QCD Calculations for New-Physics Searches

Ulrich Nierste

Karlsruhe Institute of Technology

Colour meets Flavour Siegen, October 2011

Γ^q 12

A. Lenz and UN: *Numerical updates of lifetimes and mixing parameters of B mesons*, 1102.4274, Proc. of *CKM 2010*.

Analytical input: NLO QCD calculations in

- Y. Y. Keum, UN, Phys. Rev. D 57 (1998) 4282,
- M. Beneke, G. Buchalla, C. Greub, A. Lenz, UN, Phys. Lett. B **459**, 631 (1999),
- M. Beneke, G. Buchalla, C. Greub, A. Lenz, UN, Nucl. Phys. B **639**, 389 (2002),
- M. Beneke, G. Buchalla, A. Lenz, UN, Phys. Lett. B 576 (2003) 173,
- A. Lenz, UN, JHEP 0706, 072 (2007)
- This talk: Numerical updates confronted with data of summer 2011.

The neutral mesons B_d and B_s mix with their antiparticles, the eigenstates $B_L^{d,s}$ and $B_H^{d,s}$ differ in their masses and widths:

$$\begin{aligned} M_H^q &= M_{B_q} + \frac{\Delta m_q}{2}, & \Gamma_H^q &= \Gamma_q - \frac{\Delta \Gamma_q}{2} \\ M_L^q &= M_{B_q} - \frac{\Delta m_q}{2}, & \Gamma_L^q &= \Gamma_q + \frac{\Delta \Gamma_q}{2} \end{aligned}$$

Operators:

Wilson Coefficients $|C_{1,2}| \gg |C_{3,...8}|$.

The left diagram gives practically the same result for B_s and B_d . The right diagram comes with small penguin coefficients $C_{3...6}$.

More small diagrams contributing to τ_{B_s} :

The prediction of τ_{B_s}/τ_{B_d} involves four hadronic matrix element parametrised by $f_B^2 B_1$, $f_B^2 B_2$, $f_B^2 \epsilon_1$ and $f_B^2 \epsilon_2$. Neubert,Sachrajda 1996

2011 update using $f_{B_s}/f_{B_d} = 1.209 \pm 0.007 \pm 0.023$:

$$\begin{aligned} \frac{\tau_{B_s}}{\tau_{B_d}} - 1 &= \\ 10^{-3} \cdot \left(\frac{f_{B_s}}{231 \text{ MeV}}\right)^2 \left[(0.77 \pm 0.10) B_1 - (1.00 \pm 0.13) B_2 + (36 \pm 5)\epsilon_1 - (51 \pm 7)\epsilon_2 \right]. \end{aligned}$$

The prediction of τ_{B_s}/τ_{B_d} involves four hadronic matrix element parametrised by $f_B^2 B_1$, $f_B^2 B_2$, $f_B^2 \epsilon_1$ and $f_B^2 \epsilon_2$. Neubert,Sachrajda 1996

2011 update using $f_{B_s}/f_{B_d} = 1.209 \pm 0.007 \pm 0.023$:

$$\begin{aligned} \frac{\tau_{B_s}}{\tau_{B_d}} - 1 &= \\ 10^{-3} \cdot \left(\frac{f_{B_s}}{231 \text{ MeV}}\right)^2 \left[(0.77 \pm 0.10)B_1 - (1.00 \pm 0.13)B_2 + (36 \pm 5)\epsilon_1 - (51 \pm 7)\epsilon_2 \right]. \end{aligned}$$

With 2001 quenched lattice values for $B_{1,2}$ and $\epsilon_{1,2}$ (Bečirević hep-ph/0110124) find:

$$-4 \cdot 10^{-3} \le rac{ au_{B_s}}{ au_{B_d}} - 1 \le 0$$

Γ₁₂

Update of Feb 2011:

$$-4\cdot 10^{-3} \leq rac{ au_{B_s}}{ au_{B_d}} - 1 \leq 0$$

 Γ_{12}^{q}

Update of Feb 2011:

$$-4 \cdot 10^{-3} \le \frac{\tau_{B_s}}{\tau_{B_d}} - 1 \le 0$$

LHCb, Lepton-Photon 2011: τ_{B_s} measured in $B_s \rightarrow J/\psi\phi$:

$$\frac{\tau_{B_{\rm S}}}{\tau_{B_{\rm d}}} = 0.9996 \pm 0.0201$$

in excellent agreement with the SM preciction.

