Precise light quark masses from lattice QCD in the RI/SMOM scheme

Sebastian Jäger

University of Sussex

Workshop "Colour meets flavour" in celebration of Alexander Khodjamirian's 60th birthday 13-14 October 2011

Mass of the strange quark

WEIGHTED AVERAGE 100.6+2.1-1.8 (Error scaled by 2.4)

Quantum field theory

- correlation functions given by path integrals $\langle 0|O_1(x_1)\cdots O_n(x_n)|0\rangle = \int \left(\prod_x dA(x)\right) \left(\prod_x d\psi(x) d\bar{\psi}(x)\right) O(x_1) \dots O(x_n) e^{(i/\hbar) \int d^4x \mathcal{L}_{\text{QCD}}}$
- O_i local operators constructed from quark and gluon fields either gauge invariant; or one has to fix a gauge and the correlation functions depend on the gauge fixing
- perturbation theory (small g_s expansion): Feynman diagrams

 this does not produce confinement, chiral SB, etc, which are non-perturbative phenomena

Lattice QCD

 spacetime replaced by discrete lattice of points

gives well-defined path integral

- numerical evaluation including non-perturbative physics
- continuum (a->0) and infinite volume limits (extrapolation)

 due to relatively recent progress, chiral symmetry can be preserved by the lattice regularisation all symmetries of QCD are then preserved

Quark mass on the lattice

• general idea: mass spectrum depends on quark masses

 $m_{\pi,K,\ldots} = f(m_u, m_d, m_s; g_s)$

- r.h.s numerically calculated on the lattice (by studying suitable 2-point functions) use measured meson mass spectrum to determine m_u, m_d, m_s
- These parameters are 'bare' and need to be renormalized to be of any use outside this particular lattice calculation

Renormalization

- bare parameters depend on details of regularization (lattice), diverge in continuum limit if physical quantities (meson masses) held fixed
- renormalize: $m = Z_m m_{bare}$
- properly defining $Z_m(g_s;a)$ gives a finite continuum limit for m
- many ways to specify a renormalization scheme, e.g.
 - physical renormalization scheme (e.g. mass parameter = observed particle mass) not possible for confined quarks
 - minimal subtraction $Z_m = 1 g_s^2/(2\pi^2) \ln(a) + ...$

divergent terms only

preferred in perturbation theory (\overline{MS}), not defined beyond

- Schroedinger functional method difficult/impractical to implement perturbatively possible in principle to determine RGI quark mass from step scaling process

Momentum-space subtraction

- Renormalization conditions imposed on Green's functions
- consider two-point function

$$-iS(p) = \int dx e^{ipx} \langle T[\Psi(x)\overline{\Psi}(0)] \rangle = \frac{i}{\not p - m + i\epsilon - \Sigma(p)}$$

• The RI-MOM and RI'-MOM schemes renormalize the fields and masses by requiring, in Landau gauge,

$$\lim_{m_R \to 0} \left. \frac{1}{12m_R} \operatorname{Tr}[S_R^{-1}(p)] \right|_{p^2 = -\mu^2} = 1$$

$$\lim_{m_R \to 0} \frac{1}{48} \operatorname{Tr} \left[\gamma^{\mu} \frac{\partial S_R^{-1}(p)}{\partial p^{\mu}} \right] \Big|_{p^2 = -\mu^2} = -1, \qquad \text{RI-MON}$$

$$\lim_{m_R \to 0} \left. \frac{1}{12p^2} \operatorname{Tr}[S_R^{-1}(p) \not p] \right|_{p^2 \to -\mu^2} = -1$$

RI'-MOM

[Martinelli et al 1995]

Conversion to MS scheme

 The MOM renormalization prescription can be implemented in continuum perturbation theory, most conveniently in dimensional regularization. Then the quark mass can be converted from a MOM scheme to e.g. MS-bar

$$C_m^{\text{scheme}} = \frac{m^{\overline{\text{MS}}}}{m^{\text{scheme}}} = \frac{Z^{\overline{\text{MS}}}}{Z_m^{\text{scheme}}}$$

