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Lepton magnetic moments

The present experimental values

Electron:   Hanneke, Fogwell, and Gabrielse ʼ08

   g/2=1.001 159 652 180 73 (28) 
                                              

New value of α follows

 1/α= 137.035 999 084 (51)   [0.37 ppb]
Muon:   BNL E821 ʼ06

   g/2=1.001 165 920 80 (63)         [630 ppt]
Tau:  Delphi at LEP2 ʼ04 

   g/2=0.982(17)

String/gauge dualities, application to QCD
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1 Introduction

1.1 Preliminary Remarks

The motion of the classical particle with the angular momentum L = r × p
generates the magnetic moment µ,

µ =
e

2mc
L , (1.1)

where e is the charge of the particle and m is its mass. In quantum mechanics,
the angular momentum L becomes an operator, L = !l = −i! r ×∇, whose
eigenvalues are quantized in units of the Planck constant !. The magnetic
moment associated with the orbital motion is quantized accordingly.

Besides the orbital motion, an elementary particle may have internal ro-
tation characterized by the spin S = !s. The magnetic moment associated
with this rotation can be presented in the form similar to (1.1),

µ = g
e!

2mc
s , (1.2)

with an additional factor g which is called the gyromagnetic factor. While for
the orbital motion this factor is equal to 1, the Dirac equation for a charged
elementary fermion with spin s = 1/2 implies g = 2. The anomalous magnetic
moment refers to a deviation of the gyromagnetic factor from the g = 2 value
and is parametrized by a = (g−2)/2. It appears due to radiative corrections.
The leading contribution to a, calculated by Schwinger in 1949,

a =
α

2π
, (1.3)

is the same for the electron and the muon. Higher order effects are not uni-
versal and are affected by weak and strong interactions in addition to elec-
tromagnetism.

Recent results [1] from the experiment E821 at Brookhaven National Lab-
oratory (BNL) might indicate a disagreement between the experimental value
for the muon magnetic anomaly and the theoretical expectation based on the
Standard Model. There are two experimental results from E821 with the pre-
cision better than one part per million. They are

K. Melnikov and A. Vainshtein: Theory of the Muon Anomalous Magnetic Moment
STMP 216, 1–6 (2006)
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H = −µ B
1. The two-photon mode of the Higgs-particle decay is important in experimental
searches. Therefore theoretical calculations of the H → γγ rate received much
attention. The H transition into two photons goes via a loops of charged particles:
leptons, quarks and W bosons. In the Standard Model (SM) the Higgs coupling to
other fields is proportional to the masses of the latter; the most massive particle
have the strongest coupling. All these loops had been calculated long ago [1–4], by
different methods, with totally consistent results.

Surprisingly, in two recent publications [5, 6] the question of H → γγ was raised
anew, as if the passage of time negates the knowledge of the past. Raymond Gast-
mans, Sau Lan Wu and Tai Tsun Wu revisited the issue of the W -boson loop in the
H → γγ decay claiming that the old results [1–4] was erroneous. Using the unitary
gauge they obtained a different H → γγ decay rate not coinciding with that of [1–4].
Technically, Gastmans et al. identify dimensional regularization exploited in some
previous calculations as a source of the alleged mishap.

The main argument of Gastmans et al. in favor of the statement of [5, 6] is the
requirement of decoupling: their amplitude vanishes in the limit mW /mH → 0 while
that of [1–4] does not vanish in this limit.

Superficially this argument might seem reasonable. Indeed, the above-mentioned
decoupling works for the fermion loop in the limit mf/mH → 0 because the Higgs
coupling to fermions is proportional to mf . Likewise, in the W -boson case the Higgs
coupling to W

+
W
− is proportional to m

2
W

; thus why not expect vanishing of the
W -loop contribution at mW = 0?

Actually this vanishing does not occur. In this note we will explain the absence of
decoupling for the W -boson loop in the MW → 0 limit owing to some general features
of the non-Abelian vector fields. Our argument will connect a residual nonvanishing
constant in the H → γγ amplitude at mW = 0 with a Goldstone-particle loop well
known in the literature (see e.g. [7]).

There is a crucial difference between, say, spin-1/2 and spin-1 particles with re-
gard to the massless limit. Namely, the number of polarization states stays the
same for spin-1/2 massive and massless particles, while for the massive spin-1 par-
ticle we have three polarization states in contradistinction with the massless spin-1
field, with two polarization states. In the massive case, in addition to two spatially
transverse polarizations (intrinsic to the massless vector field) we have also the longi-
tudinal polarization. Moreover, the amplitude of this polarization grows in the limit
mW → 0. Indeed, the longitudinal polarization of the W boson with 4-momentum
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Electric dipole moments

   Neutron:             Baker et al  ʼ06

  

Electron:             Regan et al  ʼ06

   

Muon:             Muon g-2 Collaboration ʼ04

  

|d| < 2.9× 10−26 e · cm

|d| < 2.8× 10−19 e · cm

|d| < 1.6× 10−27 e · cm

H = −d E 1. The two-photon mode in Higgs decays is quite important in

experimental searches for this particle. So theoretical calculations of the rate for

H → γγ got a lot of attention. The transition to two photons goes via loops

of charged particles what includes leptons, quarks and W bosons. In the Standard

Model the Higgs coupling is proportional to particle mass so the most massive particle

are of most importance. All those loops were calculated long ago [1–4], and the results

were consistent.

However, in two recent papers [5, 6] Raymond Gastmans, Sau Lan Wu and Tai

Tsun Wu revisited the issue of the W boson loop in the H → γγ decay and claimed

a different result. Their main argument in favor of the result obtained is decoupling:

their amplitude vanishes in the limit mW/mH → 0 while it does not vanish in the

previous results.

The argument could sound reasonable. The above decoupling works for the

fermion loop in the limit mf/mH → 0 because the Higgs coupling to fermions

is proportional to mf . In case of W bosons their Higgs coupling is proportional to

m
2
W

so one can expect vanishing of the W loop at mW = 0.

Actually this vanishing does not occur. There is a crucial difference between, say,

spin 1/2 and spin 1 particles in respect to massless limit. Namely, a number of polar-

ization states stays the same for spin 1/2 massive and massless particle while for the

massive spin 1 particle with 3 polarization states besides two spatially transversed

polarizations associated with massless vector field the longitudinal polarization is

there. Moreover, the amplitude of this polarization grows in the limit mW → 0. In-

deed, the longitudinal polarization of W boson with 4-momentum k
µ = (E, 0, 0, k)

moving along z-axis has the form

�µ

L
=

1

mW

�
k, 0, 0, E

�
=

k
µ

mW

+
mW

E + k

�
− 1, 0, 0, 1

�
. (1)

In case of the Abelian vector field the singular term k
µ
/mW does not contribute

due to convolution with the conserved current and the longitudinal quanta decouples

in the mW → 0 limit of electrodynamics with a massive photon.
1

In case of non-Abelian vector field the longitudinal quanta do not decouple start-

ing with states containing two such quanta (in terms of loops it means starting with

one loop). This was firstly demonstrated as long ago as 1971 in Ref. [7].

In application to the W loop in the H → γγ decay we will show that the

longitudinal quanta do not decouple from Higgs and provide nonvanishing of the

loop in the massless limit.

1 Even for the Abelian vector field longitudinal polarizations do not decouple from gravity.
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Observables 
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Fig. 1. A schematic plot of the hierarchy of scales between the CP-odd sources
and three generic classes of observable EDMs. The dashed lines indicate generically
weaker dependencies.

2.1 Observable EDMs

Let us begin by reviewing the lowest level in this construction, namely the
precise relations between observable EDMs and the relevant CP -odd operators
at the nuclear scale. At leading order, such effects may be quantified in terms
of EDMs of the constituent nucleons, dn and dp (where the neutron EDM
is already an observable), the EDM of the electron de, and CP -odd electron-
nucleon and nucleon-nucleon interactions. In the relevant channels these latter
interactions are dominated by pion exchange, and thus we must also consider
the CP -odd pion-nucleon couplings ḡπNN which can be induced by CP -odd
interactions between quarks and gluons. To be more explicit, we write down
the relevant CP -odd terms at the nuclear scale,

Lnuclear
eff = Ledm + LπNN + LeN , (2.3)

which can be split into terms for the nucleon (and electron) EDMs,

Ledm = −
i

2

∑

i=e,p,n

di ψi(Fσ)γ5ψ, (2.4)

the CP -odd pion nucleon intercations,

LπNN = ḡ(0)
πNNN̄τaNπa + ḡ(1)

πNNN̄Nπ0

+ḡ(2)
πNN(N̄τaNπa − 3N̄τ 3Nπ0), (2.5)
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and finally CP -odd electron-nucleon couplings,

LeN = C(0)
S ēiγ5eN̄N + C(0)

P ēeN̄ iγ5N + C(0)
T εµναβ ēσµνeN̄σαβN

+C(1)
S ēiγ5eN̄τ 3N + C(1)

P ēeN̄iγ5τ
3N + C(1)

T εµναβ ēσµνeN̄σαβτ 3N. (2.6)

In certain rare cases, CP -odd nucleon-nucleon forces are not mediated by
pions, in which case the effective Lagrangian must be extended by a variety
of contact terms e.g. N̄NN̄iγ5N , and the like.

The dependence of the observable EDMs on the corresponding Wilson coef-
ficients relies on atomic and nuclear many-body calculations which would go
beyond the scope of this review to cover here (see the reviews [17,18] for fur-
ther details). However, we will briefly summarize the current status of these
calculations, before turning to our major focus which is the calculation of these
coefficients in terms of higher scale CP -odd sources.

As alluded to earlier on, it is convenient to split the discussion into three
parts, corresponding roughly to the three classes of observable EDMs which
currently provide constraints at a similar level of precision; namely: EDMs
of paramagnetic atoms and molecules, EDMs of diamagnetic atoms, and the
neutron EDM.

• EDMs of paramagnetic atoms – thallium EDM

Paramagnetic systems, namely those with one unpaired electron, are primarily
sensitive to the EDM of this electron. At the nonrelativistic level, this is far
from obvious due to the Schiff shielding theorem which implies, since the atom
is neutral, that any applied electric field will be shielded and so an EDM of the
unpaired electron will not induce an atomic EDM. Fortunately, this theorem
is violated by relativistic effects. In fact, it is violated strongly for atoms with
a large atomic number, and even more strongly in molecules which can be
polarised by the applied field. For atoms, the parameteric enhancement of the
electron EDM is given by [19,20,18],

dpara(de) ∼ 10
Z3α2

J(J + 1/2)(J + 1)2
de, (2.7)

up to numerical O(1) factors, with J the angular momentum and Z the atomic
number. This enhancement is significant, and for large Z, the applied field
can be enhanced be a factor of a few hundred within the atom. This feature
explains why atomic systems provide such a powerful probe of the electron
EDM, since the “effective” electric field can be much larger than one could
actually produce in the lab.

8
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QCD Low Energy Lagrangian 

dHg =−(1.8 × 10−4 GeV−1)e ḡ(1)
πNN + 10−2de

+(3.5 × 10−3 GeV)e C(0)
S , (2.12)

where we have limited attention to the isovector pion-nucleon coupling and CS

which turns out to be the most important for CP violation in supersymmetric
models.

• Neutron EDM

The final class to consider is that of the neutron itself, whose EDM can be
searched for directly with ultracold neutron technology, and currently provides
one of the strongest constraints on new CP -violating physics. In this case,
there is clearly no additonal atomic or nuclear physics to deal with, and we
must turn directly to the next level in energy scale, namely the use of QCD
to compute the dependence of dn on CP -odd sources at the quark-gluon level.
This statement also applies to many of the other quantities we have introduced
thus far, including in particular the CP -odd pion-nucleon coupling. Indeed,
it is only paramagnetic systems that are partially immune to QCD effects,
although even there we have noted the possible relevance of electron-nucleon
interactions.