 Γ_{12}^q

Next: Confront $\tau_{B^+}/\tau_{B_d} = 1.081 \pm 0.006$ with

$$\begin{aligned} \frac{\tau_{B^+}}{\tau_{B_d}} - 1 &= \\ 0.0324 \left(\frac{f_B}{200 \,\text{MeV}} \right)^2 \left[(1.0 \pm 0.2) B_1 + (0.1 \pm 0.1) B_2 \right. \\ &- (17.8 \pm 0.9) \epsilon_1 + (3.9 \pm 0.2) \epsilon_2 - 0.26 \right] \end{aligned}$$

 Γ_{12}^{q}

Correlate τ_{B_s}/τ_{B_d} with τ_{B^+}/τ_{B_d} :

Blue: Theory prediction with 2001 lattice data Red: Experimental 3σ region for τ_{B^+}/τ_{B_d} .

 $B-\overline{B}$ mixing in the Standard Model

 $B_q - \overline{B}_q$ mixing with q = d or q = s involves the 2 × 2 matrices *M* and Γ.

$B-\overline{B}$ mixing in the Standard Model

 $B - \overline{B}$ mixing

 $B_q - \overline{B}_q$ mixing with q = d or q = s involves the 2 × 2 matrices *M* and Γ.

The mass matrix element M_{12}^q stems from the dispersive (real) part of the box diagram, internal *t*.

The decay matrix element Γ_{12}^q stems from the absorpive (imaginary) part of the box diagram, internal *c*, *u*.

$B-\overline{B}$ mixing in the Standard Model

 $B_q - \overline{B}_q$ mixing with q = d or q = s involves the 2 × 2 matrices *M* and Γ.

The mass matrix element M_{12}^q stems from the dispersive (real) part of the box diagram, internal *t*.

The decay matrix element Γ_{12}^q stems from the absorpive (imaginary) part of the box diagram, internal *c*, *u*.

3 physical quantities in $B_q - \overline{B}_q$ mixing:

$$\left| M_{12}^{q} \right|, \quad \left| \Gamma_{12}^{q} \right|, \quad \phi_{q} \equiv \arg\left(-\frac{M_{12}^{q}}{\Gamma_{12}^{q}} \right)$$

 $B - \overline{B}$ mixing

 Γ_{12}^q

The two eigenstates found by diagonalising $M - i \Gamma/2$ differ in their masses and widths:

mass difference $\Delta m_q \simeq 2|M_{12}^q|$, width difference $\Delta \Gamma_q \simeq 2|\Gamma_{12}^q|\cos\phi_q$

 Γ_{12}^q

The two eigenstates found by diagonalising $M - i \Gamma/2$ differ in their masses and widths:

mass difference $\Delta m_q \simeq 2|M_{12}^q|$, width difference $\Delta \Gamma_q \simeq 2|\Gamma_{12}^q|\cos\phi_q$

CP asymmetry in flavor-specific decays (semileptonic CP asymmetry):

$$\mathsf{a}_{\mathrm{fs}}^{q} = \frac{|\Gamma_{12}^{q}|}{|M_{12}^{q}|} \sin \phi_{q}$$

Conclusions

Generic new physics

Phases $\phi_q = \arg(-M_{12}^q/\Gamma_{12}^q)$ in the Standard Model: $\phi_d^{\text{SM}} = -4.3^\circ \pm 1.4^\circ$, $\phi_s^{\text{SM}} = 0.2^\circ$. Define the complex parameters Δ_d and Δ_s through

$$M^q_{12} \ \equiv \ M^{\mathrm{SM},\mathrm{q}}_{12} \cdot \Delta_q \,, \qquad \Delta_q \ \equiv \ |\Delta_q| e^{i \phi^\Delta_q}.$$

In the Standard Model $\Delta_q = 1$. Use $\phi_s = \phi_s^{SM} + \phi_s^{\Delta} \simeq \phi_s^{\Delta}$.

