Measurement of the Ta(n,γ) cross-sections at EAR1

V. Alcayne¹, A. Pérez de Rada¹, D. Cano-Ott¹, E. González-Romero¹, T. Martínez¹, E. Mendoza¹, A. Sánchez-Caballero¹, J. Balibrea-Correa², F. Calviño³, R. Capote⁴, A. Casanovas³, C. Domingo-Pardo², J. Lerendegui-Marco² and F. Garcia Infantes⁵.

1- Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Spain.

- 2- Instituto de Fisica Corpuscular, CSIC Universidad de Valencia, Spain.
- 3- Universitat Politècnica de Catalunya, Spain.
- 4- International Atomic Energy Agency, Vienna-A-1400, PO Box 100, Austria.
- 5- Universidad de Granada, Spain.

Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas

The Ta(n,y) measurement at n_TOF

- The capture cross section of Ta is important for nuclear reactors in space and fusion reactors.
- **Recent critical experiments show** discrepancies, that may indicate issues with the cross section of Ta.
- The previous data are discrepant and affected by important experimental corrections like the self-shielding or angular correlations between y-rays. There are considerable difference between the recent evaluations.

Energéticas, Medioambientales

Three samples of Ta (99.99% of ¹⁸¹Ta and $1.2 \cdot 10^{-4}$ ^{180m}Ta) in the range from 0.1 eV to 500 keV with an aimed accuracy of 5%. The backgrounds and setup are share with the natural Er campaign:

- 1 BICRON at 3.7 cm at 90° with respect to the beam.
- 2 BICRON at 9.0 cm at 125° with respect to the beam.
- 3 sTED at 10 cm at 90°, 110°, 130° with respect to t
- $S_n (^{182}Ta) = 6.062 \text{ MeV}.$
- Three metallic high purity (99.999%) samples of 500, 100 and 10 µm of 4 cm diameter for different energy regions and to verify the multiple corrections.

E Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas

Three samples of Ta (99.99% of ¹⁸¹Ta and $1.2 \cdot 10^{-4}$ ^{180m}Ta) in the range from 0.1 eV to 500 keV with an aimed accuracy of 5%. The backgrounds and setup are share with the natural Er campaign:

- 1 BICRON at 3.7 cm at 90° with respect to the beam.
- 2 BICRON at 9.0 cm at 125° with respect to the beam.
- 3 sTED at 10 cm at 90°, 110°, 130° with respect to t
- $S_n (^{182}Ta) = 6.062 \text{ MeV}.$
- Three metallic high purity (99.999%) samples of 500, 100 and 10 µm of 4 cm diameter for different energy regions and to verify the multiple corrections.

In the previous talk the following items were presented:

In the previous talk the following items were presented: Calibration Monitoring of the experiment **Preliminary WF Preliminary Yield**

ESPAÑA

Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas

In the <u>previous talk</u> the following items were presented: Calibration Monitoring of the experiment Preliminary WF Preliminary Yield

OBIERNO

ESPAÑA

Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas

Preliminary comparison for Ta-500 µm

Yield of the Ta of 500 µm normalized to the first resonance

Preliminary comparison for Ta-500 µm

Yield of the Ta of 500 µm normalized to the first resonance

Measurements with C and Lead

Measurements with Pb and C with background subtracted with a preliminary normalization to have an idea of the levels of background.

PRELIMINARY

The measurements with filters are compared with the background estimated with the C sample. More corrections are needed.

Measurement of the ^{nat,166,167}Er(n,γ) cross-section at EAR1

V. Alcayne¹, S. Amaducci², J. Andrzejewski³, D. Cano-Ott¹, A. Casanovas⁴, D. M. Castelluccio^{2,5}, S. Cristallo^{2,6}, A. Gawlik-Ramiega³, G. Gervino^{2,7}, G.Grasso⁵, E. González-Romero¹, A. Guglielmelli^{2,8}, A. Manna^{2,9}, T. Mart hez¹, C. Massimi^{2,9}, E. Mendoza¹, R. Mucciola^{2,9}, J. Perkowski³, A. Sánchez-Caballero¹, P. Schillebeeckx¹⁰ and D. Vescovi¹¹

- ¹ Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Spain
- ² Nazionale di Fisica Nucleare, INFN, Italy
- ³ University of Lodz, Poland
- ⁴ Universitat Politècnica de Catalunya, Spain
- ⁵ Agenzia per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile, ENEA, Italy
- ⁶ Istituto Nazionale di Astrofisica Osservatorio Astronomico di Teramo, Italy
- ⁷ Department of Physics, University of Torino, Italy
- ⁸ European Commission, Joint Research Centre, Reactory Safey and Component Unit, Petten, Ispra, Italy
- ⁹ Department of Physics and Astronomy, University of Bologna, Italy
- ¹⁰ European Commission, Joint Research Centre, Geel, Belgium
- ¹¹ Goethe University Frankfurt, Germany

