

heinrichhertzstiftung

Update on exclusive *b*-tagging and an introduction to hemisphere efficiency correlation

FCC Performance Meeting

Lars Röhrig^{1,2}, Kevin Kröninger¹, Romain Madar², Stéphane Monteil² In collaboration with Fabrizio Palla

07/25/2023

¹Department of Physics – TU Dortmund University ²Laboratoire de Physique de Clermont – Université Clermont-Auvergne

- Heavy-quark electroweak observables under study: *R_b* and *A^b_{FB}*
- Measurements will be dominated by the systematic uncertainty at FCC-ee (*Z*-pole)
- Dominant contribution to uncertainty from light- and *c*-quark physics
- Motivates novel ideas to make use of the Z-pole statistics to bring down syst. uncertainty

Next *b*-tagger for the FCC-ee

- Goal: elimination of light- and *c*-physics contamination
- When does it enter? At the *b*-tagging! → Purer *b*-tagging required

Proposal: b-hemisphere tagger

Identify (the charge of) the hemispheres by exclusively reconstruct *b*-hadrons. Targets:

- $\scriptstyle \bullet$ Potential purity: 100 % thanks to the boost, $\overline{\beta\gamma}\approx 6.5$
- Efficiency: 1%

 R_b : hemisphere efficiency correlation, A_{FB}^b : QCD corrections

What is needed?

- Estimate purity from delphes Fast Simulation (IDEA)
- Estimate hemisphere correlation from Full Simulation (CLD)

What has already been achieved for R_b ?

- \blacksquare 200+ b-hadron decay modes sum up to 1.1 % tagging efficiency \checkmark
- $\scriptstyle \bullet$ From winter2023 sample campaign: Purity above 99.6 % for six representative decay modes \checkmark

- Simulation of ~ 83 000 CLD-FullSim events with forced decays on both legs with EvtGen: $\bar{b} \rightarrow B^+ \rightarrow [K^+\pi^-]_{\bar{D}^0} \pi^+$ and $b \rightarrow B^- \rightarrow [K^-\pi^+]_{D^0} \pi^- \checkmark$
- \blacksquare Reconstruction using <code>VertexFitterSimple</code> functionalities \checkmark

FullSim B^+ reconstruction

Goal: Bring the correlation of the hemisphere rec. efficiency down: mainly driven by the PV reconstruction

- Handful of custom functions to use FCCAnalyses with the FullSim samples
- Tested three approaches to select secondary tracks not coming from PV:
 - 1. Shared primary vertex with the beam spot constraint applied (VertexFitter_Tk)
 - 2. Inconsistency with the luminous region by geometrical cuts
 - 3. LEP reconstructed 1 PV/hemisphere (tested, but too less tracks for reco)
- \blacksquare Used a custom <code>VertexMore-class</code> to hack the neutral D^0 <code>pseudotrack</code>
- Applied the mass constraints for the D^0 and B^+ vertex fit (no "particle-ID" used)

Alternative secondary track selection

- Track geometries to select secondary tracks by their inconsistency with the luminous region
- Luminous region defined on MC truth by $\bar{d}_0 = \operatorname{sign}(\mathrm{PV}_z^{\mathrm{MC}}) \sqrt{(\mathrm{PV}_x^{\mathrm{MC}})^2 + (\mathrm{PV}_y^{\mathrm{MC}})^2}$
- Extract the mean $\mu_{\bar{d}_0} = -0.001 \,\mu\text{m}$ and $\sigma_{\bar{d}_0} = 5.961 \,\mu\text{m}$ of \bar{d}_0
- Evaluate the inconsistency of a track from its transverse and longitudinal impact parameter

Define discriminating variables v₁ and v₂:

$$v_1 = \left| \frac{d_0 - \mu_{\bar{d}_0}}{\sqrt{\sigma_{d_0}^2 + \sigma_{\bar{d}_0}^2}} \right| \quad \text{and} \quad v_2 = \left| \frac{z_0 - \mu_{\bar{d}_0}}{\sqrt{\sigma_{z_0}^2 + \sigma_{\bar{d}_0}^2}} \right|$$

Threshold search

- Find threshold values for v_1 an v_2 to distinguish between primary and secondary tracks
- Evaluation from tracks, that are fitted with VertexFitter_Tk to a PV
- Left: v_1 distribution, right: v_2 distribution, separately for all, the PV and the secondary tracks

