
Precise light quark masses from 
lattice QCD in the RI/SMOM scheme

Sebastian Jäger         

Workshop “Colour meets flavour”
in celebration of Alexander Khodjamirian’s 60th birthday

 13-14 October 2011



Citation: K. Nakamura et al. (Particle Data Group), JPG 37, 075021 (2010) (URL: http://pdg.lbl.gov)

115GOUGH 97 use lattice gauge computations in the quenched approximation. Correcting
for quenching gives 54 <ms < 92 MeV at µ=2 GeV.

116GUPTA 97 use Lattice Monte Carlo computations in the quenched approximation. The
value for two light dynamical flavors at µ = 2 GeV is 68 ± 12 ± 7 MeV.

117 LELLOUCH 97 obtain lower bounds on quark masses using hadronic spectral functions.
118 JAMIN 95 uses QCD sum rules at next-to-leading order. We have rescaled ms (1 GeV)

= 189 ± 32 to µ = 2 GeV.
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• • • We do not use the following data for averages, fits, limits, etc. • • •
20.0 119 GAO 97 THEO MS scheme
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21 121 DONOGHUE 92 THEO
18 122 GERARD 90 THEO
18 to 23 123 LEUTWYLER 90B THEO
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Mass of the strange quark

HPQCD 2+1+1 dyn. flavours, rooted staggered

QCD sum rule

CP-PACS quenched lattice

RBC&UKQCD2+1 dyn. flavours, domain wall ferm.

QCD sum rule

CP-PACS&JLQCD 2+1 dyn. flavours,Wilson quarks

ETM, 2 dyn. flavours, twisted mass fermions

RBC 2 dyn. flavours, domain wall fermions
QCD sum rule

PDG 2010

fundamental parameter
(->Yukawa coupling) in SM

- enters predictions for nonleptonic 
decay matrix elements
- probes of Yukawa unification
...



Quantum field theory
• correlation functions given by path integrals

• Oi local operators constructed from quark and gluon fields 
either gauge invariant; or one has to fix a gauge and the 
correlation functions depend on the gauge fixing

• perturbation theory (small gs expansion): Feynman diagrams

• this does not produce confinement, chiral SB, etc, which are
non-perturbative phenomena
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FIG. 1. Two-loop propagator and vertex diagrams. The grey
blobs indicate a sum over all one-loop corrections to a propa-
gator, the black boxes an insertion of the pseudoscalar density

FIG. 2. Basic three- and two-point topologies: ladder, non-
planar, propagator (from left to right)
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two-loop computation, this leads to poles of up to fourth
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The function Ω(2) arises in evaluating ladder master in-

tegrals [8, 9] and is given there in terms of polyloga-

rithms. Combining all terms and MS-renormalizing the

gauge coupling and gauge parameter, we obtain
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where r = µ2/ν2, nf is the number of quark flavours,

and Φ(2) is given in terms of polylogarithms in [8]. The

function Ψ(1) has dropped out of the final result. We do

not know the origin of this cancellation, involving many

different terms, including the O(�) one-loop term. As

an elk test, setting µ = ν and taking ω→ 0, we recover

CRI
�/MOM

m [6, 13]. The O(αs) term in (18) agrees with [7].

PHENOMENOLOGY

To explore the phenomenological consequences of our

result for QCD with three dynamical light quarks (as in

nature, and in modern unquenched simulations), we set

nf = 3. Figure 3 shows the conversion factor Cm(ω)
in the Landau gauge. We observe that the NNLO cor-

gs gs gs

gs



Lattice QCD
• spacetime replaced by 

discrete lattice of points

gives well-defined path integral

• numerical evaluation including
non-perturbative physics

• continuum (a->0) and infinite
volume limits (extrapolation)

• due to relatively recent progress, chiral symmetry can be 
preserved by the lattice regularisation
all symmetries of QCD are then preserved

a lattice 
spacing



Quark mass on the lattice
• general idea: mass spectrum depends on quark masses

• r.h.s numerically calculated on the lattice
(by studying suitable 2-point functions)
use measured meson mass spectrum to determine
mu, md, ms

• These parameters are ‘bare’ and need to be
renormalized to be of any use outside this particular lattice 
calculation

mπ,K,... = f(mu, md, ms; gs)



Renormalization
• bare parameters depend on details of regularization (lattice), 

diverge in continuum limit if physical quantities (meson 
masses) held fixed

• renormalize: m = Zm mbare

• properly defining Zm(gs;a) gives a finite continuum limit for m

• many ways to specify a renormalization scheme, e.g.

