QCD Calculations for New-Physics Searches

Ulrich Nierste

Karlsruhe Institute of Technology

Colour meets Flavour
Siegen, October 2011
A. Lenz and UN: Numerical updates of lifetimes and mixing parameters of B mesons, 1102.4274, Proc. of CKM 2010.

Analytical input: NLO QCD calculations in

- Y. Y. Keum, UN, Phys. Rev. D 57 (1998) 4282,
- M. Beneke, G. Buchalla, C. Greub, A. Lenz, UN, Phys. Lett. B 459, 631 (1999),
- M. Beneke, G. Buchalla, C. Greub, A. Lenz, UN, Nucl. Phys. B 639, 389 (2002),
- M. Beneke, G. Buchalla, A. Lenz, UN, Phys. Lett. B 576 (2003) 173,
- A. Lenz, UN, JHEP 0706, 072 (2007)

This talk: Numerical updates confronted with data of summer 2011.

B meson lifetimes

Calculational framework:
Operator Product Expansion (Heavy Quark Expansion)
\Rightarrow simultaneous expansion of decay rate Γ in $\frac{\wedge_{Q C D}}{m_{b}}$ and α_{S} see talk bei Alex Lenz.

The neutral mesons B_{d} and B_{s} mix with their antiparticles, the eigenstates $B_{L}^{d, s}$ and $B_{H}^{d, s}$ differ in their masses and widths:

$$
\begin{array}{ll}
M_{H}^{q}=M_{B_{q}}+\frac{\Delta m_{q}}{2}, & \Gamma_{H}^{q}=\Gamma_{q}-\frac{\Delta \Gamma_{q}}{2} \\
M_{L}^{q}=M_{B_{q}}-\frac{\Delta m_{q}}{2}, & \Gamma_{L}^{q}=\Gamma_{q}+\frac{\Delta \Gamma_{q}}{2}
\end{array}
$$

The average B_{s} width

Define

$$
\tau_{B_{s}} \equiv \frac{1}{\Gamma_{s}}
$$

Discuss

$$
\frac{\tau_{B_{s}}}{\tau_{B_{d}}}
$$

Operators:

Wilson Coefficients $\left|C_{1,2}\right| \gg\left|C_{3, \ldots 8}\right|$.

Weak annihilation

contributes to $\tau_{B_{d}}, \tau_{B_{s}}:$

The left diagram gives practically the same result for B_{s} and B_{d}. The right diagram comes with small penguin coefficients $C_{3 \ldots 6}$.

More small diagrams contributing to $\tau_{B_{s}}$:

The prediction of $\tau_{B_{s}} / \tau_{B_{d}}$ involves four hadronic matrix element parametrised by $f_{B}^{2} B_{1}, f_{B}^{2} B_{2}, f_{B}^{2} \epsilon_{1}$ and $f_{B}^{2} \epsilon_{2}$.

Neubert,Sachrajda 1996
2011 update using $f_{B_{s}} / f_{B_{d}}=1.209 \pm 0.007 \pm 0.023$:

$$
\frac{\tau_{B_{s}}}{\tau_{B_{d}}}-1=
$$

$$
10^{-3} \cdot\left(\frac{f_{B_{s}}}{231 \mathrm{MeV}}\right)^{2}\left[(0.77 \pm 0.10) B_{1}-(1.00 \pm 0.13) B_{2}\right.
$$

$$
\left.+(36 \pm 5) \epsilon_{1}-(51 \pm 7) \epsilon_{2}\right]
$$

The prediction of $\tau_{B_{s}} / \tau_{B_{d}}$ involves four hadronic matrix element parametrised by $f_{B}^{2} B_{1}, f_{B}^{2} B_{2}, f_{B}^{2} \epsilon_{1}$ and $f_{B}^{2} \epsilon_{2}$.

Neubert,Sachrajda 1996
2011 update using $f_{B_{s}} / f_{B_{d}}=1.209 \pm 0.007 \pm 0.023:$

$$
\begin{aligned}
& \frac{\tau_{B_{s}}}{\tau_{B_{d}}}-1= \\
& \qquad \begin{aligned}
& 10^{-3} \cdot\left(\frac{f_{B_{s}}}{231 \mathrm{MeV}}\right)^{2}\left[(0.77 \pm 0.10) B_{1}-(1.00 \pm 0.13) B_{2}\right. \\
&\left.+(36 \pm 5) \epsilon_{1}-(51 \pm 7) \epsilon_{2}\right]
\end{aligned}
\end{aligned}
$$