 Centro de Investigaciones
 Energéticas, Medioambientales y Tecnológicas

Motivations (Erbia vs Gadolinia)

- Technical aspects:
- Lower thermal absorption cross sections (*Er: 162 b; Gd: 2.5E+05 b*) not downgrade the power distribution;
- More negative temperature feedback coefficient (α=δk/δT) higher reactor core safety;
- Higher and more energy extensive resonance integrals better control of start-up and accidental transient phases;
- Reduction of 239Pu in a EoL fuel core inventory improvement of the non-proliferation actions.
- Nuclear safety and economical aspects:
- Er-Super High Burnup fuel concept (BU>70 GWd/MTU, erbia>0.2 wt%, U-235> 5 wt%) was adopted in some exp. campaigns:
- Low content of Erbia is add into all UO2 (>5 wt%) powder just after the reconversion process;
- Fuel enrichment is greater than 5 wt% but at BOL is equivalent to 5 wt%;
- Higher enriched fuel (HEU, enr > 5 wt%) can be handle within the existing fabrication facilities with an improvement of the criticality safety and a global reduction of in-core the fuel cost

Er-SHB: S&U analysis – BOC

Isotope	Si (-)	Si/Si,tot (%)	∆k/k (-)	∆k (pcm)
(-)		E > 1	0 eV	
Er-166	-2.31E-03	80.0	1.38E-04	18
Er-167	-5.79E-03	7.0	7.08E-05	9
Er-168	-7.27E-04	90.5	7.67E-05	10
Er-170	-4.49E-04	76.7	5.37E-05	7

- Due to the overlapping of resonance of the Er-166,167,168,170 isotopes at energy higher than 10 eV, it's not possible to make a precise resonance shape analysis with natural erbium.
- Accurate contribution to criticality uncertainty of Er-166, Er-167, Er-168, Er-170 for energy major than 10 eV can be obtained only with Xs(n,g) measurements on single enriched isotopes.
- The sensitivity contribute to criticality uncertainty of Er-166, Er-168, Er-170 is equal to 45 pcm (Cov. data: ENDF/B-VII.1).
- For core design purpose, any reduction of the criticality uncertainty is desirable.

Motivation astrophysics

Accurate cross section data on erbium isotopes could be of interest for the study of the sprocess nucleosynthesis around the region of rare earth elements at A=160-170. For instance, the abundance of ^{166,167,168,170}Er isotopes in presolar silicon carbide grains was recently measured by Yin and collaborators.

The present overall disagreement between observed and calculated abundances clearly call for (n,γ) measurements of isotopes involved in this mass region

Summary

- Erbia (Er₂O₃) can be considered as an excellent alternative to burnable absorber made of gadolinia (Gd₂O₃)
- There is a **new entry in the HPRL** to measure the capture C.S. of Er-167 between 0.01 and 100 eV with a 2% uncertainty.

Scientific motivations for a reassessment of the neutron capture cross sections of erbium isotopes in the high-sensitivity thermal energy range for LWR systems

A. Guglielmelli^{a,c,*}, F. Rocchi^a, C. Massimi^{b,c}, D.M. Castelluccio^{a,c}, A. Manna^{b,c}, R. Mucciola^d

^a ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Via Martiri di Monte Sole 4, 40129 Bologna, Italy ^b Department of Physics and Astronomy, University Alma Mater Studiorum of Bologna, Via Irnerio 46, 40126 Bologna, Italy

^c Department of Physics and Astronomy, University Aima Mater Studiorum of Bologna, Via Irnerio 46, 40
^c INFN, Italian National Institute of Nuclear Physics, Via Irnerio 46, 40126 Bologna, Italy

^a INFN, Italian National Institute of Nuclear Physics, Via Irnerio 46, 40126 Bologha, Italy
^d INFN, Italian National Institute of Nuclear Physics, Via A. Pascoli 14, 06123 Perugia, Italy

Request ID	118	18		High Priority req	luest
Target	Reaction and process	Incident Energy	Secondary energy or angle	Target uncertainty	Covariance
68- ER-167	(n,g) SIG,RP	0.01 eV-100 eV		2	Y
Field	Subfield	Created date	Accepted date	Ongoing action	Archived Date
Fission	LWR, innovative fuel	09-JUL-21	30-AUG-21	Y	

https://doi.org/10.1016/j.anucene.2022.109337

https://www.oecd-nea.org/dbdata/hprl/hprlview.pl?ID=539

- It has been explored the criticality uncertainty contribute of **erbium isotopes at energy major than 10 eV for several reactor configuration.**
- The capture cross section of ^{166,167} Er are also important for astrophysics.