- physical renormalization scheme (e.g. mass parameter =
       observed particle mass)
       not possible for confined quarks
- minimal subtraction Zm = 1 - gs2/(2π2) ln(a) + ...

       preferred in perturbation theory (MS), not defined beyond
- Schroedinger functional method
       difficult/impractical to implement perturbatively
       possible in principle to determine RGI quark mass from
       step scaling process

divergent terms only



• Renormalization conditions imposed on Green’s functions

• consider two-point function

• The RI-MOM and RI’-MOM schemes renormalize the fields 
and masses by requiring, in Landau gauge,

Momentum-space subtraction

where S(p) is given by the quark propagator

− iS(p) =
∫

dxeipx〈T [Ψ(x)Ψ(0)]〉 =
i

$p − m + iε − Σ(p)
, (2)

where Σ(p) contains the higher order corrections and can, in perturbation theory, be
decomposed into its Lorentz structure: Σ(p) =$pΣV (p2) + mΣS(p2). The lowest order and
one-loop diagrams contributing to Σ(p) are shown in Fig. 3.
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Figure 3: Propagator type diagrams up to one-loop order in QCD

In the following we will consider quark bilinear operators Ô = ūΓd with scalar (Γ = 11),
pseudo-scalar (Γ = iγ5), vector (Γ = γµ), axial-vector (Γ = γµγ5) and tensor (Γ =
σµν = i

2 [γ
µ, γν ]) kernels. We will distinguish between bare and renormalized quantities

by assigning the index B to a bare quantity and the index R to a renormalized one. In the
case of renormalized quantities an additional quantifier specifying the scheme is attached.
Renormalized and bare quantities are related through the renormalization constants Z

ΨR = Z1/2
q ΨB, mR = ZmmB, ÔR = ZÔÔB. (3)

The renormalization constants of the scalar (Ô = S), pseudo-scalar (Ô = P ), vector
(Ô = V ), axial-vector (Ô = A) and tensor (Ô = T ) operator will be denoted as ZS, ZP ,
ZV , ZA and ZT . In the RI/MOM-scheme the renormalization conditions which fix the
renormalization constants Zm and Zq are given by
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where the symbol “Tr” denotes the trace over color and spins. The second equation
determines ZRI/MOM

q and subsequently the first one can be used to extract ZRI/MOM
m . Now

in the RI′/MOM-scheme the second condition of Eqs.(4) is replaced by

lim
mR→0

1

12p2
Tr[S−1

R (p) $p]

∣

∣

∣

∣

∣

p2→−µ2

= −1. (5)

The quark propagator in the RI′/MOM-scheme is fixed to its lowest order value at the
point p2 = −µ2, where p2 is the squared, external, Minkowski momentum and µ is the
renormalization scale.
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RI-MOM

RI’-MOM
[Martinelli et al 1995]



• The MOM renormalization prescription can be implemented 
in continuum perturbation theory, most conveniently in 
dimensional regularization. Then the quark mass can be 
converted from a MOM scheme to e.g. MS-bar

• In practice, the conversion has been done for RI’-MOM
up to three loops, and the perturbation expansion does not 
behave well:

Cm(RI’) = 1 - 0.127 [NLO] - 0.069 [NNLO] - 0.046 [NNNLO]

Conversion to MS scheme

C
scheme
m

=

mMS

mscheme
=

ZMS

Zscheme
m

[Chetyrkin & Retey 1999, Gracey 2003]

ok sizable large
for a perturbative correction



• By the (non-singlet) axial-vector ward identity,

where ΛA,B and ΛP,B are the bare
three-point Green’s functions involving the
axial current and pseudoscalar density,
respectively, the RI/MOM mass renormalization
can alternatively be computed as

where q2 = (p-p’)2 = 0

Ward identityThe propagator and vertex diagrams (Fig. 2) for the vector and axial-vector operators
are related through the vector Ward-Takahashi-identity for degenerate masses mu = md =
m

qµΛµ
V,B(p1, p2) = S−1

B (p2) − S−1
B (p1) (6)

and the axial-vector Ward-Takahashi-identity

− iqµΛµ
A,B(p1, p2) = 2mBΛP,B(p1, p2) − iγ5S

−1
B (p1) − S−1

B (p2)iγ5, (7)

with the momentum transfer q = p1 − p2. The renormalized and bare amputated Green’s
functions are connected by