2.2 The structure of the low energy Lagrangian at 1 GeV

The effective CP-odd flavour-diagonal Lagrangian normalized at 1 GeV, which
is taken to be the lowest perturbative quark/gluon scale, plays a special role
in EDM calculations. At this scale, all particles other than the u, d and s
quark fields, gluons, photons, muons and electrons can be considered heavy,
and thus integrated out. As a result, one can construct an effective Lagrangian
by listing all possible CP -odd operators in order of increasing dimension,

Leff = Ldim=4 + Ldim=5 + Ldim=6 + · · · . (2.13)

There is only one operator at dimension 4, the QCD theta term,

Ldim=4 =
g2

s

32π2
θ̄Ga

µνG̃
µν,a, (2.14)

where on account of the axial U(1) anomaly, the physical value of θ – denoted
θ̄ – also includes the overall phase of the quark mass matrix,

θ̄ = θ + Arg DetMq. (2.15)
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The anomaly can be used to shuffle contributions between the θ-term and
imaginary quark masses, but only the combination θ̄ is physical and we choose
to place it in front of GG̃ taking DetMq to be real. It should be apparent that
if any of the quarks were massless, we could then rotate θ away and it would
have no physical consequences.

At the dimension five level, there are (naively) several operators: EDMs of
light quarks and leptons and color electric dipole moments of the light quarks,

Ldim=5 = −
i

2

∑

i=u,d,s,e,µ

di ψi(Fσ)γ5ψi −
i

2

∑

i=u,d,s

d̃i ψigs(Gσ)γ5ψi, (2.16)

where (Fσ) and (Gσ) are a shorthand notation for Fµνσµν and Ga
µνt

aσµν .

In fact, in most models these operators are really dimension-six operators in
disguise. The reason is that, if we proceed in energy above the electroweak scale
and assume the system restores SU(2)×U(1) as in the Standard Model, gauge
invariance ensures that these operators must include a Higgs field insertion
[25]. Indeed, were we to write the basis of down quark EDMs and CEDMs
above the electroweak scale, we should specify the following list of dimension
six operators [25],

LEW
“dim=5′′ =

i

2
√

2
Q̄L

[
2dEW

1 (Bσ) + dEW
2 τ i(W iσ)

+ dEW
2 λa(Gaσ)

]
(Φ/v)DR + h.c., (2.17)

which are defined in terms of left-handed doublets QL = (U, D)L and right-
handed singlets DR and the Higgs doublet Φ, and in terms of the U(1), SU(2),
and SU(3) field strengths Bµν , W i

µν and Ga
µν .

The lesson we draw from (2.17) with regard to EDMs is that, if generated,
these operators must be proportional to the Higgs v.e.v. below the electroweak
scale, and consequently must scale at least as 1/M2 for M $ MW . In practice,
this feature can also be understood in most models by going to a chiral basis,
where we see that these operators connect left- and right-handed fermions,
and thus require a chirality flip. This is usually supplied by an insertion of
the fermion mass, i.e. df ∼ mf/M2, again implying that the operators are
effectively of dimension six.

Consequently, for consistency we should also proceed at least to dimension six
where we encounter the CP -odd three-gluon Weinberg operator and a host of
possible four-fermion interactions, (ψ̄iΓψi)(ψ̄jiΓγ5ψj), where Γ denotes several
possible scalar or tensor Lorentz structures and/or gauge structures, which are
contracted between the two bilinears. We limit our attention to a small subset

12

of the latter that will be relevant later on,

Ldim=6 =
1

3
w fabcGa

µνG̃
νβ,bG µ,c

β +
∑

i,j

Cij (ψ̄iψi)(ψ̄jiγ5ψj) + · · · (2.18)

In this formula, the operators with Cij are summed over all light fermions.
Going once again to a chiral basis, we can argue as above that the four-fermion
operators, which require two chirality flips, are in most models effectively of
dimension eight. Nonetheless, in certain cases they may be non-negligible.

2.3 The strong CP problem

The leading dimension-four term in the CP -odd Lagrangian given in Eq. (2.14)
has a special status, in that it is a marginal operator, unsuppressed by any
heavy scale. It is also a total derivative – we can write GG̃ = ∂µKµ with Kµ

the Chern-Simons current – and thus plays no role in perturbation theory.
However, Kµ is not invariant under so-called large gauge transformations and
thus one may expect that the θ-term becomes relevant at the nonperturbative
level. That it does so can be argued at the semi-classical level using instanton
methods, and more generally can be understood within QCD via this relation
to the U(1) problem. In particular, we note that the same operator GG̃ arises
as the θ-term in the Lagrangian, and also as an anomaly for the axial U(1)
current J µ

A , i.e. for massless quarks,

∂µJ µ
A =

αs

2π
Ga

µνG̃
µνa. (2.19)

This leads to an intrinsic link between two physical phenomena: namely the θ-
dependence of physical quantities, and the absence of a light pseudo-Goldstone
boson associated with spontaneous breaking of the axial current J µ

A [5] (the
corresponding state, the η′ is instead rather heavy, mη′ ! mπ). Although it
would take us too far afield to review the story of this link in detail (see e.g.
[5,26–30]), let us note that in the large N limit, as discussed by Witten and
Veneziano [27,28], use of the anomaly equation leads to a simple relation that
exemplifies this connection,

m2
η′ =

4Nf

f 2
π

(
d2E

dθ2

)YM

θ=0

, (2.20)

where Nf is the number of flavours. This relation expresses the η′ mass in
terms of the θ-dependence of the vacuum energy in a theory with no light
quarks.

13
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〈0|qq|0〉=−(0.225 GeV)3, (3.63)

while for the condensate susceptibilities, we have [75]

χ $ −5.7 ± 0.6 GeV−2,

m2
0 $ −0.8 GeV2. (3.64)

This determination of χ is based on spectral sum-rules [75] and is slightly
lower than the value obtained in [76].

A more systematic treatment of the sum-rule [73,58,74] indicates that a sta-
bility domain exists for relatively low Borel mass scales, of M ∼ O(0.8GeV).
Convergence of the OPE is apparently not in danger as this low scale arises
via the two step procedure used, in which the OPE is naturally formulated
around the neutron scale, M ∼1 GeV, while the chiral techniques used to ex-
tract the dependence of the condensates on the CP -violating sources lower the
effective scale, but also introduce additional combinatoric suppression factors
as the dimension of the condensates increases. In order to test the stability of
the sum rule, and obtain an estimate for the uncertainty due to the handling
of excited states, one can generalise the expression for (3.59), by including
a more systematic parametrisation of the continuum, and also by including
1-loop anomalous dimensions for the currents and condensates entering the
sum-rule. However, as alluded to earlier, these refinements have a rather min-
imal impact, moving the stability domain by no more than 10-15%. This is
relatively small compared to the primary sources of error, namely the satura-
tion hypothesis for the condensates, the need to extract the single-pole term
from the sum-rules and, perhaps most significantly, the dependence on β.

Extracting a numerical central value from the sum-rule, employing numerical
estimates for the condensates (3.64), and estimating the precision through
consideration of the sources of error listed above, we find the results first
presented in [73,74],

dn(θ̄) = (1 ± 0.5)
|〈qq〉|

(225MeV)3
θ̄ × 2.5 10−16e cm, (3.65)

dPQ
n (dq, d̃q) = (1 ± 0.5)

|〈qq〉|
(225MeV)3

[
1.1e(d̃d + 0.5d̃u) + 1.4(dd − 0.25du)

]
,

where we intentionally split the formula into two parts, dn(θ̄) and dn(dq, d̃q)
in the presesence of PQ symmetry. In the generic case, the two lines in (3.65)
must be added together and θ̄ substituted by θ̄ − θind.

The result (3.65) offers several interesting consequences. Note that the overall
factor of 〈qq〉 combines with the light quark masses from short-distance ex-
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〈0|qq|0〉=−(0.225 GeV)3, (3.63)
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m2
0 $ −0.8 GeV2. (3.64)
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Fig. 5. A particular 3-loop contribution [82] to the d-quark EDM induced by the
KM phase in the standard model. The box vertex denotes a contacted W -boson line
connected to the light quarks, while it is implicit that the external photon line is to
be attached as appropriate to any charged lines.

4 EDMs in models of CP violation

We have now moved to the highest level in Fig. 1, which is where the EDM
constraints can be applied to directly constrain new sources of CP violation. In
this section, we will breifly discuss these constraints, firstly looking at why the
Standard Model itself provides such a small background, and then why most
models of new physics, and supersymmetry in particular, tend to overproduce
EDMs and are thus subject to stringent constraints.

4.1 EDMs in the Standard Model

The recent discovery and exploration of CP violation in the neutral B-meson
system [7] is, along with existing data from CP -violation observed in K-
mesons, (within current precision) in accord with the minimal model of CP
violation known as the Kobayashi-Maskawa (KM) mechanism [3]. This intro-
duces a 3× 3 unitary quark mixing matrix V in the charged current sector of
up and down-type quarks taken in the mass eigenstate basis,

Lcc =
g√
2

(
ŪLW/ +V DL + (H.c.)

)
. (4.73)

This model possesses a single CP -violating invariant in the quark sector,
JCP = Im(VtbV ∗

tdVcdV ∗
cb) # 3×10−5. This combination, along with θQCD, are the

only allowed sources of CP violation in the Standard Model (treating “Stan-
dard Model neutrinos” as massless). In addition to this, CP violation in the
SM vanishes in the limit of an equal mass for any pair of quarks of the same
isospin, e.g. d and s, u and c, etc. These two conditions are extremely powerful
in suppressing any KM-induced CP -odd flavour-conserving amplitude.

36

γ

n nΣ−

π+

g
u, d u, d

s d
c, t c, t

W

Fig. 6. A leading contribution to the neutron EDM in the Standard Model, arising
via a four-quark operator generated by a strong penguin, and then a subsequent
enhancement via a chiral π+ loop.

• quark and nucleon EDMs

The necessity of four electroweak vertices requires that any diagram capable
of inducing a quark EDM have at least two loops. Moreover, it turns out
that all EDMs and color EDMs of quarks vanish exactly at the two-loop level
[83], and only three-loop diagrams survive [84,82], as in Fig. 5. A leading-log
calculation of the three-loop amplitude for the EDM of the d-quark produces
the following result [82],

dd = e
mdm2

cαsG2
F JCP

108π5
ln2(m2

b/m
2
c) ln(M2

W/m2
b). (4.74)

Upon the inclusion of the other contributions, it produces a numerical estimate

dKM
d " 10−34e cm. (4.75)

The only relevant operator that is not zero at two-loop order is the Weinberg
operator [85], but its numerical value also turns out to be extremely small.
Indeed the largest Standard Model contributon to dn comes not from quark
EDMs and CEDMs, but instead from a four-quark operator generated by a
so-called “strong penguin” diagram shown in Fig. 6. This is enhanced by long
distance effects, namely the pion loop, and it has been estimated that this
mechanism could lead to a KM-generated EDM of the neutron of order [86],

dKM
n " 10−32e cm. (4.76)

However, this is still six to seven orders of magnitude smaller than the current
experimental limit.
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• lepton EDMs

The KM phase in the quark sector can induce a lepton EDM via a diagram
with a closed quark loop, but a non-vanishing result appears first at the four-
loop level [87] and therefore is even more suppressed, below the level of

dKM
e ≤ 10−38e cm, (4.77)

and so small that the EDMs of paramagnetic atoms and molecules would be
induced more efficiently by e.g. Schiff moments and other CP -odd nuclear
momenta.