ng

Conclusions

Generic new physics

Phases $\phi_q = \arg(-M_{12}^q/\Gamma_{12}^q)$ in the Standard Model: $\phi_d^{\text{SM}} = -4.3^\circ \pm 1.4^\circ$, $\phi_s^{\text{SM}} = 0.2^\circ$. Define the complex parameters Δ_d and Δ_s through

$$M^q_{12} \equiv M^{\mathrm{SM},\mathrm{q}}_{12} \cdot \Delta_q \,, \qquad \Delta_q \equiv |\Delta_q| e^{i \phi^{\Delta}_q}.$$

In the Standard Model $\Delta_q = 1$. Use $\phi_s = \phi_s^{SM} + \phi_s^{\Delta} \simeq \phi_s^{\Delta}$. The measurements

 $\Delta m_{\rm s} = (17.77 \pm 0.10 \pm 0.07) \, {\rm ps}^{-1} \qquad {\rm CDF} \\ \Delta m_{\rm s} = (17.63 \pm 0.11 \pm 0.04) \, {\rm ps}^{-1} \qquad {\rm LHCb} \, ({\rm prelim})$

imply

$$|\Delta_{s}|~=~1.03\pm0.14_{(th)}\pm0.01_{(exp)}$$

B meson lifetimes	$B - \overline{B}$ mixing	Γ^q_{12}	Conclusions	
Summer 2010				

Global analysis of $B_s - \overline{B}_s$ mixing and $B_d - \overline{B}_d$ mixing with A. Lenz and the CKMfitter Group (J. Charles, S. Descotes-Genon, A. Jantsch, C. Kaufhold, H. Lacker, S. Monteil, V. Niess) arXiv:1008.1593

Rfit method: No statistical meaning is assigned to systematic errors and theoretical uncertainties.

We have performed a simultaneous fit to the Wolfenstein parameters and to the new physics parameters Δ_s and Δ_d :

$$\Delta_q \equiv \frac{M_{12}^q}{M_{12}^{q,\mathrm{SM}}}, \qquad \Delta_q \equiv |\Delta_q| e^{i\phi_q^\Delta}.$$

Γ⁴₁₂

Result for $B_d - \overline{B}_d$ mixing:

SM point $\Delta_d = 1$ disfavored by 2.7 σ .

Main driver: $B^+ \rightarrow \tau^+ \nu_{\tau}$

 Γ_{12}^{q}

Result for $B_s - \overline{B}_s$ mixing:

with 2010 combination of 2009 CDF/DØ data on $B_s \rightarrow J/\psi \phi$ and 2010 DØ dimuon CP asymmetry

Γ^q 12

Summer 2010 p-values:

Hypothesis	p-value	
$\Delta_d =$ 1 (2D)	2.7 σ	
$\Delta_s =$ 1 (2D)	2.7 σ	
$\Delta_d = \Delta_s$ (2D)	2.1 σ	
$\Delta_d = \Delta_s = 1$ (4D)	3.6 σ	

Conclusion

Summer 2011

The mixing-induced CP asymmetries in $B_s \rightarrow J/\psi \phi$ and $B_s \rightarrow J/\psi f_0$ determine $\phi_s^{\Delta} - 2\beta_s$ with $2\beta_s = 2.2^{\circ}$.

CDF 2010, $J/\psi\phi$: DØ EPS 2011, $J/\psi\phi$: LHCb LP 2011, $J/\psi f_0$: LHCb LP 2011, $J/\psi\phi$:

$$\begin{split} \phi_{s}^{\Delta} &= -23^{\circ} ^{+23^{\circ}}_{-34^{\circ}} \\ \phi_{s}^{\Delta} &= -30^{\circ} ^{+22^{\circ}}_{-21^{\circ}} \\ \phi_{s}^{\Delta} &= -23^{\circ} \pm 25^{\circ} \pm 1^{\circ} \\ \phi_{s}^{\Delta} &= 9.6^{\circ} \pm 10.3^{\circ} \pm 4.0^{\circ} \\ & \text{all at 68\%CL} \end{split}$$

Summer 2011

The mixing-induced CP asymmetries in $B_s \rightarrow J/\psi \phi$ and $B_s \rightarrow J/\psi f_0$ determine $\phi_s^{\Delta} - 2\beta_s$ with $2\beta_s = 2.2^\circ$.