With 2001 quenched lattice values for $B_{1,2}$ and $\epsilon_{1,2}$ (Bečirević hep-ph/0110124) find:

$$
-4 \cdot 10^{-3} \leq \frac{\tau_{B_{s}}}{\tau_{B_{d}}}-1 \leq 0
$$

Update of Feb 2011:

$$
-4 \cdot 10^{-3} \leq \frac{\tau_{B_{s}}}{\tau_{B_{d}}}-1 \leq 0
$$

Update of Feb 2011:

$$
-4 \cdot 10^{-3} \leq \frac{\tau_{B_{s}}}{\tau_{B_{d}}}-1 \leq 0
$$

LHCb, Lepton-Photon 2011: $\tau_{B_{s}}$ measured in $B_{s} \rightarrow J / \psi \phi:$

$$
\frac{\tau_{B_{s}}}{\tau_{B_{d}}}=0.9996 \pm 0.0201
$$

in excellent agreement with the SM preciction.

Next: Confront $\tau_{B^{+}} / \tau_{B_{d}}=1.081 \pm 0.006$ with
$\frac{\tau_{B^{+}}}{\tau_{B_{d}}}-1=$

$$
\begin{aligned}
& 0.0324\left(\frac{f_{B}}{200 \mathrm{MeV}}\right)^{2}\left[(1.0 \pm 0.2) B_{1}+(0.1 \pm 0.1) B_{2}\right. \\
& \left.-(17.8 \pm 0.9) \epsilon_{1}+(3.9 \pm 0.2) \epsilon_{2}-0.26\right]
\end{aligned}
$$

Correlate $\tau_{B_{s}} / \tau_{B_{d}}$ with $\tau_{B^{+}} / \tau_{B_{d}}$:

Blue: Theory prediction with 2001 lattice data
Red: Experimental 3σ region for $\tau_{B^{+}} / \tau_{B_{d}}$.

$B-\bar{B}$ mixing in the Standard Model

$\mathrm{B}_{\mathrm{q}}-\overline{\mathrm{B}}_{\mathrm{q}}$ mixing with $q=d$ or $q=s$ involves the 2×2 matrices M and Γ.

$B-\bar{B}$ mixing in the Standard Model

$\mathrm{B}_{\mathrm{q}}-\overline{\mathrm{B}}_{\mathrm{q}}$ mixing with $q=d$ or $q=s$ involves the 2×2 matrices M and Γ.
The mass matrix element M_{12}^{q} stems from the dispersive (real) part of the box diagram, internal t.
The decay matrix element Γ_{12}^{q} stems from the absorpive (imaginary) part of the box diagram, internal c, u.

$\mathrm{B}-\overline{\mathrm{B}}$ mixing in the Standard Model

$\mathrm{B}_{\mathrm{q}}-\overline{\mathrm{B}}_{\mathrm{q}}$ mixing with $q=d$ or $q=s$ involves the 2×2 matrices M and Γ.
The mass matrix element M_{12}^{q} stems from the dispersive (real) part of the box diagram, internal t.
The decay matrix element Γ_{12}^{q} stems from the absorpive (imaginary) part of the box diagram, internal c, u.

3 physical quantities in $\mathrm{B}_{\mathrm{q}}-\overline{\mathrm{B}}_{\mathrm{q}}$ mixing:

$$
\left|M_{12}^{q}\right|, \quad\left|\Gamma_{12}^{q}\right|, \quad \phi_{q} \equiv \arg \left(-\frac{M_{12}^{q}}{\Gamma_{12}^{q}}\right)
$$

The two eigenstates found by diagonalising $M-i \Gamma / 2$ differ in their masses and widths:

$$
\begin{aligned}
\text { mass difference } & \Delta m_{q} \simeq 2\left|M_{12}^{q}\right|, \\
\text { width difference } & \Delta \Gamma_{q} \simeq 2\left|\Gamma_{12}^{q}\right| \cos \phi_{q}
\end{aligned}
$$

The two eigenstates found by diagonalising $M-i \Gamma / 2$ differ in their masses and widths:

$$
\begin{aligned}
\text { mass difference } & \Delta m_{q} \simeq 2\left|M_{12}^{q}\right|, \\
\text { width difference } & \Delta \Gamma_{q} \simeq 2\left|\Gamma_{12}^{q}\right| \cos \phi_{q}
\end{aligned}
$$

CP asymmetry in flavor-specific decays (semileptonic CP asymmetry):

$$
a_{\mathrm{fs}}^{q}=\frac{\left|\Gamma_{12}^{q}\right|}{\left|M_{12}^{q}\right|} \sin \phi_{q}
$$

Generic new physics

Phases $\phi_{q}=\arg \left(-M_{12}^{q} / \Gamma_{12}^{q}\right)$ in the Standard Model:

$$
\phi_{d}^{S M}=-4.3^{\circ} \pm 1.4^{\circ}, \quad \phi_{s}^{S M}=0.2^{\circ}
$$

Define the complex parameters Δ_{d} and Δ_{s} through

$$
M_{12}^{q} \equiv M_{12}^{\mathrm{SM}, \mathrm{q}} \cdot \Delta_{q}, \quad \Delta_{q} \equiv\left|\Delta_{q}\right| e^{i \phi_{a}^{\Delta}}
$$

In the Standard Model $\Delta_{q}=1$. Use $\phi_{s}=\phi_{s}^{\mathrm{SM}}+\phi_{s}^{\Delta} \simeq \phi_{s}^{\Delta}$.