SR(p) = ZqSB(p), ΛÔ,R(p1, p2) =
ZÔ

Zq
ΛÔ,B(p1, p2). (8)

In the following we want to renormalize the quark bilinear operators using a symmetric
subtraction point. For functions f , which are restricted to the symmetric momentum
configuration we use the short hand f(p2

1, p
2
2, q

2)|p2
1
=p2

2
=q2=−µ2 ≡ f(p2

1, p
2
2, q

2)|sym and for the
asymmetric subtraction point we introduce the abbreviation f(p2

1, p
2
2, q

2)|q=0,p2
1
=−µ2=p2

2
≡

f(p2
1, p

2
2, q

2)|asym.
We perform the quark mass and wave function renormalization by imposing on the

two-point function S(p) the condition of Eq.(5) and
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The second term in the r.h.s. of Eq.(9) starts at O(αs). This term is needed to maintain
the Ward-Takahashi-identities for renormalized quantities, as we will see below. For the
vector and axial-vector quark bilinear operators we impose the conditions
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Tr
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and for the pseudo-scalar and scalar ones
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For the tensor operator with a symmetric subtraction point we use the renormalization
condition

lim
mR→0

1

144
Tr

[

Λµν
T,Rσµν

]

∣

∣

∣

∣

sym
= 1. (12)

Note that all of the renormalization schemes being considered in this paper are mass-
independent. Thus, each condition is imposed at fixed external momentum and vanishing
quark mass. The renormalization conditions of the RI/MOM- and RI/SMOM-scheme are
summarized in Table 1.

5

RI-Mom - Scalar Density - Cont.

p p

We now have all the ingredients necessary to impose the renormalization

condition. We define the renormalized scalar density S R by

SR(µ) = ZS(µa)SLatt(a) where

ZS
!S(p)

!VC (p)
= 1 ,

for p2 = µ2 .

The scalar density has a non-zero anomalous dimension and therefore Z S

depends on the scale.

The renormalization scheme here is aMOM scheme. We called it the “RI-MOM"

scheme, where the RI stands for “Regularization Independent" to underline the

fact that the renormalized operators do not depend on the bare theory (i.e. the
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• Origin of the bad perturbative behaviour unclear.
However, nonperturbatively, at q2=0 there are
1/p2 power corrections, and also the chiral
limit does not exist because of a
“pseudo-goldstone pole” term

(the pseudoscalar density P has the correct
quantum numbers to create pions or kaons,
which become massless in the chiral limit)

• a practical issue in lattice simulations involving light quarks

• the nonperturbative issues can be addressed by going to 
more general kinematics
     p2 = (p’)2 = -µ2,   q2 = ω p2

SMOM (“symmetric MOM”) : ω = 1

RI-SMOM
RI-Mom - Scalar Density - Cont.

p p

We now have all the ingredients necessary to impose the renormalization

condition. We define the renormalized scalar density S R by

SR(µ) = ZS(µa)SLatt(a) where

ZS
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!VC (p)
= 1 ,

for p2 = µ2 .

The scalar density has a non-zero anomalous dimension and therefore Z S

depends on the scale.

The renormalization scheme here is aMOM scheme. We called it the “RI-MOM"

scheme, where the RI stands for “Regularization Independent" to underline the

fact that the renormalized operators do not depend on the bare theory (i.e. the

lattice theory).
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q

′

[Aoki et al 2008]

[eg Aoki et al 2008]

Λ(p, p′; q2 = 0) =
const

m2
K

〈K+|s(p)ū(p′)|0〉 + . . .