 In practice, the conversion has been done for RI'-MOM up to three loops, and the perturbation expansion does not behave well:

$$C_{m}^{(RI')} = 1 - 0.127 \text{ [NLO]} - 0.069 \text{ [NNLO]} - 0.046 \text{ [NNNLO]}$$

$$\uparrow \qquad \uparrow \qquad \text{[Chetyrkin \& Retey 1999, Gracey 2003]}$$

$$ok \qquad \text{sizable} \qquad \text{large}$$
for a perturbative correction

Ward identity

• By the (non-singlet) axial-vector ward identity,

 $-iq_{\mu}\Lambda^{\mu}_{A,B}(p_1,p_2) = 2m_B\Lambda_{P,B}(p_1,p_2) - i\gamma_5 S_B^{-1}(p_1) - S_B^{-1}(p_2)i\gamma_5$

where $\Lambda_{A,B}$ and $\Lambda_{P,B}$ are the bare three-point Green's functions involving the axial current and pseudoscalar density,

respectively, the RI/MOM mass renormalization [fig. due to C Sachrajda] can alternatively be computed as

$$Z_m^{\text{RI}'/\text{MOM}} = \frac{-p^2 \operatorname{tr}[\Lambda_{P,B}(p,p')\gamma_5]|_{p^2 = p'^2 = -\mu^2}}{\operatorname{tr}[S_B^{-1}p]}$$

where $q^2 = (p-p')^2 = 0$

RI-SMOM

 Origin of the bad perturbative behaviour unclear. However, nonperturbatively, at q²=0 there are 1/p² power corrections, and also the chiral limit does not exist because of a "pseudo-goldstone pole" term [eg Aoki et al 2008]

$$\Lambda(p,p';q^2=0) = \frac{\text{const}}{m_K^2} \langle K^+ | s(p)\bar{u}(p') | 0 \rangle + \dots$$

q

(the pseudoscalar density P has the correct quantum numbers to create pions or kaons, which become massless in the chiral limit)

- a practical issue in lattice simulations involving light quarks [Aoki et al 2008]
- the nonperturbative issues can be addressed by going to more general kinematics
 p² = (p')² = -μ², q² = ω p²

 SMOM ("symmetric MOM") : ω = 1

RI-SMOM to MS

• one-loop conversion factor at the SMOM point

```
C_{m}^{(RI-SMOM)} = 1 - 0.015 [NLO]
```

[Sturm et al 2009]

a tiny one-loop correction

(recall $C_m^{(RI')} = 1 - 0.127$ [NLO] - 0.069 [NNLO] - 0.046 [NNNLO])

• as a function of $\omega = q^2/p^2$ and the gauge parameter

[Sturm et al 2009]

Two-loop (NNLO) calculation

[Gorbahn, SJ 1004.3997] [Almeida, Sturm 1004.4613]

+ recursively one-loop

recursively one-loop

- straightforward evaluation of traces over numerators
- express numerators as polynomials of the denominators
- Feynman integrals with general propagator powers $\int \frac{d^d k}{(2\pi)^d} \frac{d^d l}{(2\pi)^d} \prod_i (P_i^n)^{-d_i} \equiv (16\pi^2)^2 (\frac{\mu^2}{4\pi}e^{\gamma})^{2\epsilon} k_n(a_1, \dots, a_m; \{s_k\})$ topology topology topology topology

Integral reduction

- integration by part identities via Laporta's algorithm [S Laporta 2001] use the public Mathematica implementation FIRE [AV Smirnov 2008]
- two two-loop master integrals known in terms of higher polylogarithms [Davydychev and Usyukina 1994]
- recursively one-loop diagrams with spurios poles -> sensitivity to higher orders in ε

Masterly inactivity

• only unknown "master" ingredient is one-loop integral !

$$j(d;\nu_1,\nu_2,\nu_3;p_1^2,p_2^2,p_3^2) \equiv \left(\frac{i}{16\pi^2}\right)^{-1} \left(\frac{\mu^2}{4\pi}e^{\gamma}\right)^{\epsilon} \int \frac{d^d k}{(2\pi)^d} \frac{1}{[-k^2]^{\nu_3}[-(k+p_1)^2]^{\nu_2}[-(k-p_2)^2]^{\nu_1}}$$

• in particular, need j(d; 1,1,2+ ϵ ; p², x p², y p²), proportional to:

$$\frac{1}{xy} \Big(-\frac{1}{\epsilon} + 2\ln x + 2\ln y - \epsilon (2\ln^2 x + 2\ln^2 y + \ln x \ln y + 3(1 - x - y)\Phi^{(1)}(x, y) - \frac{\pi^2}{6}) \Big) + \epsilon^2 \beta(x, y) + \mathcal{O}(\epsilon^2) \Big)$$

(actually needed only for y=1 or y=x)

- Need O(ε²) term β(x,y) not known and difficult to compute [at least for us]
- can avoid computation reducing the *known* 2-loop masters & using an identity from rotating the triangle by 120 degrees, one can obtain sufficient (algebraic) constraints on it