Generic new physics

Phases $\phi_{q}=\arg \left(-M_{12}^{q} / \Gamma_{12}^{q}\right)$ in the Standard Model:

$$
\phi_{d}^{S M}=-4.3^{\circ} \pm 1.4^{\circ}, \quad \phi_{s}^{S M}=0.2^{\circ}
$$

Define the complex parameters Δ_{d} and Δ_{s} through

$$
M_{12}^{q} \equiv M_{12}^{\mathrm{SM}, \mathrm{q}} \cdot \Delta_{q}, \quad \Delta_{q} \equiv\left|\Delta_{q}\right| e^{i \phi_{a}^{\Delta}}
$$

In the Standard Model $\Delta_{q}=1$. Use $\phi_{s}=\phi_{s}^{\mathrm{SM}}+\phi_{s}^{\Delta} \simeq \phi_{s}^{\Delta}$.
The measurements

$$
\begin{array}{lll}
\Delta m_{s}=(17.77 \pm 0.10 \pm 0.07) \mathrm{ps}^{-1} & \text { CDF } \\
\Delta m_{s}=(17.63 \pm 0.11 \pm 0.04) \mathrm{ps}^{-1} & \text { LHCb (prelim) }
\end{array}
$$

imply

$$
\left|\Delta_{s}\right|=1.03 \pm 0.14_{\text {(th) }} \pm 0.01_{\text {(exp) }}
$$

Summer 2010

Global analysis of $\mathrm{B}_{\mathrm{s}}-\overline{\mathrm{B}}_{\mathrm{s}}$ mixing and $\mathrm{B}_{\mathrm{d}}-\overline{\mathrm{B}}_{\mathrm{d}}$ mixing with A. Lenz and the CKMfitter Group (J. Charles, S. Descotes-Genon, A. Jantsch, C. Kaufhold, H. Lacker, S. Monteil, V. Niess) arXiv:1008.1593

Rfit method: No statistical meaning is assigned to systematic errors and theoretical uncertainties.

We have performed a simultaneous fit to the Wolfenstein parameters and to the new physics parameters Δ_{s} and Δ_{d} :

$$
\Delta_{q} \equiv \frac{M_{12}^{q}}{M_{12}^{q, S M}}, \quad \Delta_{q} \equiv\left|\Delta_{q}\right| e^{i \phi_{a}^{\Delta}}
$$

Result for $\mathrm{B}_{\mathrm{d}}-\overline{\mathrm{B}}_{\mathrm{d}}$ mixing:

SM point $\Delta_{d}=1$ disfavored by 2.7σ.

Main driver:
$B^{+} \rightarrow \tau^{+} \nu_{\tau}$

Result for $\mathrm{B}_{\mathrm{s}}-\overline{\mathrm{B}}_{\mathrm{s}}$ mixing:

SM point $\Delta_{s}=1$ disfavored by 2.7σ.
with 2010 combination of 2009 CDF/DØ data on $B_{s} \rightarrow J / \psi \phi$ and 2010 DØ dimuon CP asymmetry

Summer 2010 p-values:

Hypothesis	p -value
$\Delta_{d}=1(2 \mathrm{D})$	2.7σ
$\Delta_{s}=1(2 \mathrm{D})$	2.7σ
$\Delta_{d}=\Delta_{s}(2 \mathrm{D})$	2.1σ
$\Delta_{d}=\Delta_{s}=1(4 \mathrm{D})$	3.6σ

Summer 2011

The mixing-induced CP asymmetries in $B_{s} \rightarrow J / \psi \phi$ and $B_{s} \rightarrow J / \psi f_{0}$ determine $\phi_{s}^{\Delta}-2 \beta_{s}$ with $2 \beta_{s}=2.2^{\circ}$.