Threshold search

- \blacksquare Scanning $v_{1/2}$ and accepting tracks as secondaries, if $v_{1/2}$ is above threshold
- Evaluating the product of efficiency and purity + the mean number of secondary tracks
- Take maximum of d_0 (\overline{D}^0), since B^+ constant over wide range: $v_1 \stackrel{!}{>} 3$
- v_2 threshold taken to match mean number of secondary tracks at v_1 cut: $v_2 \stackrel{!}{>} 16$

Threshold search

- Scanning $v_{1/2}$ and accepting tracks as secondaries, if $v_{1/2}$ is above threshold
- Evaluating the product of efficiency and purity + the mean number of secondary tracks
- Take maximum of d_0 (\overline{D}^0), since B^+ constant over wide range: $v_1 \stackrel{!}{>} 3$
- v_2 threshold taken to match mean number of secondary tracks at v_1 cut: $v_2 \stackrel{!}{>} 16$

Reconstruction efficiencies

	Shared PV / %	Inconsistency with LR/%
D^0	87.00	90.55
\bar{D}^0	87.15	90.40
D^0 and $ar{D}^0$	63.28	69.42
B^+	69.20	78.05
B^-	69.35	78.02
B^+ and B^-	43.04	58.17
D^0	74.42	75.47
\bar{D}^0	74.77	75.48
B^+	59.72	62.96
B^-	59.46	62.76
B^+ and B^-	38.50	44.85
	$\begin{array}{c} D^{0}\\ \overline{D}^{0}\\ D^{0} \text{ and } \overline{D}^{0}\\ \end{array}\\ B^{+}\\ B^{-}\\ B^{+}\\ and \\ B^{-}\\ \end{array}\\ \begin{array}{c} B^{+}\\ B^{-}\\ B^{+}\\ B^{-}\\ B^{+}\\ B^{-}\\ B^{+}\\ B^{-}\\ \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

• D^0/\bar{D}^0 efficiencies similar, B^{\pm} differs since π -track close to the PV and could be catched by PV vertex fit

Hemisphere correlation

• Hemisphere (efficiency) correlation C_b : do we catch the other hemisphere, if the first one is tagged?

$$C_b = \frac{\varepsilon_{\text{double}}}{\varepsilon_{\text{single}}^2} \quad \text{with} \quad \varepsilon_{\text{double}} = \frac{N_{B^+\&B^-}}{N_{B^+\&B^-}^{\text{generated}}} \quad \text{and} \quad \varepsilon_{\text{single}} = \frac{N_{B^+} + N_{B^-}}{\left(N_{B^+\&B^-}^{\text{generated}}\right)^2}$$

- Result: $C_b^{\text{Shared PV}} = 0.966 \pm 0.009$ and $C_b^{\text{Luminous}} = 0.991 \pm 0.009$ (ALEPH: $C_b = 0.962 \pm 0.003$), uncertainties are the statistical ones
- Estimate the impact of the relative hemisphere uncertainty on the full R_b uncertainty

Evaluate the sources and dependences of the hemisphere correlation

Hemisphere correlation computation – differential (preliminary)

- Differentially evaluated in bins of $\cos(\theta_B) = \frac{p_z}{|p|}$ (angle wrt. the beam)
- No clear dependence within the statistical uncertainties, since reconstruction close to the beam affects both, ε_{double} and ε_{single}

Hemisphere correlation computation – differential (preliminary)

- Differentially evaluated in bins of p_B
- Low momenta tail: \rightarrow close to the PV: affects the reconstruction since tracks are taken as PV tracks
- From FastSim studies: $p_B > 20$ GeV to reduce gluon splitting contamination in the signal region

Hemisphere correlation computation – differential (preliminary)

- Differentially evaluated in bins of N_{PV tracks} (number of primary tracks or non-secondary)
- Decrease towards higher $N_{PV \text{ tracks}}$ for the LR approach (though consistent within uncertainties)

Conclusions and Outlook

- *b*-tagger based on exclusive *b*-hadron reconstruction foreseen to improve on syst. uncertainty
- Target purity and efficiency in reach and tested
- Hemisphere correlations for *R_b*: get indepedent from the PV
- Select tracks outside the luminous region seems promising to reduce the correlation
 - $\hookrightarrow \mathsf{Preliminary\ results,\ still\ WIP}$