• one-loop conversion factor at the SMOM point

Cm(RI-SMOM) = 1 - 0.015 [NLO] 

a tiny one-loop correction

(recall Cm(RI’) = 1 - 0.127 [NLO] - 0.069 [NNLO] - 0.046 [NNNLO] )

• as a function of ω=q2/p2  and the gauge parameter

RI-SMOM to MS

[Sturm et al 2009]
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• straightforward evaluation of traces over numerators

• express numerators as polynomials of the denominators

• Feynman integrals with general propagator powers

Two-loop (NNLO) calculation
given as rational functions of the six kinematic invariants

k2, l2, k · l, k · p, l · p, p2, (42)

where k, l are the loop momenta and p the external momentum. (The numer-
ators are not simple polynomials, because we factor the general gauge boson
propagator as −i(gµν − (1 − ξ)kµkν/k2)1/k2 and include the parentheses in the
numerator, only putting the final factor 1/k2 in the denominator.) Since there are
only six linearly independent quadratic invariants formed from three momenta
and the above set is obviously linearly independent, it form a basis. Another
basis is given by the five propagator denominators together with p2. Hence a
simple change of basis allows to re-express the numerators as linear combinations
of monomials of the propagator denominators, and hence σ(2),true

B as linear com-
bination of scalar Feynman integrals corresponding to topology Fig. 4(c) with
general integer powers of the propagators. We denote these as

prop(a1, a2, a3, a4, a5), (43)

where ai is the power with which propagator i appears, with propagator num-
bering indicated in Fig. 2. Our normalization convention for two-loop integrals
is

� ddk

(2π)d

ddl

(2π)d

�

i

(P n
i )−ai ≡

�
i

16π2

�2�
µ2

4 π
eγ

�2�

kn(a1, . . . , am; {sk}). (44)

Here kn labels the topology, i.e. prop in the case at hand, and {sk} are the
kinematic invariants as in the one-loop case, i.e. p2 in the present case.

For the vertex diagrams, the numerators involve the basis set of 10 indepen-
dent invariants

k2, l2, k · l, k · p1, k · p2, l · p1, l · p2, p
2
1, p

2
2, q

2. (45)

However, there are only six propagators, insufficient to form a basis. As a conse-
quence, one irreducible numerator appears in each diagram (more precisely, there
is a one-dimensional quotient space of numerators divided by the span of the de-
nominators and the external invariants). “Basis” irreducible numerators can be
chosen in such a way that they are inverse denominators of extended diagrams [4],
as shown in Fig. 5. In both cases, the irreducible numerator is shown as an aux-
iliary, dashed line, extending the vertex diagrams to double “forward-scattering”
boxes. We denote the extended ladder and non-planar topologies as

lad(a1, a2, a3, a4, a5, a6, a7; p
2
1, p

2
2, p

2
3), npl(a1, a2, a3, a4, a5, a6, a7; p

2
1, p

2
2, p

2
3),
(46)

with a7 < 0 denoting the negative of the power with which the irreducible nu-
merator enters. p2

1, p2
2, and p2

3 are the external invariants as indicated in Figs. 4
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topology propagator 
powers

kinematic 
invariants

3

FIG. 1. Two-loop propagator and vertex diagrams. The grey
blobs indicate a sum over all one-loop corrections to a propa-
gator, the black boxes an insertion of the pseudoscalar density

FIG. 2. Basic three- and two-point topologies: ladder, non-
planar, propagator (from left to right)

in � in the coefficients of the resulting integrals. In a

two-loop computation, this leads to poles of up to fourth

order. On the other hand, the Feynman diagrams have

poles of at most second order, entirely of ultraviolet ori-

gin. The spurious third- and fourth-order poles must and

do cancel, which constitutes a check of the computation,

but they also imply a possible dependence on terms up to

O(�3) in the � expansion of the master integrals remain-

ing after the reduction. In practice, we find that only

known master integrals [8, 9] are needed, except for the

unknown O(�2) part of j(1, 1, 2 + �). Denoting

j(1, 1, 2 + �; p21, p
2

2, p
2

3) =

�
ν2

−p2
3

eγ
��

Γ(1 + �)(−p23)
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× 1
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(x, y) +O(�3)
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,

we find that
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The function Ω(2) arises in evaluating ladder master in-