CDF 2010, J/ $\psi \phi$:

$$
\begin{aligned}
& \phi_{s}^{\Delta}=-23^{\circ}{ }_{-34^{\circ}}{ }^{\circ} \\
& \phi_{s}^{\Delta}=-30^{\circ}+22^{\circ} \\
& \phi_{s}^{\Delta}=-23^{\circ} \pm 25^{\circ} \pm 1^{\circ} \\
& \phi_{s}^{\Delta}=9.6^{\circ} \pm 10.3^{\circ} \pm 4.0^{\circ}
\end{aligned}
$$

DØ EPS 2011, $J / \psi \phi$:
LHCb LP 2011, $J / \psi f_{0}$:
LHCb LP 2011, J/ $\psi \phi$:
all at $68 \% \mathrm{CL}$

Summer 2011

The mixing-induced CP asymmetries in $B_{s} \rightarrow J / \psi \phi$ and $B_{s} \rightarrow J / \psi f_{0}$ determine $\phi_{s}^{\Delta}-2 \beta_{s}$ with $2 \beta_{s}=2.2^{\circ}$.

CDF 2010, $J / \psi \phi$:

$$
\begin{aligned}
& \phi_{s}^{\Delta}=-23^{\circ}{ }_{-34^{\circ}}{ }^{\circ} \\
& \phi_{s}^{\Delta}=-30^{\circ}+22^{\circ} \\
& \phi_{s}^{\Delta}=-23^{\circ} \pm 25^{\circ} \pm 1^{\circ}
\end{aligned}
$$

$$
\text { DØ EPS 2011, } J / \psi \phi: \quad \phi_{s}^{\Delta}=-30^{\circ}+21^{\circ}
$$

LHCb LP 2011, $J / \psi f_{0}$:
LHCb LP 2011, J/ $\psi \phi: \quad \phi_{s}^{\Delta}=9.6^{\circ} \pm 10.3^{\circ} \pm 4.0^{\circ}$
all at $68 \% \mathrm{CL}$
LHCb LP 2011 average: $\phi_{s}^{\Delta}=3.9^{\circ} \pm 9.2^{\circ} \pm 4.0^{\circ}$

Summer 2011

The mixing-induced CP asymmetries in $B_{s} \rightarrow J / \psi \phi$ and $B_{s} \rightarrow J / \psi f_{0}$ determine $\phi_{s}^{\Delta}-2 \beta_{s}$ with $2 \beta_{s}=2.2^{\circ}$.

CDF 2010, J/ $\psi \phi$:

$$
\phi_{s}^{\Delta}=-23^{\circ}{ }_{-34^{\circ}}{ }^{\circ}
$$

$$
\text { DØ EPS 2011, } J / \psi \phi: \quad \phi_{s}^{\Delta}=-30_{-21^{\circ}}^{+22^{\circ}}
$$

$$
\text { LHCb LP 2011, } J / \psi f_{0}: \quad \phi_{s}^{\Delta}=-23^{\circ} \pm 25^{\circ} \pm 1^{\circ}
$$

$$
\text { LHCb LP 2011, } J / \psi \phi: \quad \phi_{s}^{\Delta}=9.6^{\circ} \pm 10.3^{\circ} \pm 4.0^{\circ}
$$

all at 68\%CL

LHCb LP 2011 average: $\phi_{s}^{\Delta}=3.9^{\circ} \pm 9.2^{\circ} \pm 4.0^{\circ}$
My average: $\quad \phi_{s}^{\Delta}=-1.8^{\circ} \pm 8.6^{\circ}$
with CDF/DØ errors inflated by a factor of 1.25 as a guesstimate for correlations.
All measurements are in mutual agreement and consistent with the SM prediction $\phi_{s}^{\Delta}=0$.

But:

30 Jun 2011: DØ result presents the semileptonic CP asymmetry measured in the dimuon channel:

$$
a_{\mathrm{fs}}=(-7.87 \pm 1.72 \pm 0.93) \cdot 10^{-3}
$$

for a mixture of B_{d} and B_{s} mesons with

$$
a_{\mathrm{fs}}=(0.594 \pm 0.022) a_{\mathrm{fs}}^{d}+(0.406 \pm 0.022) a_{\mathrm{fs}}^{s}
$$

The result is 3.9σ away from $\mathrm{a}_{\mathrm{fs}}^{\mathrm{SM}}=(-0.24 \pm 0.03) \cdot 10^{-3}$.
A. Lenz, UN 2011

But:

30 Jun 2011: DØ result presents the semileptonic CP asymmetry measured in the dimuon channel:

$$
a_{\mathrm{fs}}=(-7.87 \pm 1.72 \pm 0.93) \cdot 10^{-3}
$$

for a mixture of B_{d} and B_{s} mesons with

$$
a_{\mathrm{fs}}=(0.594 \pm 0.022) a_{\mathrm{fs}}^{d}+(0.406 \pm 0.022) a_{\mathrm{fs}}^{s}
$$

The result is 3.9σ away from $a_{\mathrm{fs}}^{\mathrm{SM}}=(-0.24 \pm 0.03) \cdot 10^{-3}$.
A. Lenz, UN 2011
a_{fs} favours $\phi_{s}^{\Delta}<0$ in agreement with the $A_{\mathrm{CP}}^{\text {mix }}\left(B_{s} \rightarrow J / \psi \phi\right)$ measurements of CDF and DØ and $A_{\mathrm{CP}}^{\text {mix }}\left(B_{s} \rightarrow J / \psi f_{0}\right)$ from LHCb.... but no agreement with $A_{\mathrm{CP}}^{\operatorname{mix}}\left(B_{S} \rightarrow J / \psi \phi\right)$ from LHCb.