In this regard, we note that recent data on neutrino oscillations points toward
the existence of neutrino masses, mixing angles, and possibly of new CKM-
like phase(s) in the lepton sector. Under the assumption that neutrinos are
Majorana particles, the presence of these new CP -odd phases in the lepton
sector allows for a non-vanishing two-loop contributions to de [88], without
any further additions to the Standard Model. However, recent calculations
[89] show that a typical see-saw pattern for neutrino masses and mixings only
induces a tiny contribution to the EDMs in this way, of O(mem2

νG
2
F ), unless

a fine-tuning of the light neutrino masses is tolerated in which case de could
reach 10−33e cm. Therefore, within this minimal extension of the Standard
Model allowing for massive neutrinos, the electron EDM is not the best way
to probe CP violation in the lepton sector.

• Probing the scale of new physics

The Standard Model predictions for EDMs described above are well beyond
the reach of even the most daring experimental proposals. This implies in
turn that the Kobayashi-Maskawa phase provides a negligible background and
thus any positive detection of an EDM would necessarily imply the presence
of a non-KM CP -violating source. Before we consider some of the models
which provide motivations for anticipating such a discovery, it will first be
useful to consider in more general terms how high an energy scale one could
indirectly probe with EDM meaurements. Indeed, we are led to ask first of
all, what energy scale of new CP -violating physics is probed with the current
experimental sensitivity to EDMs? Secondly, given the small KM background,
we might also ask for the largest energy scale that could be probed in principle
before reaching the level where the Standard Model KM contibutions would
become significant.

To try and answer these questions in a systematic way, let us consider a toy
model containing a scalar field φ (which is Higgs-like, but needn’t be the SM
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Potential for NP to show up!
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Anatomy of muon g-2
CERN TH SEMINAR, 7 APRIL 2004 A. Vainshtein Hadronic effects in g−2 4

The Standard Model prediction for aµ can be represented as a sum

aSM
µ = aQED

µ + ahad
µ + aEW

µ

The QED part involving only leptons and photons is the main one,

aQED
µ = 116 584 706(3)× 10−11 .

This accounts for one-, two- and three-loop contributions, i.e., up to the α3 terms.

Not calculated yet the four-loop terms are of order α4 ∼ 10−11.

Next is the hadronic contribution.

719.58(1.5)                    Kinoshita et al

CERN TH SEMINAR, 7 APRIL 2004 A. Vainshtein Hadronic effects in g−2 26

Summary

• The hadronic light-by-light scattering contribution to aµ is shown to be larger than

previous estimates. We cannot claim any significant reduction in the theoretical

uncertainty although believe that the shift ≈ 50× 10−11 in the central value is real,

aLbL
µ

= 134(25)× 10−11

aexp
µ
− ath

µ
=

�
(220± 100)× 10−11 (2.2 σ), e+e− based
(76± 100)× 10−11 (0.8 σ), τ based

• Hadronic effects in electroweak corrections are determined by matching the OPE

and hadronic phenomenology. Remaining uncertainty is shown to be very small.

In total a small shift in aEW
µ

from the previous value of 152(4)× 10−11 to a slightly

larger (but consistent) value

aEW
µ

= 154(1)(2)× 10−11

where the first error corresponds to hadronic loop uncertainties and the second to

an allowed Higgs mass range of 114 GeV < mH < 250 GeV, the current top

mass uncertainty and unknown three-loop effects.

Czarnecki, Marciano, AV ʻ02

CERN TH SEMINAR, 7 APRIL 2004 A. Vainshtein Hadronic effects in g−2 18

Electroweak contributions to aµ

In the Standard Model the one-loop electroweak contributions were calculated about

30 years ago

aEW
µ

(1-loop) =
5 Gµ m2

µ

24
√

2π2

�
1 +

1
5

(1− 4 sin2 θW )2 +O

�
m2

µ

m2
W,H

��
= 194.8× 10−11

µ µ

ν

γ

W W
µ µ

Z

γ

µ
µ µ

H

γ

µ

One-loop electroweak contributions to aµ

PITT–CMU SEMINAR, 02/27/03 A. Vainshtein Hadronic effects in aEW
µ 2

Muon anomalous magnetic moment

The anomalous magnetic moment of muon is measured with a very high

precision

aexp
µ =

gµ − 2
2

= 116 592 030(80)× 10−11 E821 at BNL

The Standard Model prediction for aµ can be represented as a sum

aSM
µ = aQED

µ + ahad
µ + aEW

µ

The QED part involving only leptons and photons is the main one,

aQED
µ = 116 584 706(3)× 10−11

PITT–CMU SEMINAR, 02/27/03 A. Vainshtein Hadronic effects in aEW
µ 2
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µ
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Two-loop corrections are more involved

aEW
µ (2-loop)LL =

5Gµm2
µ

24
√

2π2
· α

π




−
43
3

ln
mZ

mµ
+

36
5

�

f∈F

Nf Q2
f I3

f ln
mZ

mf






≈ −37× 10−11 F = τ, u , d, s, c, b

µ µ

γ

γZ

f

Fermion triangles ( Z∗γγ∗ vertex)

Kukhto, Kuraev, Schiller, Silagadze ’92

Peris, Perrottet, Rafael ’95

Czarnecki, Krause, Marciano ’95

mu,d = 0.3 GeV, ms = 0.5 GeV,
mc = 1.5 GeV, mb = 4.5 GeV

Total: aEW
µ = 152(4)× 10−11

Czarnecki, Marciano ’01
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Perturbative and nonperturbative
triangle amplitudes  

II. HADRONIC CORRECTIONS TO QUARK TRIANGLES

We follow Ref. [1] in notations and definitions. Let us start with a definition of vector,
jµ , and axial, j5

ν, currents,

jµ = q̄ V γµq, j5
ν = q̄ Aγνγ5q , (1)

where the quark field qi
f has color (i) and flavor (f ) indices and the matrices V and A are

diagonal matrices of vector and axial couplings acting on flavor indexes. To avoid dealing
with the U(1) anomaly in respect to gluon interactions we assume that Tr A = 0 . In the
case of electroweak corrections one can view the vector current as an electromagnetic one
with V being the matrix of electric charges and j5

ν as the axial part of the Z boson current
with matrix A given by the weak isospin projection.

The amplitude for the triangle diagram in Fig. 1 involving the axial current j5
ν and two
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FIG. 1: Quark triangle, diagram (a), and a gluon correction to it, diagram (b) .

vector currents jµ and j̃γ = q̄ Ṽ γµq (for generality we use a different matrix Ṽ for the soft
momentum current) can be written as

Tµγν = −
∫

d4xd4y eiqx−iky 〈0| T{jµ(x) j̃γ(y) j5
ν(0)}|0〉 . (2)

We can view the current j̃γ as a source of a soft photon with the momentum k . Introducing
a polarization vector of a soft photon eγ(k) we come to the amplitude Tµν

Tµν = Tµγνeγ(k) = i
∫

d4x eiqx 〈0| T{jµ(x) j5
ν(0)}| γ(k)〉 , (3)

which can be viewed as a mixing between the axial and vector currents in the external
electromagnetic field.

It is clear that the expansion of Tµν in the small momentum k starts with linear terms
and we neglect quadratic and higher powers of k. There are only two Lorentz structures for
Tµν which are linear in k and consistent with the conservation of electromagnetic current,

Tµν = −
i

4π2

[
wT(q2)

(
−q2f̃µν + qµqσf̃σν − qνqσf̃σµ

)
+ wL(q2) qνqσf̃σµ

]
, (4)

f̃µν =
1

2
εµνγδf

γδ , fµν = kµeν − kνeµ .
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The amplitude for the triangle diagram in Fig. 1 involving the axial current j5
ν and two
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 j 
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FIG. 1: Quark triangle, diagram (a), and a gluon correction to it, diagram (b) .

vector currents jµ and j̃γ = q̄ Ṽ γµq (for generality we use a different matrix Ṽ for the soft
momentum current) can be written as

Tµγν = −
∫

d4xd4y eiqx−iky 〈0| T{jµ(x) j̃γ(y) j5
ν(0)}|0〉 . (2)

We can view the current j̃γ as a source of a soft photon with the momentum k . Introducing
a polarization vector of a soft photon eγ(k) we come to the amplitude Tµν

Tµν = Tµγνeγ(k) = i
∫

d4x eiqx 〈0| T{jµ(x) j5
ν(0)}| γ(k)〉 , (3)

which can be viewed as a mixing between the axial and vector currents in the external
electromagnetic field.

It is clear that the expansion of Tµν in the small momentum k starts with linear terms
and we neglect quadratic and higher powers of k. There are only two Lorentz structures for
Tµν which are linear in k and consistent with the conservation of electromagnetic current,

Tµν = −
i

4π2

[
wT(q2)

(
−q2f̃µν + qµqσf̃σν − qνqσf̃σµ

)
+ wL(q2) qνqσf̃σµ

]
, (4)

f̃µν =
1

2
εµνγδf

γδ , fµν = kµeν − kνeµ .

2

Both structures are transversal with respect to vector current, qµTµν = 0. As for the axial
current, the first structure is transversal with respect to qν while the second is longitudinal.

The one-loop result for the invariant functions wT and wL can be taken from the classic
papers by Bell and Jackiw [6], Adler [7] and Rosenberg [8] (it simplifies considerably in the
limit of the small photon momentum [9]),

w1−loop
L = 2 w1−loop

T = 2Nc Tr A V Ṽ
∫ 1

0

dα α(1 − α)

α(1 − α)Q2 + m2
, (5)

where Q2 = q2 , the factor Nc accounts for the color of quarks and m is the diagonal
quark mass matrix, m = diag{mq1

, mq2
, . . .}. In the chiral limit, m = 0, the invariant

functions wT,L are

w1−loop
L [m = 0] = 2 w1−loop

T [m = 0] =
2Nc Tr (A V Ṽ )

Q2
. (6)

Nonvanishing in the chiral limit, m = 0 , the longitudinal part qνTµν represents the axial
anomaly [6, 7],

qνTµν =
i

4π2
Q2wL qσf̃σµ =

i

2π2
Nc Tr (A V Ṽ ) qσf̃σµ , (7)

and its nonrenormalization implies that the one-loop result (6) for wL stays intact when
interaction with gluons is switched on.

A. Nonrenormalization theorem for the transversal part of the triangle

We claim that the relation

wL[m = 0] = 2 wT [m = 0] (8)

which holds at the one-loop level, see Eq. (6), gets no perturbative corrections from gluon
exchanges. This follows from the following line of argumentation.

In the chosen kinematics the fermion triangle with m = 0 possesses a special feature:
namely, a symmetry under permutation of indexes of axial and vector currents, µ ↔ ν .
Indeed, in the triangle diagrams (a) and (b) in Fig. 1 one can move γ5 from the axial vertex
γνγ5 to the vector vertex γµ . In the chiral limit it moves via even number of gamma
matrices in any order of perturbation theory. Together with the change of the momentum
q → −q (which does not affect Tµν) it shows the symmetry of the amplitude Tµν .

At first glance the symmetry under the µ ↔ ν permutation seems to be in contradiction
with the general decomposition (4): the transversal part of Tµν is antisymmetric, the longi-
tudinal part has no symmetry, and there is no way to choose wT and wL which makes the
Tµν symmetric. Note, however, that the term q2f̃µν in the transversal structure in Eq. (4)
actually produces a term in Tµν which does not depend on q. It is because wT ∝ 1/q2.
The µ ↔ ν symmetry holds for a singular in q part of Tµν when the condition (8) relating
wT to wL is fulfilled. The constant in q part is then fixed by the conservation of the vector
current, qµTµν = 0 . An independence on q for the antisymmetric part provides, in fact,
an alternative proof of the Adler-Bardeen theorem. Indeed, gluon corrections would lead to
logarithmic dependence on q instead of the constant.

3
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Hadronic corrections for quark triangles

How good is the one-loop approximation for wL and wT? This question pertains to

strong interaction effects for quark loops.

j ν

γ ν γ 5 µγ

jµ

γj
~

5

First, about perturbative corrections at Q� mq.