Analytical result

[Gorbahn, SJ, PRD82 (2010) 114001, arXiv:1004.3997]

$$\begin{split} C_m^{\text{RI/SMOM}}(\omega) &= 1 + \frac{\alpha_s}{4\pi} C_F \left(\frac{3+\xi}{2} \Phi^{(1)} \left(\frac{1}{\omega}, \frac{1}{\omega} \right) - 4 - \xi + 3\ln r \right) + \left(\frac{\alpha_s}{4\pi} \right)^2 C_F \left\{ N_c \left(-\frac{2513}{48} - \frac{3\xi}{2} - \frac{\xi^2}{4} + 12\,\zeta(3) \right) \\ &+ \frac{307+6\,\xi^2}{12}\ln r - \frac{13}{4}\ln^2 r + \left[\frac{301}{24} + \frac{3\xi}{4} - \frac{\xi^2}{8} - \frac{13+\xi^2}{4}\ln r - \frac{7+3\xi}{4}\ln \omega \right] \Phi^{(1)} \left(\frac{1}{\omega}, \frac{1}{\omega} \right) + \frac{9+6\xi+\xi^2}{8} \Phi^{(1)} \left(\frac{1}{\omega}, \frac{1}{\omega} \right)^2 \\ &+ \omega \Phi^{(2)}(1,\omega) - \frac{3+\xi}{2} \Phi^{(2)} \left(\frac{1}{\omega}, \frac{1}{\omega} \right) \right) + n_f \left(\frac{83}{12} + \left[\ln r - \frac{5}{3} \right] \Phi^{(1)} \left(\frac{1}{\omega}, \frac{1}{\omega} \right) - \frac{13}{3}\ln r + \ln^2 r \right) \\ &+ \frac{1}{N_c} \left(-\frac{19}{16} - 2\xi - \frac{\xi^2}{2} + \left[\frac{7}{2} + \xi + \frac{\xi^2}{2} - \frac{9+3\xi}{4}\ln r + \frac{5+3\xi}{4}\ln \omega \right] \Phi^{(1)} \left(\frac{1}{\omega}, \frac{1}{\omega} \right) + \frac{21+6\xi}{4}\ln r - \frac{9}{4}\ln^2 r \\ &+ \frac{1+\xi}{2} \Phi^{(2)} \left(\frac{1}{\omega}, \frac{1}{\omega} \right) + \frac{1}{2} \Omega^{(2)} \left(\frac{1}{\omega}, \frac{1}{\omega} \right) - \Omega^{(2)}(1,\omega) - \left[\frac{5}{8} + \frac{3\xi}{4} + \frac{\xi^2}{8} + \frac{1}{\omega} \right] \Phi^{(1)} \left(\frac{1}{\omega}, \frac{1}{\omega} \right)^2 \right] \end{split}$$

- The functions Φ⁽¹⁾, Φ⁽²⁾, Ψ⁽²⁾, Ω⁽²⁾ are all given in terms of polylogarithms up to fourth order
- full ω dependence: can interpolate RI/MOM RI/SMOM

NNLO result: ω dependence

• $C_m^{(RI')} = 1 - 0.127$ [NLO] - 0.069 [NNLO] - 0.046 [NNNLO]

Residual scale dependence

- construct a formally RG-invariant quantity
- e.g. convert to MS mass from fixed MOM scale 2 GeV, varying dim reg scale used in conversion and RG-evolving back to 2 GeV

• alternatively, consider "RGI" mass, similar picture

NNLO result with error

- take the range of the NNLO band as theoretical range
- symmetrizing around the midpoint, obtain

[Gorbahn, S], PRD82 (2010) 114001, arXiv:1004.3997]

$$\langle 0.010|_{\Pi.0.} 0.001|_{\alpha_s} \rangle$$

$$m^{\rm RGI} = \left(2.53^{+0.052}_{-0.014} \big|_{\rm h.o.} {}^{+0.02}_{-0.02} \big|_{\alpha_s} \right) m^{\rm RI/SMOM} (2\,{\rm GeV})$$

- 2 percent error !
- error dominated by unknown higher orders, α_s uncertainty subleading
- new RBC/UKQCD result: $m^{\overline{\text{MS}}}(2 \text{ GeV}) = (96.2 \pm 2.7) \text{ MeV}$ [Aoki et al, PRD83(2011)074508, arXiv:1011.0892]
- similar stability for other quantities? (B_K/ϵ_K , ϵ'/ϵ , ...)