Theory prediction with new physics:

$$
a_{\mathrm{fs}}=(3.2 \pm 0.6) \cdot 10^{-3} \frac{\sin \phi_{d}^{\Delta}}{\left|\Delta_{d}\right|}+(2.1 \pm 0.4) \cdot 10^{-3} \frac{\sin \phi_{s}^{\Delta}}{\left|\Delta_{s}\right|}
$$

A. Lenz, UN 2011
\Rightarrow The central value of

$$
a_{\mathrm{fs}}=(-7.87 \pm 1.72 \pm 0.93) \cdot 10^{-3}
$$

is slightly in the unphysical region.

Theory prediction with new physics:

$$
a_{\mathrm{fs}}=(3.2 \pm 0.6) \cdot 10^{-3} \frac{\sin \phi_{d}^{\Delta}}{\left|\Delta_{d}\right|}+(2.1 \pm 0.4) \cdot 10^{-3} \frac{\sin \phi_{s}^{\Delta}}{\left|\Delta_{s}\right|}
$$

A. Lenz, UN 2011
\Rightarrow The central value of

$$
a_{\mathrm{fs}}=(-7.87 \pm 1.72 \pm 0.93) \cdot 10^{-3}
$$

is slightly in the unphysical region.
How much of a_{fs} could come from a_{fs}^{d} ?

With the fit results for $\left|\Delta_{d}\right|$ and ϕ_{d}^{Δ} one calculates

$$
a_{\mathrm{fs}}^{d}=\left(-3.67_{-0.55}^{+1.34}\right) \cdot 10^{-3}
$$

This is better than the direct measurements by Belle, BaBar and CLEO, averaging to

$$
a_{\mathrm{fs}}^{d}=(-4.7 \pm 4.6) \cdot 10^{-3}
$$

but assumes that there is no new physics in Γ_{12}^{d}.

With the fit results for $\left|\Delta_{d}\right|$ and ϕ_{d}^{Δ} one calculates

$$
a_{\mathrm{fs}}^{d}=\left(-3.67_{-0.55}^{+1.34}\right) \cdot 10^{-3}
$$

This is better than the direct measurements by Belle, BaBar and CLEO, averaging to

$$
a_{\mathrm{fs}}^{d}=(-4.7 \pm 4.6) \cdot 10^{-3}
$$

but assumes that there is no new physics in Γ_{12}^{d}.
The contribution from new physics in $\mathrm{B}_{\mathrm{d}}-\overline{\mathrm{B}}_{\mathrm{d}}$ mixing to a_{fs} is therefore

$$
0.594\left(-3.67_{-0.55}^{+1.34}\right) \cdot 10^{-3}=\left(-2.2_{-0.2}^{+0.8}\right) \cdot 10^{-3}
$$

Next step: Identify remainder with a_{fs}^{S} and determine $\sin \left(\phi_{s}^{\Delta}\right)$.

My personal average of ϕ_{s}^{Δ} determined from CDF, DØ and LHCb measurements of $A_{\mathrm{CP}}^{\text {mix }}\left(B_{S} \rightarrow J / \psi \phi\right)$, the LHCb measurement of $A_{\mathrm{CP}}^{\text {mix }}\left(B_{s} \rightarrow J / \psi f_{0}\right)$ and the $\mathrm{D} \varnothing$ dimuon asymmetry:

$$
\phi_{s}^{\Delta}=-5.2^{\circ} \pm 8.6^{\circ}
$$

My personal average of ϕ_{s}^{Δ} determined from CDF, DØ and LHCb measurements of $A_{\mathrm{CP}}^{\text {mix }}\left(B_{S} \rightarrow J / \psi \phi\right)$, the LHCb measurement of $A_{\mathrm{CP}}^{\operatorname{mix}}\left(B_{S} \rightarrow J / \psi f_{0}\right)$ and the $\mathrm{D} \varnothing$ dimuon asymmetry:

$$
\phi_{s}^{\Delta}=-5.2^{\circ} \pm 8.6^{\circ}
$$

a_{fs} predicted from this value of ϕ_{s}^{Δ} and a_{fS}^{d} is

$$
a_{\mathrm{fs}}=\left(-2.4_{-0.5}^{+0.9}\right) \cdot 10^{-3}
$$

and the $\mathrm{D} \varnothing$ dimuon asymmetry exhibits an upward fluctuation of 2.5-3.0 σ from this value.