tegrals [8, 9] and is given there in terms of polyloga-

rithms. Combining all terms and MS-renormalizing the

gauge coupling and gauge parameter, we obtain

CRI/SMOM

m (ω) = 1 +
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where r = µ2/ν2, nf is the number of quark flavours,

and Φ(2) is given in terms of polylogarithms in [8]. The

function Ψ(1) has dropped out of the final result. We do

not know the origin of this cancellation, involving many

different terms, including the O(�) one-loop term. As

an elk test, setting µ = ν and taking ω→ 0, we recover

CRI
�/MOM

m [6, 13]. The O(αs) term in (18) agrees with [7].

PHENOMENOLOGY

To explore the phenomenological consequences of our

result for QCD with three dynamical light quarks (as in

nature, and in modern unquenched simulations), we set

nf = 3. Figure 3 shows the conversion factor Cm(ω)
in the Landau gauge. We observe that the NNLO cor-

3

FIG. 1. Two-loop propagator and vertex diagrams. The grey
blobs indicate a sum over all one-loop corrections to a propa-
gator, the black boxes an insertion of the pseudoscalar density

FIG. 2. Basic three- and two-point topologies: ladder, non-
planar, propagator (from left to right)

in � in the coefficients of the resulting integrals. In a

two-loop computation, this leads to poles of up to fourth

order. On the other hand, the Feynman diagrams have

poles of at most second order, entirely of ultraviolet ori-

gin. The spurious third- and fourth-order poles must and

do cancel, which constitutes a check of the computation,

but they also imply a possible dependence on terms up to

O(�3) in the � expansion of the master integrals remain-

ing after the reduction. In practice, we find that only

known master integrals [8, 9] are needed, except for the
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The function Ω(2) arises in evaluating ladder master in-
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where r = µ2/ν2, nf is the number of quark flavours,

and Φ(2) is given in terms of polylogarithms in [8]. The

function Ψ(1) has dropped out of the final result. We do

not know the origin of this cancellation, involving many

different terms, including the O(�) one-loop term. As

an elk test, setting µ = ν and taking ω→ 0, we recover

CRI
�/MOM

m [6, 13]. The O(αs) term in (18) agrees with [7].

PHENOMENOLOGY

To explore the phenomenological consequences of our

result for QCD with three dynamical light quarks (as in

nature, and in modern unquenched simulations), we set

nf = 3. Figure 3 shows the conversion factor Cm(ω)
in the Landau gauge. We observe that the NNLO cor-
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[Almeida, Sturm 1004.4613]

+   recursively one-loop

+   recursively one-loop



• integration by part identities via Laporta’s algorithm
use the public Mathematica implementation FIRE

• two two-loop master integrals - known in terms of
higher polylogarithms 

• recursively one-loop diagrams with spurios poles -> 
sensitivity to higher orders in ϵ

Integral reduction

Figure 4: Basic three- and two-point topologies: (a) ladder, (b) non-planar, (c)

propagator

+f2(�, ξ, nf )

�
d− 3

2
g(1, 1 + �)−

�d

2
− 1

�
g(1, �) +

1

2
g(2 + �, 1)

��

,

(40)

λ(2),r1l
B = −4NcCF g2

s

�
i

16 π2

�2

×
�

f1
d + ξ − 1

2
[−q2j(1, 1+�, 1; p2

1, p
2
2, q

2
) + j(1, �, 1) + b(1+�, 1; p2

1)]

+f1
d + ξ − 1

2
[−q2j(1+�, 1, 1) + j(�, 1, 1) + b(1+�, 1; p2

2)]

+f2
d− 1

2
[−q2j(1, 1, 1+�) + b(1+�, 1; p2

2) + b(1+�, 1; p2
1)]

�

. (41)

Here we have dropped the (always identical) kinematic arguments on j except

on the first occurrence, as well as dropped the arguments on f1 and f2 in λ(2),r1l
B .

The necessary � expansions of the j functions have been computed in [2].

3.2 True two-loop contributions

3.2.1 Decomposition into scalar Feynman integrals

There are two propagator diagrams contributing to σ(2),true
B that are not recur-

sively one-loop (Fig. 2), of which diagram (a) involves the triple-gluon vertex.

