^{50,53}Cr (n,γ) cross section measurement at EAR1

P. PÉREZ-MAROTO, C. GUERRERO, A. CASANOVAS

& THE N_TOF COLLABORATION

N_TOF COLLABORATION GENERAL MEETING, VALENCIA. 22/11/2023

Motivation: nuclear data for criticality safety

•

Requester: Dr Roberto CAPOTE NOY at IAEA, AUT Email: roberto.capotenoy@iaea.org

Project (context):

Impact:

Neutron absorption in the Cr isotopes of structural materials affects the criticality of fast reactor assemblies [Koscheev2017]. These cross sections are also of interest for stellar nucleosynthesis [Kadonis10].

Accuracy

8-10% in average cross-sections and calculated MACS at 10, 30, 100 keV.

Selected criticality benchmarks with large amounts of Cr (e.g., PU-MET-INTER-002, and HEU-COMP-INTER-005/4=KBR-15/Cr) show large criticality changes of the order of 1000 pcm due to 30% change in Cr-S3 capture in the region from 1 keV up to 100 keV [Trkov2018]. On the other side different evaluations (e.g., BROND-3.1, ENDF/B-VII.1, ENDF/B-VII.1, 0 and JEFF-3.3) for Cr-S3(n,g) are discrepant by 30% in the same energy region. For Cr-50, evaluated files show better agreement at those energies but they are lower than Mughabghab evaluation of the resonance integral by 35%. These discrepancies are not reflected in estimated uncertainty of the evaluated files (e.g., JEFF-3.3) uncertainty is around 10% which is inconsistent with the observed spread in evaluations). Due to these differences we request new capture data with 8-10% uncertainty to discriminate between different evaluations and improve the C/E for benchmarks containing Chromium and/or SS.

Justification document

Criticality benchmarks can test different components of stainless steel (SS), including Cr which is a large component of some SS. Currently, a large part of the uncertainty in SS capture seems to be driven by uncertainty in Cr capture [Koscheev2017]. Indeed, some benchmarks highly sensitive to Cr (as a component of SS) indicate a need for much higher capture in Cr for both Pu and U fueled critical assemblies (e.g., HEU-COMP-INTER-005/4=KBR-15/Cr and PU-MET-INTER-002=ZPR-6/10).

- Stainless Steel is often used as a structural material in nuclear reactors and contains between 11-26% of chromium.
- There are serious discrepancies (~30%) between the different evaluated data of ⁵⁰Cr and ⁵³Cr capture cross section, which is not present in the corresponding estimated uncertainties.
- **OECD NEA-HPRL** (High Priority Request List) $\rightarrow \frac{50,53}{Cr(n,\gamma)}$ within 8-10% at 1 to 100 keV.
- New evaluation available: IAEA-INDEN (August'23)

Previous talk link: Geneva'23

Why the discrepancies?

How to improve $\sigma(n,\gamma)$ down to a few %?

- Enriched (expensive and scarce) material with high purity \rightarrow 94,6% ⁵⁰Cr & 97,7% ⁵³Cr
- Controlling multiple-scattering effects:
 - Very thin/thin sample approach
 - C₆D₆ detectors (low sensitivity to scattered neutrons)
- Complementing with ⁵⁰Cr activation measurement \rightarrow HiSPANoS@CNA

Experiment	Beer (1975)	Stieglitz (1971)	Brusegan (1986)	Kenny (1977)	Guber (2011)	This work (2022)
Facility	FZK	RPI	GELINA	ORELA	ORELA	n_TOF
L (m)	0,7	27	60	40	40	185
Energy (keV)	1-300	1-200	1-200	1-200	0,01-600	1-100
<u>Density ⁵⁰Cr</u> (10 ⁻³ at/barns)	<u>18</u>	<u>8</u>	<u>7</u>	<u>5/8</u>	-	0,6/1,9
<u>Density ⁵³Cr</u> (10 ⁻³ at/barns)	<u>14</u>	<u>14</u>	<u>12/60</u>	<u>8/12</u>	14	1,2/6
				Our "thicks" a → lower mult	re thinner than iple interaction	all previous corrections

 $C_6 D_6$ calibrations

We calibrate the C_6D_6 detectors in energy and in resolution using a combination of radioactive source measurements + GEANT4 simulations

$C_6 D_6$ calibrations with ¹⁹⁷Au(n, γ) cascades

Am/Be on C6D6_4

- Very small gain shift during the 42 days of experimental campaign; seems more significant in detector 4 than in the others.
- Each run-set has its own calibration to take the shift into account.

Counting rates and monitors ($E_n = 1-100 \text{ keV}$)

Counting rates and monitors ($E_n = 1-100 \text{ keV}$)

- On 23/07 something happened that affected the Pick-up (not visible on BCT/SiMon ratio).
- Anyway, the BCT/PKUP ratio change is 1%.

