ln \omega\right] \Phi^{(1)}\left(\frac{1}{\omega}, \frac{1}{\omega}\right)+\frac{21+6 \xi}{4} \ln r-\frac{9}{4} \ln ^{2} r\right. \\
& \left.\left.+\frac{1+\xi}{2} \Phi^{(2)}\left(\frac{1}{\omega}, \frac{1}{\omega}\right)+\frac{1}{2} \Omega^{(2)}\left(\frac{1}{\omega}, \frac{1}{\omega}\right)-\Omega^{(2)}(1, \omega)-\left[\frac{5}{8}+\frac{3 \xi}{4}+\frac{\xi^{2}}{8}+\frac{1}{\omega}\right] \Phi^{(1)}\left(\frac{1}{\omega}, \frac{1}{\omega}\right)^{2}\right)\right\}
\end{aligned}
$$

- The functions $\Phi^{(1)}, \Phi^{(2)}, \Psi^{(2)}, \Omega^{(2)}$ are all given in terms of polylogarithms up to fourth order
- full ω dependence: can interpolate RI/MOM - RI/SMOM

NNLO result: ω dependence

- C_{m} (SMOM) $=1-0.015$ [NLO - 0.006 [NNLO] confirmed by Almeida, Sturm
[at $\omega=1$]

Residual scale dependence

- construct a formally RG-invariant quantity
- e.g. convert to $\overline{\mathrm{MS}}$ mass from fixed MOM scale 2 GeV , varying dim reg scale used in conversion and RG-evolving back to 2 GeV

NNLO result with error

- take the range of the NNLO band as theoretical range
- symmetrizing around the midpoint, obtain

$m^{\overline{\mathrm{MS}}}(2 \mathrm{GeV})=\left(\left.\left.0.978_{-0.010}^{+0.024}\right|_{\mathrm{h} . \mathrm{o} .-0.001} ^{+0.001}\right|_{\alpha_{s}}\right) m^{\mathrm{RI} / \mathrm{SMOM}}(2 \mathrm{GeV})$
$m^{\mathrm{RGI}}=\left(\left.\left.2.53_{-0.014}^{+0.052}\right|_{\text {h.o. }-0.02} ^{+0.02}\right|_{\alpha_{s}}\right) m^{\mathrm{RI} / \text { SMOM }}(2 \mathrm{GeV})$
- 2 percent error!
- error dominated by unknown higher orders, a_{s} uncertainty subleading
- new RBC/UKQCD result: $m^{\overline{\mathrm{MS}}}(2 \mathrm{GeV})=(96.2 \pm 2.7) \mathrm{MeV}$ [Aoki et al, PRD83(20।I)074508, arXiv:IOII.0892]
- similar stability for other quantities? $\left(\mathrm{B}_{\kappa} / \varepsilon_{\kappa}, \quad \varepsilon^{\prime} / \varepsilon, \ldots\right)$