 $B - \overline{B}$ mixing

CDF 2010, $J/\psi\phi$: DØ EPS 2011, $J/\psi\phi$: LHCb LP 2011, $J/\psi f_0$: LHCb LP 2011, $J/\psi\phi$:

$$\phi_{s}^{\Delta} = -23^{\circ}_{-34^{\circ}}^{+23^{\circ}}$$

$$\phi_{s}^{\Delta} = -30^{\circ}_{-21^{\circ}}^{+22^{\circ}}$$

$$\phi_{s}^{\Delta} = -23^{\circ} \pm 25^{\circ} \pm 1^{\circ}$$

$$\phi_{s}^{\Delta} = 9.6^{\circ} \pm 10.3^{\circ} \pm 4.0^{\circ}$$

all at 68%CL

LHCb LP 2011 average:

 $\phi_{s}^{\Delta} = 3.9^{\circ} \pm 9.2^{\circ} \pm 4.0$

Summer 2011

The mixing-induced CP asymmetries in $B_s \rightarrow J/\psi \phi$ and $B_s \rightarrow J/\psi f_0$ determine $\phi_s^{\Delta} - 2\beta_s$ with $2\beta_s = 2.2^{\circ}$.

CDF 2010, $J/\psi\phi$: $\phi_s^{\Delta} = -23^{\circ}_{-34^{\circ}}^{+23^{\circ}}$ DØ EPS 2011, $J/\psi\phi$: $\phi_s^{\Delta} = -30^{\circ}_{-21^{\circ}}^{+22^{\circ}}$ LHCb LP 2011, $J/\psi f_0$: $\phi_s^{\Delta} = -23^{\circ} \pm 25^{\circ} \pm 1^{\circ}$ LHCb LP 2011, $J/\psi\phi$: $\phi_s^{\Delta} = 9.6^{\circ} \pm 10.3^{\circ} \pm 4.0^{\circ}$ all at 68%CL

LHCb LP 2011 average:

 $\phi_{s}^{\Delta} = 3.9^{\circ} \pm 9.2^{\circ} \pm 4.0^{\circ}$

My average: $\phi_s^{\Delta} = -1.8^{\circ} \pm 8.6^{\circ}$

with CDF/DØ errors inflated by a factor of 1.25 as a guesstimate for correlations.

All measurements are in mutual agreement and consistent with the SM prediction $\phi_s^{\Delta} = 0$.

30 Jun 2011: DØ result presents the semileptonic CP asymmetry measured in the dimuon channel:

 $a_{\rm fs} = (-7.87 \pm 1.72 \pm 0.93) \cdot 10^{-3}$

for a mixture of B_d and B_s mesons with

 $a_{\mathrm{fs}} = (0.594 \pm 0.022)a_{\mathrm{fs}}^{d} + (0.406 \pm 0.022)a_{\mathrm{fs}}^{s}$

The result is 3.9σ away from $a_{\rm fs}^{\rm SM} = (-0.24 \pm 0.03) \cdot 10^{-3}$. A. Lenz, UN 2011

30 Jun 2011: DØ result presents the semileptonic CP asymmetry measured in the dimuon channel:

 $a_{\rm fs} = (-7.87 \pm 1.72 \pm 0.93) \cdot 10^{-3}$

for a mixture of B_d and B_s mesons with

 $a_{\mathrm{fs}} = (0.594 \pm 0.022)a_{\mathrm{fs}}^{d} + (0.406 \pm 0.022)a_{\mathrm{fs}}^{\mathrm{s}}$

The result is 3.9σ away from $a_{\rm fs}^{\rm SM} = (-0.24 \pm 0.03) \cdot 10^{-3}$. A. Lenz, UN 2011

 $a_{\rm fs}$ favours $\phi_{\rm s}^{\Delta} < 0$ in agreement with the $A_{\rm CP}^{\rm mix}(B_{\rm s} \to J/\psi\phi)$ measurements of CDF and DØ and $A_{\rm CP}^{\rm mix}(B_{\rm s} \to J/\psi f_0)$ from LHCb.... but no agreement with $A_{\rm CP}^{\rm mix}(B_{\rm s} \to J/\psi\phi)$ from LHCb.

 Γ_{12}^q

Theory prediction with new physics:

$$a_{\rm fs} = (3.2 \pm 0.6) \cdot 10^{-3} \frac{\sin \phi_d^{\Delta}}{|\Delta_d|} + (2.1 \pm 0.4) \cdot 10^{-3} \frac{\sin \phi_s^{\Delta}}{|\Delta_s|}$$

A. Lenz, UN 2011

 \Rightarrow The central value of

 $a_{\rm fs} = (-7.87 \pm 1.72 \pm 0.93) \cdot 10^{-3}$

is slightly in the unphysical region.

