LIU beam performance ramp-up

T. Argyropoulos, S. Albright, F. Asvesta, M. Barnes, <u>H. Bartosik</u>, C. Bracco,
P. Baudrenghien, N. Bruchon, R. Calaga, H. Damerau, G.P. Di Giovanni, G. Hagmann,
A. Huschauer, V. Kain, I. Karpov, A. Lasheen, K. Li, I. Mases Sole, B. Mikulec,
Y. Papaphilippou, G. Papotti, T. Prebibaj, D. Quartullo, G. Rumolo, B. Salvant, M. Schenk,
P. Skowronski, A. Spierer, R. Steerenberg, F. Velotti, C. Zannini

HiLumi WP2 – 25.07.2023

Outline

- **o** LIU performance ramp-up plan
- **o PSB and PS achieved performance**
- **o** SPS achieved performance
- Summary & Outlook

Outline

o LIU performance ramp-up plan

- **o PSB and PS achieved performance**
- **o** SPS achieved performance
- Summary & Outlook

LIU performance ramp-up plan

o Intensity goals of the ramp-up at SPS extraction

- 1.8e11 p/b in MD by the end of 2022 to be ready for LHC in 2023
- 2.1e11 p/b in MD by the end of 2023 to be ready for LHC in 2024
 - 2.3e11 p/b in MD by the end of 2024

Outline

- LIU performance ramp-up plan
- **o PSB and PS achieved performance**
- **o** SPS achieved performance
- Summary & Outlook

PSB delivering LIU beams

Very smooth commissioning of new PSB injection after LS2

- Including dynamic beta-beat compensation during collapse of injection chicane
- Machine performance in very good agreement with simulation models
- PSB delivering LIU brightness (and beyond!) already since 2021

PS demonstrated beyond LIU target intensity

- LIU bunch intensity of 2.6e11 p/b already recovered in 2021
- Achieved intensities stably up to 3e11 p/b for higher intensities:
 - Quadrupolar longitudinal coupled-bunch instabilities during acceleration
 - 40 MHz RF system as Landau cavity provides sufficient stability
 - Alternatively can be achieved by newly developed Quadrupole-mode feedback
- Since LIU target intensity is exceeded with a good margin, the focus is now on beam quality and reproducibility

I. Karpov et al., JAPW 2022

At LIU intensity, these oscillations can cause longitudinal halo

PS operating at LIU brightness

 Commissioning of 3 eVs longitudinal emittance in PSB in 2022 made the final step in the brightness ramp-up for the PS

STANDARD 25ns

LIU beam parameters at PS extraction reached

BCMS beam in the PS

• Measurements from 2022 – close to LIU brightness also for BCMS beam

Outline

- LIU performance ramp-up plan
- **o PSB and PS achieved performance**
- SPS achieved performance
- Summary & Outlook

Horizontal instabilities at SPS flat bottom

- **o** Horizontal instability characterized in detail in 2018 for 1.8e11 p/b
 - Mitigation strategy developed in simulations: high chromaticity + octupoles
- Successfully tested in 2022 for BCMS beams
 - 5x48 bunches with 2.3e11 p/b ramped to ~50 GeV
 - About 95% overall transmission at peak performance

Vertical coupled bunch instability on SPS flat bottom

Predicted in simulations performed during LS2

- Extremely fast instability (only few turns risetime)
- Threshold depends on vertical tune setting (resistive wall instability)
- Experimentally confirmed with 1 batch and low intensity
- Vertical tunes close to 20.25 resonance required for LIU parameters
 - **Control of tunes is critical** due to large tune shift from impedance ("Laslett correction") excellent progress on simulations an operational correction

Intensity ramp-up in the SPS – Longitudinal aspects

Successful commissioning of new RF system in 2021 and 2022

- 1-turn delay feedback, feedforward, longitudinal damper, amplitude modulation
- Nominal RF voltage and power available on 4 out of 6 cavities (SIEMENS plant only 800 kW), failure rate of solid-state amplifier modules to be understood
- Significantly improved transmission in the ramp!

Longitudinal stability in check

• thanks to optimized voltage program (higher voltage at flat top) and controlled emittance blow-up (with automatized setup)

Scrubbing

• Pressure rise at MKDH limited intensity to 1.8e11 p/b in 2022

- MKDH is the original beam dump kicker from SPS construction
- Unpredictable pressure spikes at flat top with short bunches

Scrubbing

- Pressure rise at MKDH limited intensity to 1.8e11 p/b in 2022
- Scrubbing took 1 month in 2023 to condition MKDH and new MKP-L

Scrubbing

- Pressure rise at MKDH limited intensity to 1.8e11 p/b in 2022
- Scrubbing took 1 month in 2023 to condition MKDH and new MKP-L
 - Using cycle with long flat top at 400 GeV + improved vacuum interlock logics gave huge improvement in scrubbing efficiency