New physics in Γ_{12}^{q} ?

Recall the LHCb measurement

$$
\frac{\Gamma_{d}}{\Gamma_{s}}=\frac{\tau_{B_{s}}}{\tau_{B_{d}}}=0.9996 \pm 0.0201
$$

in excellent agreement with the SM preciction. Changing the Cabibbo-favoured tree-level quantity $\left|\Gamma_{12}^{s}\right|$ by opening new enhanced decay channels such as $B_{s} \rightarrow \tau^{+} \tau^{-}$ will spoil this ratio.

New physics in Γ_{12}^{q} ?

Recall the LHCb measurement

$$
\frac{\Gamma_{d}}{\Gamma_{s}}=\frac{\tau_{B_{s}}}{\tau_{B_{d}}}=0.9996 \pm 0.0201
$$

in excellent agreement with the SM preciction.
Changing the Cabibbo-favoured tree-level quantity $\left|\Gamma_{12}^{s}\right|$ by opening new enhanced decay channels such as $B_{s} \rightarrow \tau^{+} \tau^{-}$ will spoil this ratio.
Sizable new physics contributing equally to B_{d} and B_{s} decays causes trouble with the semileptonic branching fraction $B_{\text {SL }}$.

New physics in Γ_{12}^{q} ?

Recall the LHCb measurement

$$
\frac{\Gamma_{d}}{\Gamma_{s}}=\frac{\tau_{B_{s}}}{\tau_{B_{d}}}=0.9996 \pm 0.0201
$$

in excellent agreement with the SM preciction.
Changing the Cabibbo-favoured tree-level quantity $\left|\Gamma_{12}^{s}\right|$ by opening new enhanced decay channels such as $B_{s} \rightarrow \tau^{+} \tau^{-}$ will spoil this ratio.
Sizable new physics contributing equally to B_{d} and B_{s} decays causes trouble with the semileptonic branching fraction B_{SL}. Phenomenologically, new physics in the doubly Cabibbo-suppressed quantity Γ_{12}^{d} is still allowed, but requires somewhat contrived models of new physics.

Conclusions

- The assessment of the lifetime ratio $\tau_{B^{+}} / \tau_{B_{d}}$ needs better lattice calculations as the quenched results of 2001.

Conclusions

- The assessment of the lifetime ratio $\tau_{B^{+}} / \tau_{B_{d}}$ needs better lattice calculations as the quenched results of 2001.
- The lifetime ratio $\frac{\tau_{B_{s}}}{\tau_{B_{d}}}=0.9996 \pm 0.0201$ measured by

LHCb is in excellent agreement with the theory expectation $\frac{\tau_{B_{s}}}{\tau_{B_{d}}}=1_{-0.004}^{+0.000}$.

- The data on the CP phase ϕ_{s}^{Δ} extracted from the CDF, DØ and LHCb measurements of $A_{\mathrm{CP}}^{\text {mix }}\left(B_{S} \rightarrow J / \psi \phi\right)$, the LHCb measurement of $A_{C P}^{\text {mix }}\left(B_{s} \rightarrow J / \psi f_{0}\right)$ and the $D \varnothing$ dimuon asymmetry give

$$
\phi_{s}^{\Delta}=-5.2^{\circ} \pm 8.6^{\circ}
$$

in agreement with SM, but the DØ dimuon asymmetry is off from the SM prediction by 3.9σ.

- The data on the CP phase ϕ_{s}^{Δ} extracted from the CDF, DØ and LHCb measurements of $A_{\mathrm{CP}}^{\text {mix }}\left(B_{s} \rightarrow J / \psi \phi\right)$, the LHCb measurement of $A_{\mathrm{CP}}^{\text {mix }}\left(B_{s} \rightarrow J / \psi f_{0}\right)$ and the $\mathrm{D} \varnothing$ dimuon asymmetry give

$$
\phi_{s}^{\Delta}=-5.2^{\circ} \pm 8.6^{\circ}
$$

in agreement with SM, but the DØ dimuon asymmetry is off from the SM prediction by 3.9σ.