Counting rates and monitors ($E_n = 1-100 \text{ keV}$)

- On 23/07 something happened that affected the Pick-up (not visible on BCT/SiMon ratio).
- Anyway, the BCT/PKUP ratio change is 1%. Not visible on $C_6 D_6$ Counting rate vs BCT & SiMon \rightarrow best options for monitoring.

Pablo Pérez Maroto || n_TOF Collaboration Meeting || 22/11/2023

Counting rates and monitors

- During the Mo-campaign, it was detected that detector 3 was ~5 mm closer to the sample than the others.
- In the Cr data the same is observed.
- Needs to be taken into account when simulating the response for the Weighting Function.
- Less than 0.5% difference between the other three.

¹⁹⁷Au Weighting Function

- We are going to normalize the Cr data to ¹⁹⁷Au saturated resonance
- Two methods to obtain the Weighting Function:
 - With E_{min} = 0 MeV + full capture cascade
 - With E_{min} = E_{threshold}
- High quality simulated ¹⁹⁷Au cascades are available (thanks Emilio & CIEMAT!)

¹⁹⁷Au Weighting Function

- With a perfectly calculated Weighting Function, the weighted efficiency should be $\varepsilon_W(E_j) = \sum_i W_i R_{i,j}$
- It's not true when applying a "threshold" to get the WF.

⁵³Cr Weighting Function

Preliminary ¹⁹⁷Au yield

- Expected BIF ≈ 0.66 [1]
- <u>Not</u> the final version of the Weighting Function, in the future we will use the full cascades.
- Also missing the rest of correction factors like multiple γ-ray counting and internal conversion e⁻.

[1] Guerrero, C. et al, *"Performance of the neutron time-of-flight facility n_TOF at CERN"*. The European Physical Journal A, 49(2), 27 (2013)

Pablo Pérez Maroto || n_TOF Collaboration Meeting || 22/11/2023

How good does the RF fit our tails?

- We are using a May'23 version of the RF.
- Fit \rightarrow only E_n free.
- The "tail" of the resonances are well reproduced, but we observe a shift in energy from ~ 40 keV onwards.
- Final version of the RF also needed for our analysis.

Summary & Outlook

- The goal is to improve the 50,53 Cr(n, γ) cross section to 8-10% accuracy at 1-100 keV
- Two experiments:
 - n_TOF@CERN, Summer'22 (H2020-Ariel Scientific Visit).
 - HiSPANoS@CNA, March'23 (H2020-Ariel Transnational Access).
- Preliminary results show high quality data.
- Next steps:
 - Obtain ^{50,53}Cr capture cascades (known?)
 - Apply corrected $WF \rightarrow Yield$
 - Estimate systematic uncertainties
 - Resonance analysis with SAMMY
 - Activation @CNA data analysis (2023/24)
 - PhD defense in Fall 2024, one year from now

n_TOF experiment data analysis (2023/24)

Thank you!

Pablo Pérez Maroto ppmaroto@us.es

Backup. The neutron_TOF facility at CERN

N. Colonna

Backup. Tomography for homogeneity check

- Tomography of the samples → **MME Group (CERN)**
- Very helpful for determining the density and thickness of the samples
- With the thinnest sample (⁵⁰Cr thin, ~240 mg) serious imperfections were observed → we were able to redo this sample
- With simulations we will estimate self-shielding and multiple scattering effects and the cross section uncertainty

Backup. Samples and detector set-up (EAR1)

• 12 v	veeks of experiment (Complementary measurements			
 Stay funded by the H2020-ARIEL project 42 days of beam: 11/07 → 22/08 					Resonance identification
• 4,6·	10 ¹⁸ protons in total			¹⁹⁷ Au	Normalization
Sample	Protons·10 ¹⁷ (meas.)	Protons·10 ¹⁷ (prop	osal)	²⁷ AI	High E_{γ} calibration
⁵⁰ Cr – thin	5,5	5 (110%)		Empty	Background
⁵⁰ Cr – thick	14,7	8 (184%) 🔶		-	
⁵³ Cr – thin	6,8	5 (136%)		Dummy (x2)	Background
⁵³ Cr – thick	6,9	17 (40%) 💋		^{50,53} Cr &	
Back. & norr	n. 13,0	5 (260%)		Dummy with filters	Background
Total	45,9	40 (115%)			

Backup. Samples and detector set-up (EAR1)