 Γ_{12}^q

Theory prediction with new physics:

$$a_{\rm fs} = (3.2 \pm 0.6) \cdot 10^{-3} \frac{\sin \phi_d^{\Delta}}{|\Delta_d|} + (2.1 \pm 0.4) \cdot 10^{-3} \frac{\sin \phi_s^{\Delta}}{|\Delta_s|}$$

A. Lenz, UN 2011

 \Rightarrow The central value of

 $a_{\rm fs} = (-7.87 \pm 1.72 \pm 0.93) \cdot 10^{-3}$

is slightly in the unphysical region.

How much of a_{fs} could come from a_{fs}^d ?

With the fit results for $|\Delta_d|$ and ϕ_d^{Δ} one calculates

$$a_{\mathrm{fs}}^{d} = \left(-3.67^{+1.34}_{-0.55}
ight)\cdot10^{-3}$$

This is better than the direct measurements by Belle, BaBar and CLEO, averaging to

$$a^d_{\rm fs} = (-4.7\pm 4.6)\cdot 10^{-3},$$

but assumes that there is no new physics in Γ_{12}^d .

With the fit results for $|\Delta_d|$ and ϕ_d^{Δ} one calculates

$$a^d_{
m fs} = \left(-3.67^{+1.34}_{-0.55}
ight)\cdot 10^{-3}$$

This is better than the direct measurements by Belle, BaBar and CLEO, averaging to

$$a_{\rm fs}^{d} = (-4.7 \pm 4.6) \cdot 10^{-3},$$

but assumes that there is no new physics in Γ_{12}^d . The contribution from new physics in $B_d - \overline{B}_d$ mixing to a_{fs} is therefore

$$0.594 \left(-3.67^{+1.34}_{-0.55}\right) \cdot 10^{-3} = \left(-2.2^{+0.8}_{-0.2}\right) \cdot 10^{-3}$$

Next step: Identify remainder with a_{fs}^{s} and determine $sin(\phi_{s}^{\Delta})$.

 Γ^q_{12}

My personal average of ϕ_s^{Δ} determined from CDF, DØ and LHCb measurements of $A_{CP}^{mix}(B_s \rightarrow J/\psi\phi)$, the LHCb measurement of $A_{CP}^{mix}(B_s \rightarrow J/\psi f_0)$ and the DØ dimuon asymmetry:

$$\phi^{\Delta}_{ extsf{s}} = -5.2^{\circ} \pm 8.6^{\circ}$$

 Γ_{12}^q

My personal average of ϕ_s^{Δ} determined from CDF, DØ and LHCb measurements of $A_{CP}^{mix}(B_s \rightarrow J/\psi\phi)$, the LHCb measurement of $A_{CP}^{mix}(B_s \rightarrow J/\psi f_0)$ and the DØ dimuon asymmetry:

$$\phi^{\Delta}_{ extsf{s}} = -5.2^{\circ} \pm 8.6^{\circ}$$

 $a_{\rm fs}$ predicted from this value of $\phi_{\rm s}^{\Delta}$ and $a_{\rm fs}^{d}$ is

$$a_{\rm fs} = \left(-2.4^{+0.9}_{-0.5}
ight) \cdot 10^{-3}$$

and the DØ dimuon asymmetry exhibits an upward fluctuation of $2.5-3.0\sigma$ from this value.

Recall the LHCb measurement

$$\frac{\Gamma_d}{\Gamma_s} = \frac{\tau_{B_s}}{\tau_{B_d}} = 0.9996 \pm 0.0201$$

in excellent agreement with the SM preciction.

Changing the Cabibbo-favoured tree-level quantity $|\Gamma_{12}^{s}|$ by opening new enhanced decay channels such as $B_{s} \rightarrow \tau^{+}\tau^{-}$ will spoil this ratio.

Recall the LHCb measurement

$$\frac{\Gamma_d}{\Gamma_s} = \frac{\tau_{B_s}}{\tau_{B_d}} = 0.9996 \pm 0.0201$$

in excellent agreement with the SM preciction.