Both have the unique true two-loop topology (double triangle) shown in Fig.

4(c). λ(2),true
B , due to the six true vertex diagrams (Fig. 3), is given in terms of

two basic two-loop topologies: “ladder” (or “planar”) and “non-planar”, shown

in Fig. 4(a) and (b).

After performing the traces, the numerators of the propagator diagrams are

12

Figure 5: Representation of irreducible numerators as auxiliary propagators for
the ladder (left) and non-planar (right) topologies

and 5, with p3 = −(p1 +p2) (e.g. for diagram 2.3, one can set p1 → −p2, p2 → −q
or p2 → −p2, p1 → −q for the kinematics defined in Section ONE). We omit the
external momenta when they are clear, e.g. from the way a diagram is drawn.

For definiteness in programming the expressions, our loop momentum assign-
ment follows [2, 4] with q → k, r → l, and the external momenta are assigned
according to Fig. 4 after a diagram, as drawn in Fig. 3 has been rotated (but
not reflected) into the orientation in the former figure. (E.g., p2

1 → p2
2, p2

2 → q2,
p2

3 → p2
1 for diagram 2.3.)

3.2.2 Known two-loop integrals

Usyukina and Davydychev [2, 4] evaluate the two vertex topologies for the fol-
lowing special cases:

lad(1, 1, 1, 1, 1, 1,−1), lad(1, 1, 1, 1, 1, 1, 0), lad(1, 1, 0, 1, 1, 0), (47)

npl(1, 1, 1, 1, 1, 1,−1), npl(1, 1, 1, 1, 1, 1, 0). (48)

The two-loop results have been checked (except maybe for the irreducible numer-
ator) and extended to general, i.e. not necessarily IR-finite, kinematics, in [3].
But we don’t need that generality (and the expressions look very complicated).
Moreover, [2, 4] give results for some special cases that are recursively one-loop or
factorize into products of two one-loop diagrams (see below). However, they do
not address the general reduction problem, and to our knowledge no treatment
exists in the literature.

3.2.3 Reduction to master integrals

Of the several hundred two-loop integrals (712 from diagrams (a), (b), and 2.1–
2.5) encountered after the previous steps, many are recursively one-loop or fac-
torize into a product of two one-loop integrals. Others can be eliminated by using

14

[A V Smirnov 2008]

[S Laporta 2001]

[Davydychev and Usyukina 1994]



• only unknown “master” ingredient is one-loop integral !

• in particular, need j(d; 1,1,2+ϵ; p2, x p2, y p2), proportional to:

(actually needed only for y=1 or y=x)

• Need O(ε2) term β(x,y) - not known and difficult to compute 
[at least for us]

• can avoid computation - reducing the known 2-loop masters 
& using an identity from rotating the triangle by 120 degrees, 
one can obtain sufficient (algebraic) constraints on it

Masterly inactivity

3.1 Recursively one-loop diagrams

We first define one-loop two- and three-point functions with non-integer propa-
gator powers,

b(d; ν1, ν2; p
2) ≡

�
i

16π2

�−1�
µ2

4 π
eγ

�� � ddk

(2π)d

1
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=
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��
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and
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1

[−k2]ν3 [−(k + p1)2]ν2 [−(k − p2)2]ν1
, (37)

where p3 = −(p1 + p2).
All recursively one-loop diagrams can then be expressed in terms of the one-

loop integrals appearing in (19) (for the vertex) and in (16) (for the propagator),
but with one of the three propagator powers shifted by �.

we can write

iσ(2),r1l
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4NcCF g2
s

16 π2

�
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�

. (39)

In both cases, the loop momenta in the numerators can be removed by partial
fractions, which gives (setting tadpoles to zero) [and to be checked by Mathe-
matica]
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6
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)



• The functions Φ(1), Φ(2), Ψ(2), Ω(2) are all given in terms of 
polylogarithms up to fourth order

• full ω dependence: can interpolate RI/MOM - RI/SMOM

Analytical result

3

FIG. 1. Two-loop propagator and vertex diagrams. The grey
blobs indicate a sum over all one-loop corrections to a propa-
gator, the black boxes an insertion of the pseudoscalar density