The longitudinal function wL is protected by

Adler-Bardeen nonrenormalization theorem.

What about the transversal function wT? It

turn out that the αs corrections in wT are

also absent at Q � mq due to the new non-

renormalization theorem based on

wT [mq = 0] =
1
2

wL[mq = 0] A.V. ’02

No αs corrections in chiral limit ! For heavy quarks perturbative corrections show up

at Q ∼ mq, they are regulated by small αs(mq) in aµ .

No pertubative corrections both in 
longitudinal and transversal parts in 
the chiral limit. Pole in the longitudinal
part corresponds to massless pion.

Nonrenormalization theorem 

Czarnecki, Marciano, AV ʻ02
AV ʻ02

Knecht, Peris, Perrottet, de Rafael ʼ03

But it should be no massless pole in the transversal part. 
A shift from zero is provided by nonperturbative effects.
Four-fermion operators in OPE.

! Z

q q

due to the explicit breaking of the chiral symmetry by quark masses,1

wL[u, d] =
2

Q2 + m2
π

. (54)

To find the contribution of wL[u, d] to aEW
µ one needs to use the more accurate Eq. (16),

rather than Eq. (17), because the integral is dominated by momenta Q ∼ mπ comparable

with mµ,

∆aL
µ[e, u, d] = −

α

π

Gµm2
µ

8π2
√

2




2 ln
m2

π

m2
µ

+
8

3
+

4

3

� 1

0
dα(1 + α) ln A

+4
m2

π

m2
µ




� 1

0
dα(1 − α)2 ln A −

1

3
ln

m2
π

m2
µ

+
2

9








 , (55)

where A = α + (1 − α)2(m2
µ/m2

π). Numerically it gives

∆aL
µ[e, u, d] = −

α

π

Gµm2
µ

8π2
√

2
· 2.58 = −0.7 · 10−11 . (56)

The transversal function wT [u, d] can be modeled as a linear combination of two pole

terms: one is due to the ρ(770) vector meson, another due to the a1(1260) axial vector

meson,

wT [u, d] =
1

m2
a1

− m2
ρ



m2
a1

− m2
π

Q2 + m2
ρ

−
m2

ρ − m2
π

Q2 + m2
a1



 . (57)

The residues in this expression are fixed by two conditions at large Q which follow from

the OPE expression (50) plus the d = 3 terms (41) breaking chiral symmetry. The first

condition is on the coefficient of the leading 1/Q2 term, the second condition is for the

coefficient of 1/Q4 . The term 1/Q6 in (50) allows for an extra test of the model. The

expression (57) gives −(0.96 GeV)4 to be compared with −(0.71 GeV)4 in the OPE

based (50). Agreement is not extremely good but the right sign and order of magnitude are

encouraging. Since the OPE 1/Q6 estimate is very approximate, we use (57) for numerical

estimates.

For the integral over Q defining the contribution of wT [u, d], we can use the simpler

expression (17) neglecting m2
µ/m2

ρ corrections,

∆aT
µ[e, u, d] = −

α

π

Gµm2
µ

8π2
√

2




ln
m2

ρ

m2
µ

−
m2

ρ

m2
a1

− m2
ρ

ln
m2

a1

m2
ρ

+
3

2




 , (58)

which gives numerically

∆aT
µ[e, u, d] = −

α

π

Gµm2
µ

8π2
√

2
· 4.88 = −1.32 · 10−11 . (59)

1 It is just this shift which allows one to derive [23] the expression in (44) by comparison of the 1/Q4 terms

with the OPE.
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Hadronic contributions

ahad
µ = ahad,LO

µ + ahad,HO
µ + aLBL

µ

µ µ
!

q
!

q

Lowest order hadronic
contribution represented by
a quark loop

An example of higher order
hadronic contribution

γ

γγγ

q q

µ µ

Light-by-light scattering
contributionCERN TH SEMINAR, 7 APRIL 2004 A. Vainshtein Hadronic effects in g−2 6

In theory

ahad,LO

µ =
�α mµ

3π

�2
� ∞

4m2
π

ds

s2
K(s)R(s)

K(s) is the known function, K(s)→ 1, s� m2
µ

R(s) is the cross section of e+e− annihilation into hadrons in units of

σ(e+e−→ µ+µ−).

Two regions. The threshold region s ∼ 4m2
π where

R(s) ≈ 1
4

�
1− 4m2

π

s

�3/2

and the resonance region s ∼ m2
ρ where by quark-hadron duality

R(s) ≈ Nc

�
Q2

q
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The model results in

aπ0

µ = 76.5× 10−11 , aPS
µ = 114(10)× 10−11

A similar analysis for pseudovector exchange gives

aPV
µ = 22(5)× 10−11

and finally

aLbL
µ = 136(25)× 10−11

WORKSHOP ON (g − 2)µ, GLASGOW, OCTOBER 25, 2007 A. Vainshtein Determination of the light-by-light contributions 21

Comparison with other models

0

The difference with meson exchange models, like Knecht, Nyffeler et al, is due to
absence of the form factor in the vertex with the soft photon (magnetic field),
76.5× 10−11 versus 58× 10−11 for π0 exchange.

ENJL model Bijnens, Pallante, Prades is conceptually not much different
from our model. Indeed, we use meson exchange model which interpolates
between the OPE at short distances and meson poles at large ones. It results
in a less suppression at large momenta (no form factor in the vertex with magnetic
field).

In the ENJL model high momenta asymptotics are provided by adding up the
quark loops. Thus, our asymptotics are the same and difference is mostly in
details of interpolations between high and low momenta.

25
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In difference with ahad,LO
µ there is no experimental input for the light-by-light

contribution.What are possible theoretical parameters to exploit?

Smallness of chiral symmetry breaking, m2
ρ/m2

π � 1

a(n)

µ ∼ c1

�α

π

�n m2
µ

m2
π

, LO :n = 2 , LbL : n = 3

µ µ
! !

"

"+

#

µ µ

!

!!!

" "

The Goldstone nature of pion implies m2
π ∝ mq much less than typical

M2

had
∼ m2

ρ . Thus, the threshold range in pion loops produces the 1/m2
π

enhancement.
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Large number of colors, Nc

Quark loops clearly give aµ ∝ Nc . Dual not to pion loops but to meson
exchanges.

µ µ
! !"

!

!
!

!

µ

"

No continuum in the large Nc limit.
M = ρ0,ω,φ, ρ�, . . . for the polarization operator
M = π0, η, η�, a0, a1, . . . (and any C-even meson) for the light-by-light

a(n)
µ ∼ c2

�α

π

�n
Nc

m2
µ

m2
ρ
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We can check for ahad,LO
µ

ahad,LO

µ =
�α mµ

3π

�2
� ∞

4m2
π

ds

s2
K(s)R(s)

K(s) is the known function, K(s)→ 1, s� m2
µ

R(s) is the cross section of e+e− annihilation into hadrons in units of
σ(e+e−→ µ+µ−).

Two regions. The threshold region s ∼ 4m2
π where

R(s) ≈ 1
4

�
1− 4m2

π

s

�3/2

and the resonance region s ∼ m2
ρ where by quark-hadron duality on average

R(s) ≈ Nc

�
Q2

q
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The chirally enhanced threshold region gives numerically

ahad,LO

µ (4m2

π ≤ s ≤ m2

ρ/2) ≈ 400×10−11

Compare with the Nc enhanced ρ peak,

ahad,LO

µ (ρ) =
m2

µ Γ(ρ→ e+e−)
π m3

ρ

≈ 5000×10−11

This contribution is enhanced by Nc ,

aµ(ρ) ∼ c2

�α

π

�2

Nc
m2

µ

m2
ρ

What is a lesson from this exercise? We see that the large Nc enhancement
prevails over chiral one.
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In the chiral perturbation theory         

a2π
µ =

1
40

� α

3π

�2 m2
µ

m2
π

�
1 + 40 m2

πF �
ππγ∗(0) ln

mρ

2mπ

�

=
1
40

� α

3π

�2 m2
µ

m2
π

�
1 + 40

m2
π

m2
ρ

ln
mρ

2mπ

�

Chiral perturbation theory does not work. The leading term
is suppressed by p-wave nature.       
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In light-by-light

π
0, a 1

π
+

a b

The chirally enhanced pion box contribution does not result in large number, it is
actually rather small,

aLbL
µ (pion box) ≈ −4×10−11 Hayakawa, Kinoshita, Sanda; Melnikov

similarly to the hadronic polarization case above.
A larger value (-19) for the pion box was obtained by Bijnens, Pallante, Prades
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Light-by-light
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Instability of the number is due to relatively large pion momenta in the loop, of
order of 4mπ as we estimated. Then details of the model becomes important and
theoretical control is lost. In HSL model few first terms of m2

π/m2
ρ expansion are

aµ(charged pion loop)×1011 = −46.37+35.46+10.98−4.7+. . . = −4.9

If momenta were small compared with mρ the result would be close to the leading
term – free pion loop.

In case of polarization operator the suppression of the leading term in the chiral
expansion (larger momenta) can be related to the p-wave p3 suppression. There
is a suppression for s-wave in two-pion intermediate state near threshold in the
case of LbL.
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0

Hayakawa, Kinoshita, Sanda
Bijnens, Pallante, Prades

Barbieri, Remiddi
Pivovarov

Bartos, Dubničkova,Dubnička, Kuraev, Zemlyanaya
Knecht, Nyffeler

Knecht, Nyffeler, Perrotttet, de Rafael
Ramsey-Musolf, Wise

Blokland, Czarnecki, Melnikov
Melnikov, A.V.

Different models: constituent quark loop, extended Nambu–Jano-Lasinio model
(ENJL), hidden local symmetry (HLS) model . . .
The π0 pole part of LbL contains besides Nc the chiral enhancement in the
logarithmic form, leading to the model-independent analytical expression

aLbL
µ (π0) =

�α

π

�3
Nc

m2
µ Nc

48π2F 2
π

ln2 mρ

mπ
+ . . .
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However next, model dependent, terms are comparable with the the leading one.
Numerically

aLbL
µ (π0) = 58(10)×10−11 Knecht, Nyffeler

Models
HLS model is a modification the Vector Meson Dominance model.