Cr₂O₃ powder pressed in a PEEK capsule & Al holder

Backup. Planning

15	st week	Mon	Tue	Wed	Thu	Fri	Sat	Sun								
		11	12	13	14	15	16	17								
50-53Cr(n,	Sample	Au / Dummy	Empty/Cr-53 thin	Cr-53 thin	Cr-53 thin	Cr-53 thin	Cr-53 thin	Cr-53 thin								
g) @EAR1	Planned Protons	5.00E+16	1.00E+17	1.00E+17	1.00E+17	1.00E+17	1.00E+17	1.00E+17								
	Real protons	5.31E+16	1.08E+17	7.77E+16	1.26E+17	1.10E+17	1.49E+17	9.98E+16								
	046	Calibration		NEAR intervention												
	Others															
29	st week	Mon	Tue	Wed	Thu	Fri	Sat	Sun								
		18	19	20	21	22	23	24								
50-53Cr(n,	Sample	Au / Dummy	AI / Cr-53 thick	Cr-53 thick	Cr-53 thick	Cr-53 thick	Cr-53 thick	Cr-53 thick	4th week	Mon	Tue	Wed	Thu	Fri	Sat	Sun
g) @EAR1	Planned Protons	1.00E+17	1.00E+17	1.00E+17	1.00E+17	1.00E+17	1.00E+17	1.00E+17		1	2	3	4	5	6	7
	Real protons	1.26E+17	7.97E+16	7.50E+16	1.02E+17	1.05E+17	8.48E+16	1.08E+17	Sample	Cr-50 thin	Au / Dummy	Cr-50 thick	Cr-50 thick	Cr-50 thick	Cr-50 thick	Cr-50 thick
	Others	Make Cr-53 thick	Tomography	Calibration					inned Protons	1.00E+17	1.00E+17	1.00E+17	1.00E+17	1.00E+17	1.00E+17	1.00E+17
	oulers			NEAR intervention					eal protons	1.44E+17	8.41E+16	9.08E+16	9.79E+16	1.18E+17	1.25E+17	1.30E+17
									Others			Calibration				
												NEAD 1 AND 1				
30	d week	Mon	Tue	Wed	Thu	Fri	Sat	Sun				NEAR Intervention				
30	d week	Mon 25	Tue 26	Wed 27	Thu 28	Fri 29	Sat 30	Sun 31				Make Cr-50 thick				
30 50-53Cr(n,	d week Sample	Mon 25 Cr-53 thick	Tue 26 Cr-53 thick	Wed 27 Au / Dummy-2	Thu 28 Cr-50 thin	Fri 29 Cr-50 thin	Sat 30 Cr-50 thin	Sun 31 Cr-50 thin	5th week	Mon	Tue	Make Cr-50 thick	Thu	Fri	Sat	Sun
30 50-53Cr(n, g) @EAR1	d week Sample Planned Protons	Mon 25 Cr-53 thick 1.00E+17	Tue 26 Cr-53 thick 1.00E+17	Wed 27 Au / Dummy-2 1.00E+17	Thu 28 Cr-50 thin 1.00E+17	Fri 29 Cr-50 thin 1.00E+17	Sat 30 Cr-50 thin 1.00E+17	Sun 31 Cr-50 thin 1.00E+17	5th week	Mon 8	Tue 9	Make Cr-50 thick Wed 10	Thu 11	Fri 12	Sat	Sun 14
30 50-53Cr(n, g) @EAR1	d Week Sample Planned Protons Real protons	Mon 25 Cr-53 thick 1.00E+17 1.05E+17	Tue 26 Cr-53 thick 1.00E+17 1.15E+17	Wed 27 Au / Dummy-2 1.00E+17 8.98E+16	Thu 28 Cr-50 thin 1.00E+17 1.22E+17	Fri 29 Cr-50 thin 1.00E+17 1.00E+17	Sat 30 Cr-50 thin 1.00E+17 1.24E+17	Sun 31 Cr-50 thin 1.00E+17 1.17E+17	5th week	Mon 8 Cr-50 thick	Tue 9 Cr-50 thick	NEAR Intervention Make Cr-50 thick Wed 10 Au / Cr-50 thick	Thu 11 Cr-50 thick	Fri 12 Cr-50 thick	Sat 13 Cr-50 thick	Sun 14 Cr-50 thick