- A fit ignoring the LHCb value for $A_{\mathrm{CP}}^{\text {mix }}\left(B_{s} \rightarrow J / \psi \phi\right)$ would still give a consistent picture of a large negative phase ϕ_{s}^{Δ} as seen in summer 2010.
- The data on the CP phase ϕ_{s}^{Δ} extracted from the CDF, DØ and LHCb measurements of $A_{\mathrm{CP}}^{\mathrm{mix}}\left(B_{s} \rightarrow J / \psi \phi\right)$, the LHCb measurement of $A_{\mathrm{CP}}^{\text {mix }}\left(B_{s} \rightarrow J / \psi f_{0}\right)$ and the $\mathrm{D} \varnothing$ dimuon asymmetry give

$$
\phi_{s}^{\Delta}=-5.2^{\circ} \pm 8.6^{\circ}
$$

in agreement with SM, but the DØ dimuon asymmetry is off from the SM prediction by 3.9σ.

- A fit ignoring the LHCb value for $A_{\mathrm{CP}}^{\text {mix }}\left(B_{s} \rightarrow J / \psi \phi\right)$ would still give a consistent picture of a large negative phase ϕ_{s}^{Δ} as seen in summer 2010.
- Allowing for NP phases ϕ_{s}^{Δ} and ϕ_{d}^{Δ} alleviates the tension with the $\mathrm{D} \varnothing$ dimuon asymmetry to 2.5-3.0 σ.
- The data on the CP phase ϕ_{s}^{Δ} extracted from the CDF, DØ and LHCb measurements of $A_{\mathrm{CP}}^{\mathrm{mix}}\left(B_{s} \rightarrow J / \psi \phi\right)$, the LHCb measurement of $A_{\mathrm{CP}}^{\mathrm{mix}}\left(B_{S} \rightarrow J / \psi f_{0}\right)$ and the $\mathrm{D} \varnothing$ dimuon asymmetry give

$$
\phi_{s}^{\Delta}=-5.2^{\circ} \pm 8.6^{\circ}
$$

in agreement with SM, but the DØ dimuon asymmetry is off from the SM prediction by 3.9σ.

- A fit ignoring the LHCb value for $A_{C P}^{\text {mix }}\left(B_{S} \rightarrow J / \psi \phi\right)$ would still give a consistent picture of a large negative phase ϕ_{s}^{Δ} as seen in summer 2010.
- Allowing for NP phases ϕ_{s}^{Δ} and ϕ_{d}^{Δ} alleviates the tension with the D D dimuon asymmetry to 2.5-3.0 σ.
- Putting new physics into Γ_{12}^{s} seems impossible, new physics in Γ_{12}^{d} is ugly.

Backup Slides

The $\left|V_{u b}\right|$ puzzle

Three ways to measure $\left|V_{u b}\right|$:

- exclusive decay $B \rightarrow \pi \ell \nu$,
- inclusive decay $B \rightarrow X \ell \nu$ and
- leptonic decay $B^{+} \rightarrow \tau^{+} \nu_{\tau}$.

The $\left|V_{u b}\right|$ puzzle

Three ways to measure $\left|V_{u b}\right|$:

- exclusive decay $B \rightarrow \pi \ell \nu$,
- inclusive decay $B \rightarrow X \ell \nu$ and
- leptonic decay $B^{+} \rightarrow \tau^{+} \nu_{\tau}$.

Average of several BaBar and Belle measurements:

$$
B^{\exp }\left(B^{+} \rightarrow \tau^{+} \nu_{\tau}\right)=(1.68 \pm 0.31) \cdot 10^{-4}
$$

Standard Model:

$$
B\left(B^{+} \rightarrow \tau^{+} \nu_{\tau}\right)=1.13 \cdot 10^{-4} \cdot\left(\frac{\left|V_{u b}\right|}{4 \cdot 10^{-3}}\right)^{2}\left(\frac{f_{B}}{200 \mathrm{MeV}}\right)^{2}
$$

The $\left|V_{u b}\right|$ puzzle

$$
\begin{aligned}
& \left|V_{u b, \text { excl }}\right|=(3.51 \pm 0.47) \cdot 10^{-3} \\
& \left|V_{u b, \text { incl }}\right|=(4.32 \pm 0.50) \cdot 10^{-3} \\
& \left|V_{u b, B \rightarrow \tau \nu}\right|=(5.10 \pm 0.59) \cdot 10^{-3}
\end{aligned}
$$

The $\left|V_{u b}\right|$ puzzle

$$
\begin{aligned}
& \left|V_{u b, \text { excl }}\right|=(3.51 \pm 0.47) \cdot 10^{-3} \\
& \left|V_{u b, \text { incl }}\right|=(4.32 \pm 0.50) \cdot 10^{-3} \\
& \left|V_{u b, B \rightarrow \tau \nu}\right|=(5.10 \pm 0.59) \cdot 10^{-3}
\end{aligned}
$$