ENJL model is represented by the following graphs
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Massive quark loop (Laporta, Remiddi ’91)

1. Introduction.

From a theoretical point of view the hadronic light–by–light scattering (HLbL) contribution to the
muon magnetic moment is described by the vertex function (see Fig. 1 below):

Γ(H)
µ (p2, p1) = ie6

∫
d4k1

(2π)4

∫
d4k2

(2π)4
Π(H)

µνρσ(q, k1, k3, k2)

k2
1k2

2k2
3

γν(!p2+ !k2−mµ)−1γρ(!p1− !k1−mµ)−1γσ ,

(1)
where mµ is the muon mass and Π(H)

µνρσ(q, k1, k3, k2), with q = p2 −p1 = −k1 −k2 −k3, denotes
the off–shell photon–photon scattering amplitude induced by hadrons,

Π(H)
µνρσ(q, k1, k3, k2) =

∫

d4x1

∫

d4x2

∫

d4x3 exp[−i(k1 · x1+k2 · x2+k3 · x3)]

×〈0|T{jµ(0) jν(x1) jρ(x2) jσ(x3)}|0〉 . (2)

Here jµ is the Standard Model electromagnetic current, jµ(x) =
∑

q Qqq̄(x)γµq(x), where Qq

denotes the electric charge of quark q. The external photon with momentum q represents the magnetic
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Figure 1: Hadronic light–by–light scattering contribution.

field. We are interested in the limit q → 0 where the current conservation implies that Γ(H)
µ is linear

in q,

Γ(H)
µ = −

aHLbL

4mµ

[γµ , γν ] qν . (3)

The muon anomaly can then be extracted as follows

aHLbL =
−ie6

48mµ

∫
d4k1

(2π)4

∫
d4k2

(2π)4
1

k2
1k2

2k2
3

[
∂

∂qµ
Π(H)

λνρσ(q, k1, k3, k2)

]

q=0

× tr
{

(!p + mµ)[γµ, γλ](!p + mµ)γν(!p+ !k2 − mµ)−1γρ(!p− !k1 − mµ)−1γσ
}

.(4)

Unlike the case of the hadronic vacuum polarization (HVP) contribution, there is no direct ex-
perimental input for the hadronic light–by–light scattering (HLbL) so one has to rely on theoretical
approaches. Let us start with the massive quark loop contribution which is known analytically,

aHLbL(quark loop) =

(
α

π

)3

NcQ
4
q

{
[
3

2
ζ(3) −

19

16

]

︸ ︷︷ ︸

0.62

m2
µ

m2
q

+ O

[

m4
µ

m4
q

log2
m2

µ

m2
q

] }

, (5)

where Nc is the number of colors and mq ' mµ is implied. It gives a reliable result for the heavy
quarks c , b , t with mq ' ΛQCD. Numerically, however, heavy quarks do not contribute much. For

2

For c-quark with the c quark, with mc ≈ 1.5 GeV,

aHLbL(c) = 2.3 × 10−11 . (6)

To get a very rough estimate for the light quarks u, d, s let us use a constituent mass of 300 MeV for
mq . This gives aHLbL(u, d, s) = 64 × 10−11. QCD tells us that the quark loop should be accurate
in describing large virtual momenta, ki # ΛQCD, i.e. short–distances. What is certainly missing
in this constituent quark loop estimate, however, is the low–momenta piece dominated by a neutral
pion–exchange in the light–by–light scattering. Adding up this contribution, discussed in more detail
below, approximately doubles the estimate to aHLbL ≈ 12 × 10−10. While the ballpark of the effect
is given by this rough estimate, a more refined analysis is needed to get its magnitude and evaluate the
accuracy. Details and comparison of different contributions will be discussed below, but it is already
interesting to point out that all existing calculations fall into a range:

aHLbL = (11 ± 4) × 10−10 , (7)

compatible with this rough estimate. The dispersion of the aHLbL results in the literature is not too
bad when compared with the present experimental accuracy of 6.3 × 10−10. However the proposed
new gµ − 2 experiment sets a goal of 1.4 × 10−10 for the error, which calls for a considerable
improvement in the theoretical calculations as well. We believe that theory is up to this challenge;
a further use of theoretical and experimental constraints could result in reaching such accuracy soon
enough.

The history of the evaluation of the hadronic light–by–light scattering contribution is a long one
which can be found in the successive review articles on the subject. In fact, but for the sign error in
the neutral pion exchange discovered in 2002 [1, 2], the theoretical predictions for aHLbL have been
relatively stable over more than ten years.

Here we are interested in highlighting the generic properties of QCD relevant to the evaluation of
Eq. (4), as well as their connection with the most recent model dependent estimates which have been
made so far.

2. QCD in the Large Nc and Chiral Limits

For the light quark components in the electromagnetic current (q = u , d , s) the integration of
the light–by–light scattering over virtual momenta in Eq. (4) is convergent at characteristic hadronic
scales. We choose the mass of the ρ meson mρ to represent that scale. Of course, hadronic physics
at such momenta is non–perturbative and the first question to address is what theoretical parameters
can be used to define an expansion. Two possibilities are: the large number of colors, 1/Nc % 1,
and the smallness of the chiral symmetry breaking, m2

π/m2
ρ % 1. Their relevance can be seen from

the expansion of aHLbL as a power series in these parameters,

aHLbL ∼
(α

π

)3 m2
µ

m2
ρ

[

c1 Nc + c2

m2
ρ

m2
π

+ c3 + O(1/Nc)
]

, (8)

where mπ > mµ is implied. Only the power dependencies are shown; possible chiral logarithms,
ln(mρ/mπ), are included into the coefficients ci.

Terms leading in the large Nc limit

The first term, linear in Nc , comes from the one–particle exchange of a meson M in the HLbL
amplitude, see Fig. 2(a). In principle, the meson M is any neutral, C–even meson. In particular this
includes pseudoscalar mesons π0, η, η′; scalars f0, a0; vectors π0

1 ; pseudovectors a0
1, f1, f∗

1 ; spin 2
tensor and pseudotensor mesons f2, a2, η2, π2 .

The neutral pion exchange is special because of the Goldstone nature of the pion; its mass is much
smaller than the hadronic scale mρ. In aHLbL(π0) this leads to an additional enhancement by two
powers of a chiral logarithm [2],

aHLbL(π0) =
(α

π

)3
Nc

m2
µNc

48π2F 2
π

[

ln2 mρ

mπ

+ O
(

ln
mρ

mπ

)

+ O(1)
]

. (9)
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compatible with this rough estimate. The dispersion of the aHLbL results in the literature is not too
bad when compared with the present experimental accuracy of 6.3 × 10−10. However the proposed
new gµ − 2 experiment sets a goal of 1.4 × 10−10 for the error, which calls for a considerable
improvement in the theoretical calculations as well. We believe that theory is up to this challenge;
a further use of theoretical and experimental constraints could result in reaching such accuracy soon
enough.

The history of the evaluation of the hadronic light–by–light scattering contribution is a long one
which can be found in the successive review articles on the subject. In fact, but for the sign error in
the neutral pion exchange discovered in 2002 [1, 2], the theoretical predictions for aHLbL have been
relatively stable over more than ten years.

Here we are interested in highlighting the generic properties of QCD relevant to the evaluation of
Eq. (4), as well as their connection with the most recent model dependent estimates which have been
made so far.

2. QCD in the Large Nc and Chiral Limits

For the light quark components in the electromagnetic current (q = u , d , s) the integration of
the light–by–light scattering over virtual momenta in Eq. (4) is convergent at characteristic hadronic
scales. We choose the mass of the ρ meson mρ to represent that scale. Of course, hadronic physics
at such momenta is non–perturbative and the first question to address is what theoretical parameters
can be used to define an expansion. Two possibilities are: the large number of colors, 1/Nc % 1,
and the smallness of the chiral symmetry breaking, m2

π/m2
ρ % 1. Their relevance can be seen from

the expansion of aHLbL as a power series in these parameters,
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where mπ > mµ is implied. Only the power dependencies are shown; possible chiral logarithms,
ln(mρ/mπ), are included into the coefficients ci.

Terms leading in the large Nc limit

The first term, linear in Nc , comes from the one–particle exchange of a meson M in the HLbL
amplitude, see Fig. 2(a). In principle, the meson M is any neutral, C–even meson. In particular this
includes pseudoscalar mesons π0, η, η′; scalars f0, a0; vectors π0
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1, f1, f∗

1 ; spin 2
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The neutral pion exchange is special because of the Goldstone nature of the pion; its mass is much
smaller than the hadronic scale mρ. In aHLbL(π0) this leads to an additional enhancement by two
powers of a chiral logarithm [2],

aHLbL(π0) =
(α
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)3
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Light quark estimate for the constituent mass 300 MeV 

the c quark, with mc ≈ 1.5 GeV,

aHLbL(c) = 2.3 × 10−11 . (6)

To get a very rough estimate for the light quarks u, d, s let us use a constituent mass of 300 MeV for
mq . This gives aHLbL(u, d, s) = 64 × 10−11. QCD tells us that the quark loop should be accurate
in describing large virtual momenta, ki # ΛQCD, i.e. short–distances. What is certainly missing
in this constituent quark loop estimate, however, is the low–momenta piece dominated by a neutral
pion–exchange in the light–by–light scattering. Adding up this contribution, discussed in more detail
below, approximately doubles the estimate to aHLbL ≈ 12 × 10−10. While the ballpark of the effect
is given by this rough estimate, a more refined analysis is needed to get its magnitude and evaluate the
accuracy. Details and comparison of different contributions will be discussed below, but it is already
interesting to point out that all existing calculations fall into a range:

aHLbL = (11 ± 4) × 10−10 , (7)

compatible with this rough estimate. The dispersion of the aHLbL results in the literature is not too
bad when compared with the present experimental accuracy of 6.3 × 10−10. However the proposed
new gµ − 2 experiment sets a goal of 1.4 × 10−10 for the error, which calls for a considerable
improvement in the theoretical calculations as well. We believe that theory is up to this challenge;
a further use of theoretical and experimental constraints could result in reaching such accuracy soon
enough.

The history of the evaluation of the hadronic light–by–light scattering contribution is a long one
which can be found in the successive review articles on the subject. In fact, but for the sign error in
the neutral pion exchange discovered in 2002 [1, 2], the theoretical predictions for aHLbL have been
relatively stable over more than ten years.

Here we are interested in highlighting the generic properties of QCD relevant to the evaluation of
Eq. (4), as well as their connection with the most recent model dependent estimates which have been
made so far.

2. QCD in the Large Nc and Chiral Limits

For the light quark components in the electromagnetic current (q = u , d , s) the integration of
the light–by–light scattering over virtual momenta in Eq. (4) is convergent at characteristic hadronic
scales. We choose the mass of the ρ meson mρ to represent that scale. Of course, hadronic physics
at such momenta is non–perturbative and the first question to address is what theoretical parameters
can be used to define an expansion. Two possibilities are: the large number of colors, 1/Nc % 1,
and the smallness of the chiral symmetry breaking, m2

π/m2
ρ % 1. Their relevance can be seen from

the expansion of aHLbL as a power series in these parameters,

aHLbL ∼
(α
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)3 m2
µ

m2
ρ

[
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m2
ρ

m2
π

+ c3 + O(1/Nc)
]

, (8)

where mπ > mµ is implied. Only the power dependencies are shown; possible chiral logarithms,
ln(mρ/mπ), are included into the coefficients ci.

Terms leading in the large Nc limit

The first term, linear in Nc , comes from the one–particle exchange of a meson M in the HLbL
amplitude, see Fig. 2(a). In principle, the meson M is any neutral, C–even meson. In particular this
includes pseudoscalar mesons π0, η, η′; scalars f0, a0; vectors π0

1 ; pseudovectors a0
1, f1, f∗

1 ; spin 2
tensor and pseudotensor mesons f2, a2, η2, π2 .

The neutral pion exchange is special because of the Goldstone nature of the pion; its mass is much
smaller than the hadronic scale mρ. In aHLbL(π0) this leads to an additional enhancement by two
powers of a chiral logarithm [2],

aHLbL(π0) =
(α

π

)3
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m2
µNc

48π2F 2
π

[

ln2 mρ

mπ

+ O
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)

+ O(1)
]

. (9)
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Together with the neutral pion exchange it gives

the c quark, with mc ≈ 1.5 GeV,

aHLbL(c) = 2.3 × 10−11 . (6)

To get a very rough estimate for the light quarks u, d, s let us use a constituent mass of 300 MeV for
mq . This gives aHLbL(u, d, s) = 64 × 10−11. QCD tells us that the quark loop should be accurate
in describing large virtual momenta, ki # ΛQCD, i.e. short–distances. What is certainly missing
in this constituent quark loop estimate, however, is the low–momenta piece dominated by a neutral
pion–exchange in the light–by–light scattering. Adding up this contribution, discussed in more detail
below, approximately doubles the estimate to aHLbL ≈ 120 × 10−11. While the ballpark of the
effect is given by this rough estimate, a more refined analysis is needed to get its magnitude and
evaluate the accuracy. Details and comparison of different contributions will be discussed below, but
it is already interesting to point out that all existing calculations fall into a range:

aHLbL = (11 ± 4) × 10−10 , (7)

compatible with this rough estimate. The dispersion of the aHLbL results in the literature is not too
bad when compared with the present experimental accuracy of 6.3 × 10−10. However the proposed
new gµ − 2 experiment sets a goal of 1.4 × 10−10 for the error, which calls for a considerable
improvement in the theoretical calculations as well. We believe that theory is up to this challenge;
a further use of theoretical and experimental constraints could result in reaching such accuracy soon
enough.