30 50-53Cr(n, g) @EAR1	d week Sample Planned Protons Real protons Others	Mon 25 Cr-53 thick 1.00E+17 1.05E+17	Tue 26 Cr-53 thick 1.00E+17 1.15E+17 Make Cr-50 thin	Wed 27 Au / Dummy-2 1.00E+17 8.98E+16 Calibration	Thu 28 Cr-50 thin 1.00E+17 1.22E+17	Fri 29 Cr-50 thin 1.00E+17 1.00E+17	Sat 30 Cr-50 thin 1.00E+17 1.24E+17	Sun 31 Cr-50 thin 1.00E+17 1.17E+17	Sample	Mon 8 Cr-50 thick 1.00E+17	Tue 9 Cr-50 thick 1.00E+17	NEAR Intervention Make Cr-50 thick Wed 10 Au / Cr-50 thick 1.00E+17	Thu 11 Cr-50 thick 1.00E+17	Fri 12 Cr-50 thick 1.00E+17	Sat 13 Cr-50 thick 1.00E+17	Sun 14 Cr-50 thick 1.00E+17
30 50-53Cr(n, g) @EAR1	d week Sample Planned Protons Real protons Others	Mon 25 Cr-53 thick 1.00E+17 1.05E+17	Tue 26 Cr-53 thick 1.00E+17 1.15E+17 Make Cr-50 thin Tomography	Wed 27 Au / Dummy-2 1.00E+17 8.98E+16 Calibration NEAR intervention	Thu 28 Cr-50 thin 1.00E+17 1.22E+17	Fri 29 Cr-50 thin 1.00E+17 1.00E+17	Sat 30 Cr-50 thin 1.00E+17 1.24E+17	Sun 31 Cr-50 thin 1.00E+17 1.17E+17	Sample inned Protons al protons	Mon 8 Cr-50 thick 1.00E+17 9.90E+16	Tue 9 Cr-50 thick 1.00E+17 1.15E+17	NEAR Intervention Make Cr-50 thick Wed 10 Au / Cr-50 thick 1.00E+17 8.06E+16	Thu 11 Cr-50 thick 1.00E+17 1.08E+17	Fri 12 Cr-50 thick 1.00E+17 1.12E+17	Sat 13 Cr-50 thick 1.00E+17 1.26E+17	Sun 14 Cr-50 thick 1.00E+17 1.28E+17
30 50-53Cr(n, g) @EAR1	d Week Sample Planned Protons Real protons Others	Mon 25 Cr-53 thick 1.00E+17 1.05E+17	Tue 26 Cr-53 thick 1.00E+17 1.15E+17 Make Cr-50 thin Tomography Tomography	Wed 27 Au / Dummy-2 1.00E+17 8.98E+16 Calibration NEAR intervention	Thu 28 Cr-50 thin 1.00E+17 1.22E+17	Fri 29 Cr-50 thin 1.00E+17 1.00E+17	Sat 30 Cr-50 thin 1.00E+17 1.24E+17	Sun 31 Cr-50 thin 1.00E+17 1.17E+17	Sample inned Protons al protons	Mon 8 Cr-50 thick 1.00E+17 9.90E+16	Tue 9 Cr-50 thick 1.00E+17 1.15E+17	NEAR Intervention Make Cr-50 thick Wed 10 Au / Cr-50 thick 1.00E+17 8.06E+16 Calibration	Thu 11 Cr-50 thick 1.00E+17 1.08E+17	Fri 12 Cr-50 thick 1.00E+17 1.12E+17	Sat 13 Cr-50 thick 1.00E+17 1.26E+17	Sun 14 Cr-50 thick 1.00E+17 1.28E+17
30 50-53Cr(n, g) @EAR1	d week Sample Planned Protons Real protons Others	Mon 25 Cr-53 thick 1.00E+17 1.05E+17	Tue 26 Cr-53 thick 1.00E+17 1.15E+17 Make Cr-50 thin Tomography Tomography	Wed 27 Au / Dummy-2 1.00E+17 8.98E+16 Calibration NEAR intervention	Thu 28 Cr-50 thin 1.00E+17 1.22E+17	Fri 29 Cr-50 thin 1.00E+17 1.00E+17	Sat 30 Cr-50 thin 1.00E+17 1.24E+17	Sun 31 Cr-50 thin 1.00E+17 1.17E+17	Sample inned Protons al protons Others	Mon 8 Cr-50 thick 1.00E+17 9.90E+16	Tue 9 Cr-50 thick 1.00E+17 1.15E+17	NEAR Intervention Make Cr-50 thick Wed 10 Au / Cr-50 thick 1.00E+17 8.06E+16 Calibration NEAR intervention	Thu 11 Cr-50 thick 1.00E+17 1.08E+17	Fri 12 Cr-50 thick 1.00E+17 1.12E+17	Sat 13 Cr-50 thick 1.00E+17 1.26E+17	Sun 14 Cr-50 thick 1.00E+17 1.28E+17
