## Analysis update of <sup>94</sup>Nb(n,y) cross section

J. Balibrea-Correa, V. Babiano-Suarez, J. Lerendegui-Marco, C. Domingo-Pardo, I. Ladarescu, A. Tarifeño-Saldivia, V. Alcayne, D. Cano-Ott, E. González, T. Martinez, E. Mendoza, F. Calviño, A. Casanovas, C. Guerrero, S. Heinitz, U. Köster, E. A. Maugeri, R. Dressler, D. Schumann, I. Mönch





TOF collaboration meeting, Valencia 22th November 2023







#### **Experimental setup**



First  $(n, \gamma)$  measurement in EAR2 for 2022 campaign:

- Experiment performed between end of March and April of last year.
- Experimental setup:
  - **9 s-TEDs** in a ring configuration @ **4.5 cm**.  $\rightarrow$ Main detectors for (n, $\gamma$ ) (~1 L of C6D6).
  - **2 C6D6** @ **17.5 cm** with the **new PMT+VD**  $\rightarrow$  Validation.
  - **1 LaCl3 @ 9 cm** 
    - $\rightarrow$ Spectroscopic inf. & angular distribution.
- A total of **3.2**x10<sup>18</sup> protons / **3.0**x 10<sup>18</sup> INTC distributed in **several configurations** devoted to:
  - **Isotope** of interest
  - Bkg estimation
  - Normalization with a controlled geometry







#### **Brief summary**

V/?



In previous meetings:

• Quality checks, calibrations and corrections for all detectors (https://indico.cern.ch/event/1149528/)

 Geant4 geometry model of 2022 EAR2 & Dead time model (<u>https://indico.cern.ch/event/1168514/contributions/</u>)

 Maximum likelihood yield calculation (Next meeting) (<u>https://indico.cern.ch/event/1168514/contributions/</u>)







- Weighting function:
  - Calculation
  - Q-check on <sup>197</sup>Au(n, $\gamma$ ) & <sup>93</sup>Nb(n, $\gamma$ )
- Normalization:
  - <sup>197</sup>Au(n,γ)
  - $\circ$  <sup>93</sup>Nb(n, $\gamma$ ) thick target yield
- MS and Self-shielding for Nb targets:
  - SAMMY & SAMMC
  - MC fast yield calculation code, validation and test
- Summary and outlook



#### Weighting function calculation





Response matrix calculation (2022) GEANT4 setup:

- 200 Monte Carlo simulations using thin(thick) <sup>197</sup>Au(<sup>93</sup>Nb) target + Gaussian 2D neutron flux shape
  - 50 keV 10 MeV range in 50 keV step.
  - **10**<sup>9</sup>  $\gamma$ -ray events/simulation.
  - Detector response modelization from comparison with experimental (https://indico.cern.ch/event/1168514/contributions/)



E<sub>v</sub> [MeV]

A similar calculation was performed for thick Nb target





#### Normalization procedure







#### <sup>197</sup>Au(n, y) sTED normalization





all sTED detectors and threshold correction (5%): **f<sub>Norm</sub>=0.46775** (?)









SAMMY and SAMMC



**SAMMY** can not accurate account for **very thick** target corrections.

Instead, **SAMMC** code can calculate  $Y_0$ ,  $Y_1$  and  $Y_2$  contributions via **Monte Carlo** simulations and **feed** SAMMY **fitting** procedure. **Geometries** and **"irradiations"** are **limited** to:

- Cylindrical or square shapes
- Irradiation transversal axis





#### Replace SAMMC by a fast MC code that can deal with <sup>93</sup>Nb/<sup>94</sup>Nb geometries



#### Neutron capture yield calculation



r<sub>3</sub>,E<sub>n.3</sub>

r<sub>2</sub>,E<sub>n.2</sub>

١,

Y,

**r**<sub>1</sub>,**E**<sub>n,1</sub>

Neutron capture yield can be calculated as:

$$Y(E_n) = Y_0(E_n) + Y_1(E_n) + Y_2(E_n) + \mathcal{O}(\Sigma^4)$$

 $Y_0$  = capture  $Y_1$  = scattering+capture  $Y_2$  = scattering+scattering+capture

Every expansion term can be calculated solving the following equation:





#### Total, elastic XS and partial waves





- SAMMY provides a output file (SAM51) for SAMMC to perform the MC yield calculation (all isotopes):
  - Doppler broadened total and capture cross section as a function of En.
  - Partial waves expansion for elastic cross section in B formalism as a function of En.

$$\frac{d\sigma_{nn}(E_{CM})}{d\Omega_{CM}} = K(E_n)\frac{d\sigma_{nn}(E_n)}{d\Omega_{lab}} = K(E_n)\sum_{l=0}^{L_{max}} B_l(E_n)P_l(\cos\theta)$$





Monte Carlo **methodology tested** against **SAMMY** (default) and **SAMMC** in a **controlled scenario** with **large corrections** (<sup>93</sup>Nb disk):

> Only  $^{93}\text{Nb}$  isotope in the target: n\_s=0.0109851 atms/barn m=92.9063781

> > 16.4 mm



2.1 mm

Two neutron energy ranges of interest for validation:

30.0 < En [eV] <50.0 [Normalization candidates]

| En [eV] | Гn    | Гү         | L |
|---------|-------|------------|---|
| 35.9    | 209.0 | .101818200 | 0 |
| 42.3    | 222.0 | .096111110 | 0 |

#### 185.0 < En [eV] <220.0 ["Big" resonance]

| En [eV] | Гn    | Гү         | L |
|---------|-------|------------|---|
| 193.8   | 134.0 | 33.8181800 | 0 |

Homogeneous irradiation







### ITOF



<sup>220</sup> E<sub>n</sub> [eV]





Wire 1  $\rightarrow\text{D=}0.8$  mm, I=92 mm M=0.388452 g ns=0.500905 At/barn







**Analysis** on  ${}^{94}Nb(n,\gamma)$  is **in progress**:

- Weighting functions for thin and thick targets are already calculated.
- (n,y) cascades are in progress:
  - <sup>197</sup>Au(n,y) from Standa are really good!
  - <sup>93</sup>Nb(n,y) are in progress:
    - Very difficult for controlled geometry because of DT-PU.
    - Different models for J<sup>n</sup>=4<sup>+</sup> (reasonable reproduction for 4900 after DT-PU).
  - ${}^{94}Nb(n,y)$  is on hold until  ${}^{93}Nb(n,y)$  is finished.
- Normalization for <sup>93</sup>Nb
  - <sup>197</sup>Au saturated re
  - Very preliminar <sup>9</sup>



lue. 3.

- Deal with **unforeseen issues** is always problematic.
  - **DT-PU** corrections & **MS** for **controlled geometry**.
  - Different wires diameters (MS) between <sup>93</sup>Nb/<sup>94</sup>Nb targets & different BIF.
- A Monte Carlo technique is being followed to account for MS and different irradiation axis:
  - Yield calculation **should be equivalent** to **SAMMC** calculation:
    - **SAMMY cross-sections** and **partial wave** expansion included in the calculation
  - There are differences in  $Y_2$  that I can not explain so far (Did I forget something?)
  - Simplest approximation to a disk would lead to a misleading change of BIF
  - In the following I will circle back the **output** from this calculation for **SAMMY fitting** as SAMMC do.



# Thank you very much for your attention!







#### <sup>93</sup>Nb(n,y) thick target