The history of the evaluation of the hadronic light–by–light scattering contribution is a long one
which can be found in the successive review articles on the subject. In fact, but for the sign error in
the neutral pion exchange discovered in 2002 [1, 2], the theoretical predictions for aHLbL have been
relatively stable over more than ten years.

Here we are interested in highlighting the generic properties of QCD relevant to the evaluation of
Eq. (4), as well as their connection with the most recent model dependent estimates which have been
made so far.

2. QCD in the Large Nc and Chiral Limits

For the light quark components in the electromagnetic current (q = u , d , s) the integration of
the light–by–light scattering over virtual momenta in Eq. (4) is convergent at characteristic hadronic
scales. We choose the mass of the ρ meson mρ to represent that scale. Of course, hadronic physics
at such momenta is non–perturbative and the first question to address is what theoretical parameters
can be used to define an expansion. Two possibilities are: the large number of colors, 1/Nc % 1,
and the smallness of the chiral symmetry breaking, m2

π/m2
ρ % 1. Their relevance can be seen from

the expansion of aHLbL as a power series in these parameters,

aHLbL ∼
(α

π

)3 m2
µ

m2
ρ

[
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ρ
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π
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]

, (8)

where mπ > mµ is implied. Only the power dependencies are shown; possible chiral logarithms,
ln(mρ/mπ), are included into the coefficients ci.

Terms leading in the large Nc limit

The first term, linear in Nc , comes from the one–particle exchange of a meson M in the HLbL
amplitude, see Fig. 2(a). In principle, the meson M is any neutral, C–even meson. In particular this
includes pseudoscalar mesons π0, η, η′; scalars f0, a0; vectors π0

1 ; pseudovectors a0
1, f1, f∗

1 ; spin 2
tensor and pseudotensor mesons f2, a2, η2, π2 .

The neutral pion exchange is special because of the Goldstone nature of the pion; its mass is much
smaller than the hadronic scale mρ. In aHLbL(π0) this leads to an additional enhancement by two
powers of a chiral logarithm [2],
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However next, model dependent, terms are comparable with the the leading one.
Numerically

aLbL
µ (π0) = 58(10)×10−11 Knecht, Nyffeler

Models
HLS model is a modification the Vector Meson Dominance model.

ENJL model is represented by the following graphs
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OPE constraints and hadronic model

�µ
i (qi) , i = 1, 2, 3, 4,

�
qi = 0

�4 represents the external magnetic field fγδ = qγ
4�δ

4 − qδ
4�

γ
4 , q4 → 0.

The LbL amplitude

M = α2Nc Tr [Q̂4]A = α2Nc Tr [Q̂4]Aµ1µ2µ3γδ�
µ1
1 �µ2

2 �µ3
3 fγδ

= −e3

�
d4xd4y e−iq1x−iq2y �µ1

1 �µ2
2 �µ3

3 �0|T {jµ1(x) jµ2(y) jµ3(0)} |γ�

The electromagnetic current jµ= q̄ Q̂γµq, q = {u, d, s}
Three Lorentz invariants: q2

1, q
2
2, q

2
3

Consider the Euclidian range q2
1 ≈ q2

2 � q2
3 � Λ2

QCD

1. Introduction.

From a theoretical point of view the hadronic light–by–light scattering (HLbL) contribution to the
muon magnetic moment is described by the vertex function (see Fig. 1 below):

Γ(H)
µ (p2, p1) = ie6

∫
d4k1

(2π)4

∫
d4k2

(2π)4
Π(H)

µνρσ(q, k1, k3, k2)

k2
1k2

2k2
3

γν(!p2+ !k2−mµ)−1γρ(!p1− !k1−mµ)−1γσ ,

(1)
where mµ is the muon mass and Π(H)

µνρσ(q, k1, k3, k2), with q = p2 −p1 = −k1 −k2 −k3, denotes
the off–shell photon–photon scattering amplitude induced by hadrons,

Π(H)
µνρσ(q, k1, k3, k2) =

∫

d4x1

∫

d4x2

∫

d4x3 exp[−i(k1 · x1+k2 · x2+k3 · x3)]

×〈0|T{jµ(0) jν(x1) jρ(x2) jσ(x3)}|0〉 . (2)

Here jµ is the Standard Model electromagnetic current, jµ(x) =
∑

q Qqq̄(x)γµq(x), where Qq

denotes the electric charge of quark q. The external photon with momentum q represents the magnetic
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Figure 1: Hadronic light–by–light scattering contribution.

field. We are interested in the limit q → 0 where the current conservation implies that Γ(H)
µ is linear

in q,

Γ(H)
µ = −

aHLbL

4mµ

[γµ , γν ] qν . (3)

The muon anomaly can then be extracted as follows

aHLbL =
−ie6

48mµ

∫
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∫
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(2π)4
1
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3

[
∂

∂qµ
Π(H)

λνρσ(q, k1, k3, k2)

]

q=0

× tr
{

(!p + mµ)[γµ, γλ](!p + mµ)γν(!p+ !k2 − mµ)−1γρ(!p− !k1 − mµ)−1γσ
}

.(4)

Unlike the case of the hadronic vacuum polarization (HVP) contribution, there is no direct ex-
perimental input for the hadronic light–by–light scattering (HLbL) so one has to rely on theoretical
approaches. Let us start with the massive quark loop contribution which is known analytically,

aHLbL(quark loop) =

(
α
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)3

NcQ
4
q

{
[
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ζ(3) −

19

16

]

︸ ︷︷ ︸

0.62

m2
µ

m2
q

+ O

[

m4
µ

m4
q

log2
m2

µ

m2
q

] }
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where Nc is the number of colors and mq ' mµ is implied. It gives a reliable result for the heavy
quarks c , b , t with mq ' ΛQCD. Numerically, however, heavy quarks do not contribute much. For
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We can use OPE for the currents that carry large momenta q1, q2

i

�
d4xd4y e−iq1x−iq2y T {jµ1(x), jµ2(y)} =

�
d4z e−i(q1+q2)z

2i

q̂2
�µ1µ2δρ q̂δjρ

5(z) + · · · .

q̂ = (q1 − q2)/2, the axial current jρ
5 = q̄ Q̂2γργ5 q is the linear combination of

j(3)
5ρ = q̄ λ3γργ5 q isovector

j(3)
5ρ = q̄ λ8γργ5 q hypercharge

j(3)
5ρ = q̄ γργ5 q singlet

j5ρ =
�

a=3,8,0

Tr [λaQ̂2]
Tr [λ2

a]
j(a)
5ρ
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means that the bulk of the contribution does not come from small virtual momenta ki and, therefore,
chiral perturbation theory should not be applied. In other words, the term c3 in Eq. (8) with no chiral
enhancement is comparable with c2(m2

ρ/m2
π). It means that loops with heavier mesons should also

be included.
Breaking of the chiral perturbation theory looks surprising at first sight. Indeed, the inverse chiral

parameter m2
ρ/m2

π ≈ 30 is much larger than Nc = 3. What happens is that the leading terms in the

chiral expansion are numerically suppressed, which makes chiral corrections governed not by m2
π/m2

ρ

but rather by ≈ 40 m2
π/m2

ρ . This can be checked analytically in the case of the HVP contribution

to the muon anomaly. The charged pion loop is also enhanced in this case by a factor m2
ρ/m2

π but

the relative chiral correction due to the pion electromagnetic radius (evaluated with a cutoff at m2
ρ in

the ππ spectral function) is ∼ 40 m2
π/m2

ρ ln(mρ/2mπ). Of course, if the pion mass (together with
the muon mass) would be, say, 5 times smaller than in our real world, the charged pion–loop would
dominate both in the HVP and the HLbL contributions to the muon anomalous magnetic moment.

In concluding this Section, we see that the 1/Nc expansion works reasonably well, so one can use
one–particle exchanges for the HLbL amplitude. On the other hand, chiral enhancement factors are
unreliable, so we cannot limit ourselves to the lightest Goldstone–like states, and this is the case both
for the leading and next–to–leading order in the 1/Nc expansion.

3. Short–Distance QCD Constraints.

The most recent calculations of aHLbL in the literature [1, 6, 8, 9] are all compatible with the QCD
chiral constraints and large–Nc limit discussed above. They all incorporate the π0–exchange contri-
bution modulated by π0γ∗γ∗ form factors F(k2

i , k2
j ), correctly normalized to the π0 → γγ decay

width. They differ, however, in the shape of the form factors, originating in different assumptions:
vector meson dominance (VMD) in a specific form of Hidden Gauge Symmetry (HGS) in Refs. [4, 5, 6];
a different form of VMD in the extended Nambu–Jona-Lasinio model (ENJL) in Ref. [7, 8]; large–Nc

models in Refs. [1, 9]; and on whether or not they satisfy the particular operator product expansion
(OPE) constraint discussed in Ref. [9], upon which we next comment.

Let us consider a specific kinematic configuration of the virtual photon momenta k1, k2, k3 in
the Euclidean domain. In the limit q = 0 these momenta form a triangle, k1 + k2 + k3 = 0,
and we consider the configuration where one side of the triangle is much shorter than the others,
k2
1 ≈ k2

2 $ k2
3 . When k2

1 ≈ k2
2 $ m2

ρ we can apply the known operator product expansion for the
product of two electromagnetic currents carrying hard moments k1 and k2,

∫

d4x1

∫

d4x2 e−ik1·x1−ik2·x2 jν(x1) jρ(x2) =
2

k̂2
ενρδγ k̂δ

∫

d4z e−ik3·z jγ
5 (z) + O

(
1

k̂3

)

. (10)

Here jγ
5 =

∑

q Q2
q q̄γγγ5q is the axial current where different flavors are weighted by squares of their

electric charges and k̂ = (k1 − k2)/2 ≈ k1 ≈ −k2 . As illustrated in Fig. 3 this OPE reduces the
HLbL amplitude, in the special kinematics under consideration, to the AVV triangle amplitude.

k

k k

q 01

2 3

q 0

k3

γ γγ 5H

Figure 3: OPE relation between the HLbL scattering and the AVV triangle amplitude.

There are a few things we can learn from the OPE relation in Eq. (10). The first one is that the
pseudoscalar and pseudovector meson exchanges are dominant at large k1,2. Indeed, only 0− and

5
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The triangle amplitude

T (a)
µ3ρ= i �0|

�
d4z eiq3zT{j(a)

5ρ (z) jµ3(0)}|γ�

kinematically is expressed via two scalar amplitudes

T (a)
µ3ρ = −ie NcTr [λaQ̂2]

4π2

�
w(a)

L (q2
3) q3ρq

σ
3 f̃σµ3+

+w(a)
T (q2

3)
�
−q2

3f̃µ3ρ+q3µ3q
σ
3 f̃σρ−q3ρq

σ
3 f̃σµ3

��

Longitudinal wL: pseudoscalar mesons exchange
Transversal wT : pseudovector mesons exchangeWORKSHOP ON (g − 2)µ, GLASGOW, OCTOBER 25, 2007 A. Vainshtein Determination of the light-by-light contributions 16

In perturbation theory for massless quarks

w(a)
L (q2) = 2w(a)

T (q2) = − 2
q2

Nonvanishing wL is the signature of the axial Adler–Bell–Jackiw anomaly.
Moreover, for nonsinglet w(3,8)

L it is the exact QCD result, no perturbative as well
as nonperturbative corrections. So the pole behavior is preserved all way down to
small q2 where the pole is associated with Goldstone mesons π0, η.
Comparing the pole residue we get the famous ABJ result

gπγγ =
NcTr [λ3Q̂2]

16π2 Fπ

There exists the nonrenormalization theorem for wT as well but only in respect to
perturbative corrections. A.V. ’02; Knecht, Peris, Perrottet, de Rafael ’03
Higher terms in the OPE does not vanish in this case, they are responsible for shift
of the pole 1/q2 → 1/(q2 −m2

V,PV )
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Combining we get at q2
1 ≈ q2

2 � q2
3

Aµ1µ2µ3γδf
γδ =

8
q̂2

�µ1µ2δρq̂
δ

�

a=3,8,0

W (a)
�

w(a)
L (q2

3) qρ
3q

σ
3 f̃σµ3

+ w(a)
T (q2

3)
�
−q2

3f̃
ρ
µ3

+q3µ3q
σ
3 f̃ρ

σ−qρ
3q

σ
3 f̃σµ3

� �
+ · · ·

where the weights W (3) = 1/4, W (8) = 1/12, W (0) = 2/3.
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The model

A = APS +APV + permutations,

APS =
�

a=3,8,0

W (a)φ(a)
L (q2

1, q
2
2) w(a)

L (q2
3) {f2f̃1}{f̃f3},

APV =
�

a=3,8,0

W (a)φ(a)
T (q2

1, q
2
2) w(a)

T (q2
3)

�
{q2f2f̃1f̃f3q3}

+{q1f1f̃2f̃f3q3}+
q2
1 + q2

2

4
{f2f̃1}{f̃f3}

�
.