Here $f_{B}=(191 \pm 13) \mathrm{MeV}$ is used:

$$
\begin{aligned}
\left|V_{u b, B \rightarrow \tau \nu}\right| & =\left[5.10 \pm\left. 0.47\right|_{\exp } \pm\left. 0.35\right|_{\mathrm{f}_{\mathrm{B}}}\right] \cdot 10^{-3} \\
& =[5.10 \pm 0.59] \cdot 10^{-3}
\end{aligned}
$$

The $\left|V_{u b}\right|$ puzzle

$$
\begin{aligned}
& \left|V_{u b, \text { excl }}\right|=(3.51 \pm 0.47) \cdot 10^{-3} \\
& \left|V_{u b, \text { incl }}\right|=(4.32 \pm 0.50) \cdot 10^{-3} \\
& \left|V_{u b, B \rightarrow \tau \nu}\right|=(5.10 \pm 0.59) \cdot 10^{-3}
\end{aligned}
$$

Here $f_{B}=(191 \pm 13) \mathrm{MeV}$ is used:

$$
\begin{aligned}
\left|V_{u b, B \rightarrow \tau \nu}\right| & =\left[5.10 \pm\left. 0.47\right|_{\exp } \pm\left. 0.35\right|_{\mathrm{f}_{\mathrm{B}}}\right] \cdot 10^{-3} \\
& =[5.10 \pm 0.59] \cdot 10^{-3}
\end{aligned}
$$

\Rightarrow no puzzle with individual $\left|V_{u b}\right|$ determinations

The $\left|V_{u b}\right|$ puzzle

Indirect determination:
find $\left|V_{u b}\right| \propto\left|V_{c b}\right| R_{u}$
from $\boldsymbol{R}_{u}=\frac{\sin \beta}{\sin \alpha}$

With $\alpha=89^{\circ}+4.4^{\circ}$ and $\beta=21.15^{\circ} \pm 0.89^{\circ}$ find

$$
\left|V_{u b}\right|_{\text {ind }}=(3.41 \pm 0.15) \cdot 10^{-3}
$$

Essential: β from $A_{\mathrm{CP}}^{\operatorname{mix}}\left(B_{d} \rightarrow J / \psi K_{S}\right)$

The $\left|V_{u b}\right|$ puzzle

$$
\begin{aligned}
& \left|V_{u b, \text { excl }}\right|=(3.51 \pm 0.47) \cdot 10^{-3} \\
& \left|V_{u b, \text { incl }}\right|=(4.32 \pm 0.50) \cdot 10^{-3} \\
& \left|V_{u b, B \rightarrow \tau \nu}\right|=(5.10 \pm 0.59) \cdot 10^{-3} \\
& \left|V_{u b, \text { ind }}\right|=(3.41 \pm 0.15) \cdot 10^{-3}
\end{aligned}
$$

The $\left|V_{u b}\right|$ puzzle

$$
\begin{aligned}
& \left|V_{u b, \text { excl }}\right|=(3.51 \pm 0.47) \cdot 10^{-3} \\
& \left|V_{u b, \text { incl }}\right|=(4.32 \pm 0.50) \cdot 10^{-3} \\
& \left|V_{u b, B \rightarrow \tau \nu}\right|=(5.10 \pm 0.59) \cdot 10^{-3} \\
& \left|V_{u b, \text { ind }}\right|=(3.41 \pm 0.15) \cdot 10^{-3}
\end{aligned}
$$

Alleviate the 2.9σ tension between $\left|V_{u b, \text { ind }}\right|$ and $\left|V_{u b, B \rightarrow \tau \nu}\right|$ with new physics in

- $B^{+} \rightarrow \tau^{+} \nu_{\tau}$
E.g. right-handed W coupling, possible in SUSY through loop effects.

Crivellin 2009

The $\left|V_{u b}\right|$ puzzle

$$
\begin{aligned}
& \left|V_{u b, \text { excl }}\right|=(3.51 \pm 0.47) \cdot 10^{-3} \\
& \left|V_{u b, \text { incl }}\right|=(4.32 \pm 0.50) \cdot 10^{-3} \\
& \left|V_{u b, B \rightarrow \tau \nu}\right|=(5.10 \pm 0.59) \cdot 10^{-3} \\
& \left|V_{u b, \text { ind }}\right|=(3.41 \pm 0.15) \cdot 10^{-3}
\end{aligned}
$$

Alleviate the 2.9σ tension between $\left|V_{u b, \text { ind }}\right|$ and $\left|V_{u b, B \rightarrow \tau \nu}\right|$ with new physics in

- $B^{+} \rightarrow \tau^{+} \nu_{\tau}$ or
- $A_{\mathrm{CP}}^{\text {mix }}\left(B_{d} \rightarrow J / \psi K_{S}\right) . \quad \leftarrow$ easier!