30 50-53Cr(n, g) @EAR1	d week Sample Planned Protons Real protons Others	Mon 25 Cr-53 thick 1.00E+17 1.05E+17	Tue 26 Cr-53 thick 1.00E+17 1.15E+17 Make Cr-50 thin Tomography	Wed 27 Au / Dummy-2 1.00E+17 8.98E+16 Calibration NEAR intervention	Thu 28 Cr-50 thin 1.00E+17 1.22E+17	Fri 29 Cr-50 thin 1.00E+17 1.00E+17	Sat 30 Cr-50 thin 1.00E+17 1.24E+17	Sun 31 Cr-50 thin 1.00E+17 1.17E+17	5th week Sample inned Protons al protons Others	Mon 8 Cr-50 thick 1.00E+17 9.90E+16	Tue 9 Cr-50 thick 1.00E+17 1.15E+17	NEAR Intervention Make Cr-50 thick Wed 10 Au / Cr-50 thick 1.00E+17 8.06E+16 Calibration NEAR intervention	Thu 11 Cr-50 thick 1.00E+17 1.08E+17	Fri 12 Cr-50 thick 1.00E+17 1.12E+17	Sat 13 Cr-50 thick 1.00E+17 1.26E+17	Sun 14 Cr-50 thick 1.00E+17 1.28E+17
30 50-53Cr(n, g) @EAR1	d week Sample Planned Protons Real protons Others	Mon 25 Cr-53 thick 1.00E+17 1.05E+17	Tue 26 Cr-53 thick 1.00E+17 1.15E+17 Make Cr-50 thin Tomography	Wed 27 Au / Dummy-2 1.00E+17 8.98E+16 Calibration NEAR intervention	Thu 28 Cr-50 thin 1.00E+17 1.22E+17	Fri 29 Cr-50 thin 1.00E+17 1.00E+17	Sat 30 Cr-50 thin 1.00E+17 1.24E+17	Sun 31 Cr-50 thin 1.00E+17 1.17E+17	5th week Sample Inned Protons Fal protons Others 6th week	Mon 8 Cr-50 thick 1.00E+17 9.90E+16	Tue 9 Cr-50 thick 1.00E+17 1.15E+17	NEAR Intervention Make Cr-50 thick Wed 10 Au / Cr-50 thick 1.00E+17 8.06E+16 Calibration NEAR intervention	Thu 11 Cr-50 thick 1.00E+17 1.08E+17 Thu	Fri 12 Cr-50 thick 1.00E+17 1.12E+17 Fri	Sat 13 Cr-50 thick 1.00E+17 1.26E+17 Sat	Sun 14 Cr-50 thick 1.00E+17 1.28E+17 Sun
30 50-53Cr(n, g) @EAR1	d week Sample Planned Protons Real protons Others	Mon 25 Cr-53 thick 1.00E+17 1.05E+17	Tue 26 Cr-53 thick 1.00E+17 1.15E+17 Make Cr-50 thin Tomography	Wed 27 Au / Dummy-2 1.00E+17 8.98E+16 Calibration NEAR intervention	Thu 28 Cr-50 thin 1.00E+17 1.22E+17	Fri 29 Cr-50 thin 1.00E+17 1.00E+17	Sat 30 Cr-50 thin 1.00E+17 1.24E+17	Sun 31 Cr-50 thin 1.00E+17 1.17E+17	5th week	Mon 8 Cr-50 thick 1.00E+17 9.90E+16 Mon 15	Tue 9 Cr-50 thick 1.00E+17 1.15E+17 Tue 16	NEAR Intervention Make Cr-50 thick Wed 10 Au / Cr-50 thick 1.00E+17 8.06E+16 Calibration NEAR intervention Wed 17	Thu 11 Cr-50 thick 1.00E+17 1.08E+17 Thu 18	Fri 12 Cr-50 thick 1.00E+17 1.10E+17 1.12E+17 Fri 1.12E+17	Sat 13 Cr-50 thick 1.00E+17 1.26E+17 Sat 20	Sun 14 Cr-50 thick 1.00E+17 1.28E+17 Sun 21