For π0

w(3)
L (q2) =

2
q2 + m2

π

,
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φ3
L(q2

1, q
2
2) =

Nc

4π2F 2
π

Fπγ∗γ∗(q2
1, q

2
2)

=
q2
1q

2
2(q2

1 + q2
2)− h2q2

1q
2
2 + h5(q2

1 + q2
2) + (NcM4

1M4
2/4π2F 2

π)
(q2

1 + M2
1 )(q2

1 + M2
2 )(q2

2 + M2
1 )(q2

2 + M2
2 )

Following the form factor analysis by Knecht, Nyffeler
M1 = 769 MeV, M2 = 1465 MeV, h5 = 6.93 GeV4

They did not fix h2 and put h2 = 0 for the central value. Actually, it is fixed by the
old QCD sum rule analysis Novikov et al ’84 h2 ≈ −10 GeV2.
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Melnikov, AV ʻ03
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The model results in

aπ0

µ = 76.5× 10−11 , aPS
µ = 114(10)× 10−11

A similar analysis for pseudovector exchange gives

aPV
µ = 22(5)× 10−11

and finally

aLbL
µ = 136(25)× 10−11
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Comparison with other models

0

The difference with meson exchange models, like Knecht, Nyffeler et al, is due to
absence of the form factor in the vertex with the soft photon (magnetic field),
76.5× 10−11 versus 58× 10−11 for π0 exchange.

ENJL model Bijnens, Pallante, Prades is conceptually not much different
from our model. Indeed, we use meson exchange model which interpolates
between the OPE at short distances and meson poles at large ones. It results
in a less suppression at large momenta (no form factor in the vertex with magnetic
field).

In the ENJL model high momenta asymptotics are provided by adding up the
quark loops. Thus, our asymptotics are the same and difference is mostly in
details of interpolations between high and low momenta.

2529



Summary for LbL 
In our ’08 mini-review with Prades, de Rafael we 
combined different calculations with some educated 
guesses about possible errors to come to:

Ref. [7, 8] with, however, a larger error which covers the effect of other unaccounted meson exchanges,

aHLbL(scalars) = −(0.7 ± 0.7) × 10−10 . (14)

Contribution to aHLbL from a dressed pion loop

Because of the instability of the results for the charged pion loop and unaccounted loops of other
mesons, we suggest using the central value of the ENJL result but wit a larger error:

aHLbL(π−dressed loop) = −(1.9 ± 1.9) × 10−10 . (15)

From these considerations, adding the errors in quadrature, as well as the small charm contribution
in Eq. (6), we get

aHLbL = (105 ± 26) × 10−11 , (16)

as our final estimate.
We wish to emphasize, however, that this is only what we consider to be our best estimate at

present. In view of the proposed new gµ−2 experiment, it would be nice to have more independent
calculations in order to make this estimate more robust. More experimental information on the decays
π0 → γγ∗, π0 → γ∗γ∗ and π0 → e+e− (with radiative corrections included) could also help to
confirm the result of the main contribution in Eq. (12).

More theoretical work is certainly needed for a better understanding of the other contributions
which, although smaller than the one from pseudoscalar exchanges, have nevertheless large uncertain-
ties. This refers, in particular, to pseudovector exchanges in Eq. (13) but other C-even exchanges are
also important. Experimental data on radiative decays and two-photon production of C-even reso-
nances could be helpful. An evaluation of 1/Nc–suppresed loop contributions present even a more
difficult task. New approaches to the dressed pion loop contribution, in parallel with experimental in-
formation on the vertex π+π−γ∗γ∗, would be very welcome. Again, measurement of the two-photon
processes like e+e− → e+e−π+π− could give some information on that vertex and help to reduce
the model dependence and therefore the present uncertainty in Eq. (15).
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However the error estimates are quite subjective and 
further study of different exchanges is certainly needed.
Experimental data on radiative decays can be a help.
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Figure 2: Diagrams for HLbL: (a) meson exchanges, (b) the charged pion loop, the blob denotes the full
γ∗γ∗ → π+π− amplitude.

Here the π0γγ coupling is fixed by the Adler–Bell–Jackiw anomaly in terms of the pion decay constant
Fπ ≈ 92 MeV. This constant is O

(√
Nc

)

, therefore Nc/F 2
π behaves as a constant in the large–Nc

limit . The mass of the ρ plays the role of an ultraviolet scale in the integration over ki in Eq. (4)
while the pion mass provides the infrared scale. Of course, the muon mass is also important at low
momenta but one can keep the ratio mµ/mπ fixed in the chiral limit.

Equation (9) provides the result for aHLbL for the term leading in the 1/Nc expansion in the
chiral limit where the pion mass is much less than the next hadronic scale. In this limit the dominant
neutral pion exchange produces the characteristic universal double logarithmic behavior with the exact
coefficient given in Eq. (9). Testing this limit was particularly useful in fixing the sign of the neutral
pion exchange.

Although the coefficient of the ln2(mρ/mπ) term in Eq. (9) is unambiguous, the coefficient of the
ln(mρ/mπ) term depends on low–energy constants which are difficult to extract from experiment [2,
3] (they require a detailed knowledge of the π0 → e+e− decay rate with inclusion of radiative
corrections). Model dependent estimates of the single logarithmic term as well as the constant term
show that these terms are not suppressed. It means that we cannot rely on chiral perturbation theory
and have to adopt a dynamical framework which takes into account explicitly the heavier meson
exchanges as well.

Note that the overall sign of the pion exchange, for physical values of the masses, is much less
model dependent than the previous chiral perturbation theory analysis seems to imply. In fact, if the
π0γ∗γ∗ form factor does not change its sign in the Euclidean range of integration over ki, the overall
sign is fixed even without knowledge of the form factor. This implies the same positive sign without
use of the chiral limit, i.e. the same sign for exchanges of heavier pseudoscalars, JP C = 0−+, where
no large logarithms are present. Moreover, one can verify the same positive sign for exchanges by
mesons with JP C = 1++, 2−+ with an additional assumption about dominance of one of the form
factors. Exchanges with JP C = 0++, 1−+, 2++ give, however, contributions with a negative sign
to aHLbL under similar assumptions, but they are much smaller.

Next–to–leading terms in the large Nc limit

Now let us turn to the next–to–leading terms in 1/Nc expansion. Generically these terms are due
to two–particle exchanges in the HLbL amplitude, see the diagram in Fig. 2(b) with π+π− substi-
tuted by any two meson states. What is specific about the charged pion loop is its strong chiral
enhancement which is not just logarithmic but power–like in this case. In Eq. (8) it is reflected in the
term c2 m2

ρ/m2
π . The point–like pion loop calculation which gives aHLbL(ππ) = −4.6 × 10−10

corresponds to c2 = −0.065. The rather small value of c2 can be contrasted with the one of the
coefficient c1 which is not suppressed: c1 ≈ 1.7. As we will see the smallness of c2 is related to the
fact that chiral perturbation theory does not work in this case. To see that this is indeed what hap-
pens is sufficient to compare the point–like loop result with the model dependent calculations where
form factors are introduced. Two known results, aHLbL(ππ) = −(0.4 ± 0.8) × 10−10 [4, 5] and
aHLbL(ππ) = −(1.9 ± 0.5) × 10−10 [7, 8], show a 100% deviation from the point–like number. It
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the c quark, with mc ≈ 1.5 GeV,

aHLbL(c) = 0.23 × 10−10 . (6)

To get a very rough estimate for the light quarks u, d, s let us use a constituent mass of 300 MeV
for mq . This gives aHLbL(u, d, s) = 6.4 × 10−10. QCD tells us that the quark loop should be
accurate in describing large virtual momenta, ki # ΛQCD, i.e. short–distances. What is certainly
missing in this constituent quark loop estimate, however, is the low–momenta piece dominated by
a neutral pion–exchange in the light–by–light scattering. Adding up this contribution, discussed in
more detail below, approximately doubles the estimate to aHLbL ≈ 12 × 10−10. While the ballpark
of the effect is given by this rough estimate, a more refined analysis is needed to get its magnitude
and evaluate the accuracy. Details and comparison of different contributions will be discussed below,
but it is already interesting to point out that all existing calculations fall into a range:

aHLbL = (11 ± 4) × 10−10 , (7)

compatible with this rough estimate. The dispersion of the aHLbL results in the literature is not too
bad when compared with the present experimental accuracy of 6.3 × 10−10. However the proposed
new gµ − 2 experiment sets a goal of 1.4 × 10−10 for the error, which calls for a considerable
improvement in the theoretical calculations as well. We believe that theory is up to this challenge;
a further use of theoretical and experimental constraints could result in reaching such accuracy soon
enough.

The history of the evaluation of the hadronic light–by–light scattering contribution is a long one
which can be found in the successive review articles on the subject. In fact, but for the sign error in
the neutral pion exchange discovered in 2002 [1, 2], the theoretical predictions for aHLbL have been
relatively stable over more than ten years.

Here we are interested in highlighting the generic properties of QCD relevant to the evaluation of
Eq. (4), as well as their connection with the most recent model dependent estimates which have been
made so far.

2. QCD in the Large Nc and Chiral Limits

For the light quark components in the electromagnetic current (q = u , d , s) the integration of
the light–by–light scattering over virtual momenta in Eq. (4) is convergent at characteristic hadronic
scales. We choose the mass of the ρ meson mρ to represent that scale. Of course, hadronic physics
at such momenta is non–perturbative and the first question to address is what theoretical parameters
can be used to define an expansion. Two possibilities are: the large number of colors, 1/Nc % 1,
and the smallness of the chiral symmetry breaking, m2

π/m2
ρ % 1. Their relevance can be seen from

the expansion of aHLbL as a power series in these parameters,

aHLbL ∼
(α

π

)3 m2
µ

m2
ρ

[

c1 Nc + c2

m2
ρ

m2
π

+ c3 + O(1/Nc)
]

, (8)

where mπ > mµ is implied. Only the power dependencies are shown; possible chiral logarithms,
ln(mρ/mπ), are included into the coefficients ci.

Terms leading in the large Nc limit

The first term, linear in Nc , comes from the one–particle exchange of a meson M in the HLbL
amplitude, see Fig. 2(a). In principle, the meson M is any neutral, C–even meson. In particular this
includes pseudoscalar mesons π0, η, η′; scalars f0, a0; vectors π0

1 ; pseudovectors a0
1, f1, f∗

1 ; spin 2
tensor and pseudotensor mesons f2, a2, η2, π2 .