FIG. 2. Basic three- and two-point topologies: ladder, non-
planar, propagator (from left to right)

in � in the coefficients of the resulting integrals. In a

two-loop computation, this leads to poles of up to fourth

order. On the other hand, the Feynman diagrams have

poles of at most second order, entirely of ultraviolet ori-

gin. The spurious third- and fourth-order poles must and

do cancel, which constitutes a check of the computation,

but they also imply a possible dependence on terms up to

O(�3) in the � expansion of the master integrals remain-
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�
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�
,

we find that
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�
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11
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�
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�
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9

2
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(x, x)

�
. (17)

The function Ω(2) arises in evaluating ladder master in-

tegrals [8, 9] and is given there in terms of polyloga-

rithms. Combining all terms and MS-renormalizing the

gauge coupling and gauge parameter, we obtain

CRI/SMOM
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where r = µ2/ν2, nf is the number of quark flavours,

and Φ(2) is given in terms of polylogarithms in [8]. The

function Ψ(1) has dropped out of the final result. We do

not know the origin of this cancellation, involving many

different terms, including the O(�) one-loop term. As

an elk test, setting µ = ν and taking ω→ 0, we recover

CRI
�/MOM

m [6, 13]. The O(αs) term in (18) agrees with [7].

PHENOMENOLOGY

To explore the phenomenological consequences of our

result for QCD with three dynamical light quarks (as in

nature, and in modern unquenched simulations), we set

nf = 3. Figure 3 shows the conversion factor Cm(ω)
in the Landau gauge. We observe that the NNLO cor-
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• Cm(SMOM) = 1 - 0.015 [NLO] - 0.006 [NNLO]

• Cm(RI’) = 1 - 0.127 [NLO] - 0.069 [NNLO] - 0.046 [NNNLO]

NNLO result: ω dependence
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• construct a formally RG-invariant quantity

• e.g. convert to MS mass from fixed MOM scale 2 GeV, 
varying dim reg scale used in conversion and RG-evolving 
back to 2 GeV

• alternatively, consider “RGI” mass, similar picture

Residual scale dependence
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• take the range of the NNLO band as
theoretical range

• symmetrizing around the midpoint, obtain

• 2 percent error !

• error dominated by unknown higher orders, αs uncertainty 
subleading

• new RBC/UKQCD result: 

• similar stability for other quantities? (BK/εK,   ε’/ε, ...)

NNLO result with error 5

vert the MS mass to the RGI quark mass [16], which is

also scale-independent. The result is similarly stable un-

der scale variation, but the αs dependence is a bit more

pronounced. Numerically, we obtain

mMS
(2GeV)

=

�
0.978+0.024

−0.010

��
h.o.

+0.001
−0.001

��
αs

�
mRI/SMOM

(2GeV),

mRGI
=

�
2.53+0.052

−0.014

��
h.o.

+0.02
−0.02

��
αs

�
mRI/SMOM

(2GeV),

corresponding to a total uncertainty of less than 2%, or

less than 2 MeV in the case of the strange quark.

CONCLUSION

We have computed the RI/SMOM → MS conversion

factor for the quark mass to NNLO and shown that the

RI/SMOM scheme, designed to reduce sensitivity to low-

energy non-perturbative physics, is perturbatively very

well behaved, too. This scheme thus may be used to

extract quark masses with percent-level accuracy from

numerical lattice QCD. An important question is whether

the same holds true for other quantities of interest, such

as BK and other hadronic matrix elements.

We are happy to thank Chris Sachrajda for a talk and

conversations raising our interest in the topic and him

and Andrzej Buras for comments on the manuscript. M.

G. thanks the Galileo Galilei institute for hospitality and

the INFN for support during a stay.

Note: After the initial submission of this manuscript

to the Arxiv, Ref. [] appeared, whose authors compute

the conversion factor Cm at NNLO for the SMOM point

ω = 1, where they confirm our result. They also give

the corresponding field and mass conversion factors C ...
q

and C ...
m for the variant RI/SMOMγµ scheme, as well as

expressions for the NNLO anomalous dimensions in both

schemes. In this revised version, we have given expres-

sions for those quantities, as well, and confirmed in turn

their results.
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