Issue with SPS wire scanners

• After the scrubbing period realized that wires of all 4 wire scanners broke

- New wires were installed in sextant 4, but the broke again after a short while when accelerating the beam (normal flat top length, intensity 1.8e11 p/b)
- Mitigation strategy developed by SPS wire scanner task force
 - Suspect impedance at around 800 MHz at origin of failure
 - Installation of ferrites during technical stop to significantly reduce wire heating
 - Observed clear improvement on online "wire temperature" measurement

SPS performance achievements – intensity

- Intensity record from 13.06.2023: <u>4x72 with 2.2e11 p/b at flat top</u>
 - Excellent transmission (~95% without scraping)

SPS performance achievements – intensity

• Intensity record from 13.06.2023: <u>4x72 with 2.2e11 p/b at flat top</u>

- Excellent transmission (~95% without scraping)
- Longitudinally stable (controlled long. emittance blow-up, voltage program)

SPS performance achievements – intensity

• Intensity record from 13.06.2023: <u>4x72 with 2.2e11 p/b at flat top</u>

- Excellent transmission (~95% without scraping)
- Longitudinally stable (controlled long. emittance blow-up, voltage program)
- Bunch length at flat top around 1.6 ns reproducibly!

SPS beam performance achievements – brightness

- LIU target brightness for standard beam reached (end of SPS flat bottom)
 - Measurements for BCMS beam planned for upcoming MDs

STANDARD 25ns

Measurements from July 2023 with 4x72 bunches

Transverse tails

• Transverse beam profiles show large transverse tails

- Lots of studies to characterize the tails (q-Gaussian fits, parallel readout of different photomultipliers of the wire scanners)
- Found tails in the PSB, additional tail creation at PS transition crossing and in SPS

F. Asvesta et al., JAPW 2022

Transverse tails

• Transverse beam profiles show large transverse tails

- Lots of studies to characterize the tails (q-Gaussian fits, parallel readout of different photomultipliers of the wire scanners)
- Found tails in the PSB, additional tail creation at PS transition crossing and in SPS

o Optimizations applied in the PSB and the PS (especially in vertical)

Improvement not clear yet in the SPS (and LHC)

8b4e beam

 Pressure spikes at 800 MHz cavity 1 limited intensity of 8b4e beam in 2022 to 1.8e11 p/b with 2 batches of 56 bunches

First tests in 2023 very promising

- Clear conditioning observed with 2x56 bunches could reach 2.2e11 p/b
- To be continued with more batches and higher intensity

I. Karpov et al. at IPP, 21.04.2023

Outline

- LIU performance ramp-up plan
- **o PSB and PS achieved performance**
- **o** SPS achieved performance
- o Summary & Outlook

Summary and outlook

• Achieved intensities

year	Intensity at FT [p/b]	# of bunches	Batch spacing [ns]	Bunch length [ns]	Beam type	Date
2023	2.2e11	4 x 72	200	1.6	Standard	13.06.
2023	2.0e11	2 x 56	250	1.6	8b4e	05.04.
2023	1.8e11	56 + 5 x 36	200	1.6	hybrid	19.05.

Next steps

- Demonstrate LIU target intensity (2.3e11 p/b) at flat top
- Half-day event on strategy for kicker conditioning and possible future upgrades
- Minimize tails in transverse beam profiles
- Losses at PS-2-SPS transfer and flat bottom losses
- Need for high bandwidth feedback system to ensure transverse stability?
- Need for coating of SPS or is scrubbing sufficient?
- Study 8b4e intensity reach beyond 2.3e11 p/b as requested by HL-LHC

Thanks for your attention

HiLumi WP2 meeting - 25.07.2023

BACKUP

HiLumi WP2 meeting - 25.07.2023

SPS achieved brightness at end flat bottom

o Good brightness also in the SPS with some room for improvement

- Measurements at end flat bottom (wire breakage for full trains at flat top)
- Further working point optimization to be performed in 2023 (considering beam stability and impact on transmission)

C. Zannini et al., JAPW 2022

Achieved beam parameters

- Operationally delivered BCMS beams (5x36 bunches) up to 1.5e11 p/b
 - Large scraping had to be used to avoid losses at LHC injection (see later)

Beam induced heating of SPS injection kicker MKP-L

• Heating and outgassing limit continuous operation with LHC beams

- In 2022 SY-ABT increased temperature limit to cope with scrubbing and high intensity MDs (MKP-L heating much worse than MKP-S)
- Low impedance upgrade of MKP-L installation presently ongoing 0
 - Serigraphy for impedance reduction (final configuration with very good HV behaviour) + coating to minimize e-cloud
 - Estimated to need about one week of scrubbing at the beginning of 2023

L. Mether et al., SPS MPC #29

1.2

1.4

Pressure spikes at SPS dump kicker MKDH for 25 ns beams

• Pressure spikes limit achievable bunch length at flat top (vacuum interlock)

- Strong dependence of pressure spikes on bunch length (short bunches are bad)
- Best performance for BCMS beam towards the end of the year conditioning?
- In the last MD of the year reproduced same vacuum behaviour at ~380 GeV
- Need to allocate time after scrubbing to try to condition at lower energy with increased interlock threshold – extra days in the schedule?
- Increase of interlock thresholds in operation being studied (SY-ABT)