The neutral pion exchange is special because of the Goldstone nature of the pion; its mass is much
smaller than the hadronic scale mρ. In aHLbL(π0) this leads to an additional enhancement by two
powers of a chiral logarithm [2],

aHLbL(π0) =
(α

π

)3
Nc

m2
µNc

48π2F 2
π

[

ln2 mρ

mπ

+ O
(

ln
mρ

mπ

)

+ O(1)
]

. (9)
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new gµ − 2 experiment sets a goal of 1.4 × 10−10 for the error, which calls for a considerable
improvement in the theoretical calculations as well. We believe that theory is up to this challenge;
a further use of theoretical and experimental constraints could result in reaching such accuracy soon
enough.

The history of the evaluation of the hadronic light–by–light scattering contribution is a long one
which can be found in the successive review articles on the subject. In fact, but for the sign error in
the neutral pion exchange discovered in 2002 [1, 2], the theoretical predictions for aHLbL have been
relatively stable over more than ten years.

Here we are interested in highlighting the generic properties of QCD relevant to the evaluation of
Eq. (4), as well as their connection with the most recent model dependent estimates which have been
made so far.

2. QCD in the Large Nc and Chiral Limits

For the light quark components in the electromagnetic current (q = u , d , s) the integration of
the light–by–light scattering over virtual momenta in Eq. (4) is convergent at characteristic hadronic
scales. We choose the mass of the ρ meson mρ to represent that scale. Of course, hadronic physics
at such momenta is non–perturbative and the first question to address is what theoretical parameters
can be used to define an expansion. Two possibilities are: the large number of colors, 1/Nc % 1,
and the smallness of the chiral symmetry breaking, m2

π/m2
ρ % 1. Their relevance can be seen from

the expansion of aHLbL as a power series in these parameters,

aHLbL ∼
(α

π

)3 m2
µ

m2
ρ

[

c1 Nc + c2

m2
ρ

m2
π

+ c3 + O(1/Nc)
]

, (8)

where mπ > mµ is implied. Only the power dependencies are shown; possible chiral logarithms,
ln(mρ/mπ), are included into the coefficients ci.

Terms leading in the large Nc limit

The first term, linear in Nc , comes from the one–particle exchange of a meson M in the HLbL
amplitude, see Fig. 2(a). In principle, the meson M is any neutral, C–even meson. In particular this
includes pseudoscalar mesons π0, η, η′; scalars f0, a0; vectors π0

1 ; pseudovectors a0
1, f1, f∗

1 ; spin 2
tensor and pseudotensor mesons f2, a2, η2, π2 .

The neutral pion exchange is special because of the Goldstone nature of the pion; its mass is much
smaller than the hadronic scale mρ. In aHLbL(π0) this leads to an additional enhancement by two
powers of a chiral logarithm [2],

aHLbL(π0) =
(α

π

)3
Nc

m2
µNc

48π2F 2
π

[

ln2 mρ

mπ

+ O
(

ln
mρ

mπ

)

+ O(1)
]

. (9)
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Do we see NP in the muon g-2? 

QED                       116 584 719.58(1.5)

PITT–CMU SEMINAR, 02/27/03 A. Vainshtein Hadronic effects in aEW
µ 2

Muon anomalous magnetic moment

The anomalous magnetic moment of muon is measured with a very high

precision

aexp
µ =

gµ − 2
2

= 116 592 030(80)× 10−11 E821 at BNL

The Standard Model prediction for aµ can be represented as a sum

aSM
µ = aQED

µ + ahad
µ + aEW

µ

The QED part involving only leptons and photons is the main one,

aQED
µ = 116 584 706(3)× 10−11

Electroweak            154(2)(1)
Hadronic LO           6 901(42)(19)(07)

PITT–CMU SEMINAR, 02/27/03 A. Vainshtein Hadronic effects in aEW
µ 2

Muon anomalous magnetic moment

The anomalous magnetic moment of muon is measured with a very high

precision

aexp
µ =

gµ − 2
2

= 116 592 030(80)× 10−11 E821 at BNL

The Standard Model prediction for aµ can be represented as a sum

aSM
µ = aQED

µ + ahad
µ + aEW

µ

The QED part involving only leptons and photons is the main one,

aQED
µ = 116 584 706(3)× 10−11

PITT–CMU SEMINAR, 02/27/03 A. Vainshtein Hadronic effects in aEW
µ 2

Muon anomalous magnetic moment

The anomalous magnetic moment of muon is measured with a very high

precision

aexp
µ =

gµ − 2
2

= 116 592 030(80)× 10−11 E821 at BNL

The Standard Model prediction for aµ can be represented as a sum

aSM
µ = aQED

µ + ahad
µ + aEW

µ

The QED part involving only leptons and photons is the main one,

aQED
µ = 116 584 706(3)× 10−11

Hadronic HO         - 97.9(0.9)(0.3)

PITT–CMU SEMINAR, 02/27/03 A. Vainshtein Hadronic effects in aEW
µ 2

Muon anomalous magnetic moment

The anomalous magnetic moment of muon is measured with a very high

precision

aexp
µ =

gµ − 2
2

= 116 592 030(80)× 10−11 E821 at BNL

The Standard Model prediction for aµ can be represented as a sum

aSM
µ = aQED

µ + ahad
µ + aEW

µ

The QED part involving only leptons and photons is the main one,

aQED
µ = 116 584 706(3)× 10−11

Hadronic LbL           105(26)

PITT–CMU SEMINAR, 02/27/03 A. Vainshtein Hadronic effects in aEW
µ 2

Muon anomalous magnetic moment

The anomalous magnetic moment of muon is measured with a very high

precision

aexp
µ =

gµ − 2
2

= 116 592 030(80)× 10−11 E821 at BNL

The Standard Model prediction for aµ can be represented as a sum

aSM
µ = aQED

µ + ahad
µ + aEW

µ

The QED part involving only leptons and photons is the main one,

aQED
µ = 116 584 706(3)× 10−11

Total SM               11 659 1785 (52)

PITT–CMU SEMINAR, 02/27/03 A. Vainshtein Hadronic effects in aEW
µ 2

Muon anomalous magnetic moment

The anomalous magnetic moment of muon is measured with a very high

precision

aexp
µ =

gµ − 2
2

= 116 592 030(80)× 10−11 E821 at BNL

The Standard Model prediction for aµ can be represented as a sum

aSM
µ = aQED

µ + ahad
µ + aEW

µ

The QED part involving only leptons and photons is the main one,

aQED
µ = 116 584 706(3)× 10−11

Experimental a      11 659 2080 (63)

PITT–CMU SEMINAR, 02/27/03 A. Vainshtein Hadronic effects in aEW
µ 2

Muon anomalous magnetic moment

The anomalous magnetic moment of muon is measured with a very high

precision

aexp
µ =

gµ − 2
2

= 116 592 030(80)× 10−11 E821 at BNL

The Standard Model prediction for aµ can be represented as a sum

aSM
µ = aQED

µ + ahad
µ + aEW

µ

The QED part involving only leptons and photons is the main one,

aQED
µ = 116 584 706(3)× 10−11

Δa                       300 (82)                  3.6 σ

PITT–CMU SEMINAR, 02/27/03 A. Vainshtein Hadronic effects in aEW
µ 2

Muon anomalous magnetic moment

The anomalous magnetic moment of muon is measured with a very high

precision

aexp
µ =

gµ − 2
2

= 116 592 030(80)× 10−11 E821 at BNL

The Standard Model prediction for aµ can be represented as a sum

aSM
µ = aQED

µ + ahad
µ + aEW

µ

The QED part involving only leptons and photons is the main one,

aQED
µ = 116 584 706(3)× 10−11

Both experimental and theoretical uncertainty should 
be reduced to be sure of NP.

31



f

e

e

γ

γ

Ref. [?, ?] with, however, a larger error which covers the effect of other unaccounted meson exchanges,

aHLbL(scalars) = −(0.7 ± 0.7) × 10−10 . (14)

Contribution to aHLbL from a dressed pion loop

Because of the instability of the results for the charged pion loop and unaccounted loops of other
mesons, we suggest using the central value of the ENJL result but wit a larger error:

aHLbL(π−dressed loop) = −(1.9 ± 1.9) × 10−10 . (15)

From these considerations, adding the errors in quadrature, as well as the small charm contribution
in Eq. (??), we get

aHLbL = (105 ± 26) × 10−11 , (16)

as our final estimate.

Γ(f1(1285) → γγ∗) = (2.8 ± 0.8) keV (17)

We wish to emphasize, however, that this is only what we consider to be our best estimate at present.
In view of the proposed new gµ−2 experiment, it would be nice to have more independent calculations
in order to make this estimate more robust. More experimental information on the decays π0 → γγ∗,
π0 → γ∗γ∗ and π0 → e+e− (with radiative corrections included) could also help to confirm the
result of the main contribution in Eq. (??).

More theoretical work is certainly needed for a better understanding of the other contributions
which, although smaller than the one from pseudoscalar exchanges, have nevertheless large uncertain-
ties. This refers, in particular, to pseudovector exchanges in Eq. (??) but other C-even exchanges are
also important. Experimental data on radiative decays and two-photon production of C-even reso-
nances could be helpful. An evaluation of 1/Nc–suppresed loop contributions present even a more
difficult task. New approaches to the dressed pion loop contribution, in parallel with experimental in-
formation on the vertex π+π−γ∗γ∗, would be very welcome. Again, measurement of the two-photon
processes like e+e− → e+e−π+π− could give some information on that vertex and help to reduce
the model dependence and therefore the present uncertainty in Eq. (??).
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Ref. [7, 8] with, however, a larger error which covers the effect of other unaccounted meson exchanges,

aHLbL(scalars) = −(0.7 ± 0.7) × 10−10 . (14)

Contribution to aHLbL from a dressed pion loop

Because of the instability of the results for the charged pion loop and unaccounted loops of other
mesons, we suggest using the central value of the ENJL result but wit a larger error:

aHLbL(π−dressed loop) = −(1.9 ± 1.9) × 10−10 . (15)

From these considerations, adding the errors in quadrature, as well as the small charm contribution
in Eq. (6), we get

aHLbL = (105 ± 26) × 10−11 , (16)

as our final estimate.
Γ(f1(1285) → γρ0)

Γtotal
= (5.5 ± 1.3) × 10−2 (17)

Γ(f1(1285) → γγ∗) = (2.8 ± 0.8) keV (18)

We wish to emphasize, however, that this is only what we consider to be our best estimate at present.
In view of the proposed new gµ−2 experiment, it would be nice to have more independent calculations
in order to make this estimate more robust. More experimental information on the decays π0 → γγ∗,
π0 → γ∗γ∗ and π0 → e+e− (with radiative corrections included) could also help to confirm the
result of the main contribution in Eq. (12).

More theoretical work is certainly needed for a better understanding of the other contributions
which, although smaller than the one from pseudoscalar exchanges, have nevertheless large uncertain-
ties. This refers, in particular, to pseudovector exchanges in Eq. (13) but other C-even exchanges are
also important. Experimental data on radiative decays and two-photon production of C-even reso-
nances could be helpful. An evaluation of 1/Nc–suppresed loop contributions present even a more
difficult task. New approaches to the dressed pion loop contribution, in parallel with experimental in-
formation on the vertex π+π−γ∗γ∗, would be very welcome. Again, measurement of the two-photon
processes like e+e− → e+e−π+π− could give some information on that vertex and help to reduce
the model dependence and therefore the present uncertainty in Eq. (15).
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This is compatible with our model of pseudovector 
exchange. However,

leads to a strong enhancement (of order of 5) for PV 
exchange.  Work in progress.
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Conclusions 

Having in mind the new g-2 experiment more 
theoretical efforts are needed to improve accuracy 
for the hadronic light-by-light contribution.

In my view it should also involve new measurements 
of hadronic two-photon production which provides 
a good test of theoretical models for HLbL.
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Many happy 

returns of the day!
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