30 50-53Cr(n, g) @EAR1	d week Sample Planned Protons Real protons Others	Mon 25 Cr-53 thick 1.00E+17 1.05E+17	Tue 26 Cr-53 thick 1.00E+17 1.15E+17 Make Cr-50 thin Tomography	Wed 27 Au / Dummy-2 1.00E+17 8.98E+16 Calibration NEAR intervention	Thu 28 Cr-50 thin 1.00E+17 1.22E+17	Fri 29 Cr-50 thin 1.00E+17 1.00E+17	Sat 30 Cr-50 thin 1.00E+17 1.24E+17 5	Sun 31 Cr-50 thin 1.00E+17 1.17E+17	5th week Sample Inned Protons al protons Others 6th week Sample	Mon 8 Cr-50 thick 1.00E+17 9.90E+16 9.90E+16 Mon 15 Cr-50 thick	Tue 9 Cr-50 thick 1.00E+17 1.15E+17 1.15E+17	NEAR Intervention Make Cr-50 thick Wed 10 Au / Cr-50 thick 1.00E+17 8.06E+16 Calibration NEAR intervention Wed 17 Au / Cr-nat	Thu 11 Cr-50 thick 1.00E+17 1.08E+17 1.08E+17 Thu Thu 18 Empty	Fri 12 Cr-50 thick 1.00E+17 1.12E+17 Fri Fri 19 Dummy (F)	Sat 13 Cr-50 thick 1.00E+17 1.26E+17 Sat Sat 20 Cr-53 thick (2)(F)	Sun 14 Cr-50 thick 1.00E+17 1.28E+17 Sun 21 Cr-50 thick (F)
30 50-53Cr(n, g) @EAR1	d Week Sample Planned Protons Real protons Others	Mon 25 Cr-53 thick 1.00E+17 1.05E+17	Tue 26 Cr-53 thick 1.00E+17 1.15E+17 Make Cr-50 thin Tomography	Wed 27 Au / Dummy-2 1.00E+17 8.98E+16 Calibration NEAR intervention	Thu 28 Cr-50 thin 1.00E+17 1.22E+17	Fri 29 Cr-50 thin 1.00E+17 1.00E+17	Sat 30 Cr-50 thin 1.00E+17 1.24E+17 5 9	Sun 31 Cr-50 thin 1.00E+17 1.17E+17 0.053Cr(n,) @EAR1	Sample inned Protons al protons others 6th week Sample Planned Protons	Mon 8 Cr-50 thick 1.00E+17 9.90E+16 Mon 15 Cr-50 thick 1.00E+17	Tue 9 Cr-50 thick 1.00E+17 1.15E+17 Tue Tue 16 Cr-nat 1.00E+17	NEAR Intervention Make Cr-50 thick Wed 10 Au / Cr-50 thick 1.00E+17 8.06E+16 Calibration NEAR intervention Wed 17 Au / Cr-nat 1.00E+17	Thu 11 Cr-50 thick 1.00E+17 1.08E+17 1.08E+17 Thu 18 Empty 1.00E+17	Fri 12 Cr-50 thick 1.00E+17 1.12E+17 Fri 19 Dummy (F) 1.00E+17	Sat 13 Cr-50 thick 1.00E+17 1.26E+17 Sat 20 Cr-53 thick (2)(F) 1.00E+17	Sun 14 Cr-50 thick 1.00E+17 1.28E+17 Sun 21 Cr-50 thick (F) 1.00E+17
30 50-53Cr(n, g) @EAR1	d week Sample Planned Protons Real protons Others	Mon 25 Cr-53 thick 1.00E+17 1.05E+17	Tue 26 Cr-53 thick 1.00E+17 1.15E+17 Make Cr-50 thin Tomography	Wed 27 Au / Dummy-2 1.00E+17 8.98E+16 Calibration NEAR intervention	Thu 28 Cr-50 thin 1.00E+17 1.22E+17	Fri 29 Cr-50 thin 1.00E+17 1.00E+17	Sat 30 Cr-50 thin 1.00E+17 1.24E+17 5 9	Sun 31 Cr-50 thin 1.00E+17 1.17E+17 0.53Cr(n, 0)@EAR1	Sample inned Protons al protons others Others 6th week Sample Planned Protons Real protons	Mon 8 Cr-50 thick 1.00E+17 9.90E+16 9.90E+16 Mon 15 Cr-50 thick 1.00E+17 1.36E+17	Tue 9 Cr-50 thick 1.00E+17 1.15E+17 1.15E+17 Tue Cr-nat 1.00E+17 1.00E+17	NEAR intervention Make Cr-50 thick Wed 10 Au / Cr-50 thick 1.00E+17 8.06E+16 Calibration NEAR intervention Wed 17 Au / Cr-nat 1.00E+17 1.00E+17	Thu 11 Cr-50 thick 1.00E+17 1.08E+17 1.08E+17 Thu 18 Empty 1.00E+17 1.03E+17	Fri 12 Cr-50 thick 1.00E+17 1.12E+17 Pri Pri 19 Dummy (F) 1.00E+17 1.00E+17	Sat 13 Cr-50 thick 1.00E+17 1.26E+17 Sat 20 Cr-53 thick (2)(F) 1.00E+17 1.35E+17	Sun 14 Cr-50 thick 1.00E+17 1.28E+17 Sun 21 Cr-50 thick (F) 1.00E+17 1.10E+17