Changing the Cabibbo-favoured tree-level quantity $|\Gamma_{12}^{s}|$ by opening new enhanced decay channels such as $B_{s} \rightarrow \tau^{+}\tau^{-}$ will spoil this ratio.

Sizable new physics contributing equally to B_d and B_s decays causes trouble with the semileptonic branching fraction B_{SL} .

Recall the LHCb measurement

$$\frac{\Gamma_d}{\Gamma_s} = \frac{\tau_{B_s}}{\tau_{B_d}} = 0.9996 \pm 0.0201$$

in excellent agreement with the SM preciction.

Changing the Cabibbo-favoured tree-level quantity $|\Gamma_{12}^s|$ by opening new enhanced decay channels such as $B_s \to \tau^+ \tau^-$ will spoil this ratio.

Sizable new physics contributing equally to B_d and B_s decays causes trouble with the semileptonic branching fraction B_{SL} . Phenomenologically, new physics in the doubly Cabibbo-suppressed quantity Γ_{12}^d is still allowed, but requires somewhat contrived models of new physics.

• The assessment of the lifetime ratio τ_{B^+}/τ_{B_d} needs better lattice calculations as the quenched results of 2001.

- The assessment of the lifetime ratio τ_{B^+}/τ_{B_d} needs better lattice calculations as the quenched results of 2001.
- The lifetime ratio $\frac{\tau_{B_s}}{\tau_{B_d}} = 0.9996 \pm 0.0201$ measured by LHCb is in excellent agreement with the theory expectation $\frac{\tau_{B_s}}{\tau_{B_d}} = 1^{+0.000}_{-0.004}$.

• The data on the CP phase ϕ_s^{Δ} extracted from the CDF, DØ and LHCb measurements of $A_{CP}^{mix}(B_s \rightarrow J/\psi\phi)$, the LHCb measurement of $A_{CP}^{mix}(B_s \rightarrow J/\psi f_0)$ and the DØ dimuon asymmetry give

$$\phi^{\Delta}_{s}=-5.2^{\circ}\pm8.6^{\circ}$$

in agreement with SM, but the DØ dimuon asymmetry is off from the SM prediction by 3.9σ .

• The data on the CP phase ϕ_s^{Δ} extracted from the CDF, DØ and LHCb measurements of $A_{CP}^{mix}(B_s \rightarrow J/\psi\phi)$, the LHCb measurement of $A_{CP}^{mix}(B_s \rightarrow J/\psi f_0)$ and the DØ dimuon asymmetry give

$$\phi^{\Delta}_{ extsf{s}} = -5.2^{\circ} \pm 8.6^{\circ}$$

in agreement with SM, but the DØ dimuon asymmetry is off from the SM prediction by 3.9σ .

 A fit ignoring the LHCb value for A^{mix}_{CP}(B_s → J/ψφ) would still give a consistent picture of a large negative phase φ^Δ_s as seen in summer 2010. • The data on the CP phase ϕ_s^{Δ} extracted from the CDF, DØ and LHCb measurements of $A_{CP}^{mix}(B_s \rightarrow J/\psi\phi)$, the LHCb measurement of $A_{CP}^{mix}(B_s \rightarrow J/\psi f_0)$ and the DØ dimuon asymmetry give

 $B - \overline{B}$ mixing

$$\phi_{s}^{\Delta} = -5.2^{\circ} \pm 8.6^{\circ}$$

in agreement with SM, but the DØ dimuon asymmetry is off from the SM prediction by 3.9σ .

- A fit ignoring the LHCb value for A^{mix}_{CP}(B_s → J/ψφ) would still give a consistent picture of a large negative phase φ^Δ_s as seen in summer 2010.
- Allowing for NP phases ϕ_s^{Δ} and ϕ_d^{Δ} alleviates the tension with the DØ dimuon asymmetry to 2.5–3.0 σ .

Conclusions

• The data on the CP phase ϕ_s^{Δ} extracted from the CDF, DØ and LHCb measurements of $A_{CP}^{mix}(B_s \rightarrow J/\psi\phi)$, the LHCb measurement of $A_{CP}^{mix}(B_s \rightarrow J/\psi f_0)$ and the DØ dimuon asymmetry give

 $B - \overline{B}$ mixing

$$\phi^{\Delta}_{s} = -5.2^{\circ} \pm 8.6^{\circ}$$

in agreement with SM, but the DØ dimuon asymmetry is off from the SM prediction by 3.9σ .