Backup. Final number of protons

J	к	L	М	N	0	Р
Mass (mg)	Sample	Planned	Measured	Progress (%)	53Cr thick (2) first part (%)	Measured /Planned
2500	53Cr thick (2)	7.50E+17	6.94E+17	92.55	92.55	93.80%
500	53Cr thin	6.00E+17	6.76E+17	112.61		
750	50Cr thick	1.30E+18	1.37E+18	105.36		
250	50Cr thin	5.00E+17	5.49E+17	109.88		
2500	natCr	2.00E+17	2.02E+17	100.84		
	197Au	1.00E+17	9.71E+16	97.06		
	Dummy 1	3.00E+17	3.05E+17	101.76		
	Dummy 2	1.00E+17	1.19E+17	119.36		
	Empty	1.00E+17	1.47E+17	146.89		
	27Al	5.00E+16	7.58E+16	151.68		
	Dummy 1 (F)	1.00E+17	1.20E+17	119.89		FILTERS:
	53Cr thick (2)(F)	1.00E+17	9.93E+16	99.34		10mm Bi
	50Cr thick (F)	1.00E+17	1.28E+17	127.51		50mm Al
	197Au 80mm					
	Total	4.30E+18	4.58E+18	106.55		
	Total x day		1.09E+17			

Backup. Calibrations

Backup. Weighted ¹⁹⁷Au resonance

Pablo Pérez Maroto || n_TOF Collaboration Meeting || 22/11/2023

Backup. ⁵⁰Cr cascades (S_n=9,3 MeV)

Backup. ⁵³Cr cascades (S_n=9,7 MeV)

Backup. Preliminary results (⁵⁰Cr-thick)

Backup. Preliminary results (⁵³Cr-thin)

Backup. Preliminary results (⁵³Cr: thin vs. thick)

Backup. Preliminary results (⁵³Cr: thin vs. thick)

Backup. Filters

- For neutron scattering background
- 10 mm ²⁰⁹Bi & 50mm ²⁷Al filters
- Dummy and thick samples

Backup. Cascades at EAR2

- Goal → measure the cascades with high resolution to validate future simulations
- 3 sTED's & 2 C6D6's for monitoring, 1 LaCl₃ for the cascades
- Gain shift depending on counting rate (malfunctioning PMT?) → thin samples, low voltage and not too close to the beam

Backup. ⁵⁰Cr(n, γ) cascades at EAR2 (preliminary) \int_{TOF}

Backup. ⁵³Cr(n, γ) cascades at EAR2 (preliminary) \int_{nTOF}

Backup. ⁵¹Cr gamma emission

Backup. ⁵⁴Cr gamma emission

_	E_{γ}^{\dagger}	Ι _γ ‡	E _i (level)	J_i^{π}	\mathbf{E}_{f}	J_f^{π}	Mult.@	$\delta^{@}$
	205.62 20	0.05 1	3925.59	2+	3719.99	2+		
	745.37 16	0.06 1	4872.36	2+	4127.08	3-		
	x789.22 2	0.07 1						
	817 20 7	0.07.1	3436.88	2+	2619.69	2+		
	834.87 2	79.0 [#] 2	834.879	2+	0.0	0+		
	045.57 12	0.17 2	5220.22	2	4380.74	2		
	847.90 17	0.08 1	6143.59	a+	5294.47	$1^+,(2^+)$		
	890.41 2	0.43 3	3719.99	2+	2829.56	0^+		
	944.57 19	0.03 1	4872.36	2+	3927.70	2*		
	946.80 15	0.05 1	4872.36	2+	3925.59	2+		
	989.08 2	0.76 5	1823.96	4+	834.879	2	E2	
	1100.38 6	0.64 4	3719.99	2+	2619.69	2+		
	1106.38 <i>10</i>	0.02 1	5189.62	2+	4083.24	3+		
	x1205.33 10	0.05 1						
	1241.36 7	0.78 5	3861.02	2+	2619.69	2+		
	1335.26 6	0.06 1	3159.21	4+	1823.96	4+		
	1340.81 <i>10</i>	0.12 2	5268.47	2+	3927.70	2+		
	1435.49 <i>18</i>	0.23 2	4872.36	2+	3436.88	2+		
	1460.10 <i>14</i>	0.04 2	5586.92	$1^+, 2^+$	4127.08	3-		
	1463.33 <i>14</i>	0.07 2	4083.24	3+	2619.69	2+		
	1503.62 9	0.06 2	5586.92	$1^+, 2^+$	4083.24	3+		
	1508.24 25	0.06 2	4127.08	3-	2619.69	2+		
	1597.72 4	0.03 2	4217.56	$(2^+), 3^+$	2619.69	2+		
2	^x 1619.17 7	0.09 2						
Г	1784.69 5	10.14 [#] 4	2619.69	2+	834.879	2^{+}	M1+E2	-0.53 18
L	1798.22 5	0.25 2	4872.36	2+	3074.06	2+		
	1804.00 14	0.24 2	4633.57	2+	2829.56	0^{+}		
	1831.34 <i>1</i> 7	0.03 2	5268.47	2+	3436.88	2+		
	1994.56 5	2.93 15	2829.56	0^{+}	834.879	2+	E2	
	2066.99 7	0.04 2	5226.22	2+	3159.21	4+		
	2101.43 12	0.10 2	5821.49		3719.99	2+		
_	2233.00.6	0.07.3	6316.42		4083.24	3+		
L	2239.07 5	10.70 [#] 5	3074.06	2+	834.879	2+	M1+E2	0.02 5
	2239.22 3	0.21 2	4083.24	3	1823.90	4		
	2393.70 7	0.10 2	4217.56	$(2^+), 3^+$	1823.96	4+		
	2464.23 19	0.09 3	5294.47	$1^+,(2^+)$	2829.56	0+		
	2558.45 5	1.15 7	3393.42	2+	834.879	2+		
	2601.91 8	2.31 <i>13</i>	3436.88	2+	834.879	2+	M1+E2	-0.11 +12-16
_	2619 57 9	0.42.3	2619.69	2+	0.0	0+		