- A fit ignoring the LHCb value for A^{mix}_{CP}(B_s → J/ψφ) would still give a consistent picture of a large negative phase φ^Δ_s as seen in summer 2010.
- Allowing for NP phases ϕ_s^{Δ} and ϕ_d^{Δ} alleviates the tension with the DØ dimuon asymmetry to 2.5–3.0 σ .
- Putting new physics into Γ^s₁₂ seems impossible, new physics in Γ^d₁₂ is ugly.

Backup Slides

The $|V_{ub}|$ puzzle

Three ways to measure $|V_{ub}|$:

- exclusive decay $B \rightarrow \pi \ell \nu$,
- inclusive decay $B \rightarrow X \ell \nu$ and
- leptonic decay $B^+ \rightarrow \tau^+ \nu_{\tau}$.

The $|V_{ub}|$ puzzle

Three ways to measure $|V_{ub}|$:

- exclusive decay $B \rightarrow \pi \ell \nu$,
- inclusive decay $B \rightarrow X \ell \nu$ and
- leptonic decay $B^+ \rightarrow \tau^+ \nu_{\tau}$.

Average of several BaBar and Belle measurements:

$$B^{\exp}(B^+ \to \tau^+
u_{ au}) = (1.68 \pm 0.31) \cdot 10^{-4}$$

Standard Model:

$$B(B^+ \to \tau^+ \nu_{\tau}) = 1.13 \cdot 10^{-4} \cdot \left(\frac{|V_{ub}|}{4 \cdot 10^{-3}}\right)^2 \left(\frac{f_B}{200 \text{ MeV}}\right)^2$$

Conclusions

The $|V_{ub}|$ puzzle

$$|V_{ub, {
m excl}}| = (3.51 \pm 0.47) \cdot 10^{-3}$$

$$|V_{ub,incl}| = (4.32 \pm 0.50) \cdot 10^{-3}$$

$$|V_{ub,B o au
u}| = (5.10 \pm 0.59) \cdot 10^{-3}$$

$$|V_{ub,excl}| = (3.51 \pm 0.47) \cdot 10^{-3}$$

$$|V_{ub,incl}| = (4.32 \pm 0.50) \cdot 10^{-3}$$

$$|V_{ub,B o au
u}| = (5.10 \pm 0.59) \cdot 10^{-3}$$

$$\begin{aligned} |V_{ub,B\to\tau\nu}| &= \left[5.10 \pm 0.47 |_{exp} \pm 0.35 |_{f_B} \right] \cdot 10^{-3} \\ &= \left[5.10 \pm 0.59 \right] \cdot 10^{-3} \end{aligned}$$

B meson lifetimes	$\mathrm{B}-\overline{\mathrm{B}}$ mixing	Γ^q_{12}	Conclusio
	The V _{ub} pu	zzle	
$ V_{ub,excl} = (3.$	$51 \pm 0.47) \cdot 10^{-3}$	•	
$ V_{ub,incl} = (4.3)$	$32 \pm 0.50) \cdot 10^{-3}$	-	

 $|V_{ub,B\to\tau\nu}| = \left[5.10 \pm 0.47|_{exp} \pm 0.35|_{f_B}\right] \cdot 10^{-3}$ $= \left[5.10 \pm 0.59\right] \cdot 10^{-3}$

 \Rightarrow no puzzle with individual $|V_{ub}|$ determinations

 $|V_{ub,B\to au
u}| = (5.10 \pm 0.59) \cdot 10^{-3}$

Here $f_B = (191 \pm 13)$ MeV is used:

With $\alpha = 89^{\circ}_{-4.2^{\circ}}^{+4.4^{\circ}}$ and $\beta = 21.15^{\circ} \pm 0.89^{\circ}$ find $|V_{ub}|_{ind} = (3.41 \pm 0.15) \cdot 10^{-3}$

Essential: β from $A_{CP}^{mix}(B_d \rightarrow J/\psi K_S)$

new physics in

• $B^+ \rightarrow \tau^+ \nu_{\tau}$

E.g. right-handed *W* coupling, possible in SUSY through loop effects. Crivellin 2009

- $B^+
 ightarrow au^+
 u_ au$ or
- $A_{CP}^{mix}(B_d \rightarrow J/\psi K_S)$. \leftarrow easier!