	3393.35 7	0.67 6	3393.42	2+	0.0	0^{+}		
	3403.55 9	0.17.7	(9720.18)	(1^{-})	6316.42			
	x3509.86 17	0.21 2	((-)				
	3545.92 13	0.32 4	4380.74	2-	834.879	2+		
	3576.08 9	0.20 4	(9720.18)	(1^{-})	6143.59			
	3719.84 7	3.69 [#] 2	3719.99	2+	0.0	0^{+}		
	3863.64 11	0.39 5	(9720.18)	(1^{-})	5856.39	-		
	3898.51 14	0.11 2	(9720.18)	(1^{-})	5821.49			
	3927.57 9	0.52 7	3927.70	2+	0.0	0^{+}		
	4133.15 8	0.48 5	(9720.18)	(1^{-})	5586.92	$1^+.2^+$		
	^x 4168.1 6	0.12 4	()	(-)		,		
	^x 4229.9 3	0.10 4						
	x4393.28 9	0.06 4						
	4425.63 16	0.50 6	(9720.18)	(1^{-})	5294.47	$1^+, (2^+)$	-)	
	4433.43 21	0.20 3	5268.47	2+	834.879	2+		
	4451.47 <i>18</i>	0.45 5	(9720.18)	(1^{-})	5268.47	2+		
	4459.28 21	0.38 5	5294.47	$1^+,(2^+)$	834.879	2+		
	4494.00 14	0.13 5	(9720.18)	(1 ⁻)	5226.22	2+		
	4530.38 21	0.19 5	(9720.18)	(1 ⁻)	5189.62	2+		
	4751.83 10	0.18 4	5586.92	$1^+, 2^+$	834.879	2+		
	4847.54 11	1.96 7	(9720.18)	(1 ⁻)	4872.36	2+		
	4872.27 10	1.06 8	4872.36	2+	0.0	0^{+}		
	5021.29 <i>34</i>	0.16 6	5856.39		834.879	2+		
	5086.36 12	0.23 6	(9720.18)	(1^{-})	4633.57	2+		
	5339.27 18	0.29 4	(9720.18)	(1^{-})	4380.74	2-		
	5501.78 26	0.13 2	(9720.18)	(1 ⁻)	4217.56	$(2^+),3$	+	
	5636.90 42	0.13 3	(9720.18)	(1 ⁻)	4083.24	3+		
	5707.09 12	1.35 11	(9720.18)	(1 ⁻)	4012.87	0^{+}		
	5792.2 6	0.46 7	(9720.18)	(1^{-})	3927.70	2+		
	5794.3 4	0.17 5	(9720.18)	(1^{-})	3925.59	2+		
	5858.98 14	1.21 8	(9720.18)	(1^{-})	3861.02	2*	0	
	5999.95 <i>13</i>	4.49 [#] 4	(9720.18)	(1 ⁻)	3719.99	2+	(E1) ^{&}	
	6283.02 14	2.03 14	(9720.18)	(1 ⁻)	3436.88	2+		
1	6326.41 14	1.19 12	(9720.18)	(1^{-})	3393.42	21	P-	
	6645.64 <i>13</i>	9.71# 8	(9720.18)	(1 ⁻)	3074.06	2+	(E1) ^{&}	
	0890.10 15	2.35 10	(9720.18)	(1)	2829.30	0		
	7100.11 <i>14</i>	7.61# 7	(9720.18)	(1 ⁻)	2619.69	2+		
	8884.81 <i>18</i>	44.4 [#] 6	(9720.18)	(1 ⁻)	834.879	2+	(E1) ^{&}	
	9718.79 <i>19</i>	15.8 [#] 2	(9720.18)	(1 ⁻)	0.0	0+	(E1) ^{&}	
								-

Backup. ⁵⁰Cr MACS at HiSPANoS@CNA

- Time-of-flight measurement → n_TOF@CERN (Geneva, Switzerland) with very thin samples to minimize multiple-scattering effects
- 50 Cr activation measurement \rightarrow HiSPANoS@CNA (Seville, Spain). MACS at 30 and 90 keV

Nucleus	T _{1/2} (days)	E _γ (keV)	Ι _γ (%)
⁵¹ Cr	27,7	320,1	9,9
¹⁹⁸ Au	2,69	411,8	95,5

Backup. Averaged cross section equations