BIFRNC

Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas

Previous measurements

The previous measurements used for the evaluations and the recent measurements are:

Moosuromont		Energy range (eV)				
Measurement	166 Er	167 Er	$^{168}\mathrm{Er}$	$^{170}{\rm Er}$		
Hopkins (1958)(Cap.)[9]	Thermal	Thermal	-	-		
Møller (1960)(Tra.)[10]	-	0.4-0.6	-	-		
Vertebnyi (1965)(Tra.)[11]	16	Thermal-30	-	95		
Mughabghab (1967)(Tra.)[12]	Thermal-600	Thermal-150	Thermal-1.5e3	95		
Liou (1972)(Cap./Tra.)[13]	15-1e4	0.4-1.7e3	80 - 1.5 e 4	95-2.4e4		
Kahane (1984)(Cap.)[14]	-	5-600	-	-		
Knopf (1996)(Tra.)[15]	Thermal	Thermal	Thermal	Thermal		
Danon (1998)(Tra.)[16]	Thermal-15	Thermal-15	-	-		
Harun (2000)(Tra.)[17]	-	1e4-9e4	-	-		
Wang (2010)(Tra.)[18]	15-120	0.4-120	80	95		
Li (2021)(Cap.)[19]	15-100	0.4-100	80	95		

Enriched samples

iema

E Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas

Evaluations

The uncertainty for ¹⁶⁷Er in the RRR is 2.3%, this value is questionable.

Figure 4: The ratios of the radiative kernels $(\Gamma_{\gamma} \cdot \Gamma_n / \Gamma)$ for the resonances of ¹⁶⁷Er for various libraries JEFF-3.3 [20], JENDL-5 [21] and ENDF-VIII [22].

ESPAÑA

Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas

 A measurement with a natural Er sample using the C₆D₆ and the TAC is proposed to fulfill the HPRL requirements between 0.01 and 50 eV.

20

Sample	Mass	Detector	Energy range	Number protons
Natural	30mg	TAC	$0.01-50 \ eV$	$1.0 \cdot 10^{18}$
Natural	30mg	C_6D_6	$0.01-50 \ eV$	$1.5 \cdot 10^{18}$
$^{166}\mathrm{Er}$	200mg	C_6D_6	$10 \text{ eV} \cdot 100 \text{ keV}$	$1.0 \cdot 10^{18}$
$^{167}\mathrm{Er}$	200mg	C_6D_6	50 eV-500 keV	$1.0 \cdot 10^{18}$
TAC aux	$0.5 \cdot 10^{18}$			
C_6D_6 aux	$1.0 \cdot 10^{18}$			
	$6.0 \cdot 10^{18}$			

Jiemo

 Centro de Investigaciones
 Energéticas, Medioambientales y Tecnológicas

 A measurement with a natural Er sample using the C₆D₆ and the TAC is proposed to fulfill the HPRL requirements between 0.01 and 50 eV.

Measurement performed in 2023

Sample	Mass	Detector	Energy range	Number protons			
Natural	30mg	TAC	$0.01-50 \ eV$	$1.0 \cdot 10^{18}$			
Natural	30mg	C_6D_6	$0.01-50 \ eV$	$1.5 \cdot 10^{18}$			
166 Er	200mg	C_6D_6	10 eV- $100 keV$	$1.0 \cdot 10^{18}$			
$^{167}\mathrm{Er}$	200mg	C_6D_6	50 eV-500 keV	$1.0 \cdot 10^{18}$			
TAC aux	TAC auxiliary and normalization measurements						
C_6D_6 au	C_6D_6 auxiliary and normalization measurements						
	Total						

BIFRNC

, ien

- A measurement with a natural Er sample using the C₆D₆ and the TAC is proposed to fulfill the HPRL requirements between 0.01 and 50 eV.
- Measurements with ~200 mg enriched samples of ^{166,167}Er with C₆D₆ are also proposed to extend the energy range and to perform the correct resonance assignment.

Measurement performed in 2023

Sample	Mass	Detector	Energy range	Number protons		
Natural	30mg	TAC	$0.01-50 \ eV$	$1.0 \cdot 10^{18}$		
Natural	$30 \mathrm{mg}$	C_6D_6	$0.01-50 \ eV$	$1.5 \cdot 10^{18}$		
$^{166}\mathrm{Er}$	200mg	C_6D_6	10 eV- $100 keV$	$1.0 \cdot 10^{18}$		
$^{167}\mathrm{Er}$	200mg	C_6D_6	50 eV-500 keV	$1.0 \cdot 10^{18}$		
TAC aux	ciliary an	d normaliz	ation measurements	$0.5 \cdot 10^{18}$		
C_6D_6 aux	C_6D_6 auxiliary and normalization measurements					
	Total					

- A measurement with a natural Er sample using the C₆D₆ and the TAC is proposed to fulfill the HPRL requirements between 0.01 and 50 eV.
- Measurements with ~200 mg enriched samples of ^{166,167}Er with C₆D₆ are also proposed to extend the energy range and to perform the correct resonance assignment.

FINNOVACION

Measurement performed in 2023		Sample	Mass	Detector	Energy range	Number protons	
			30mg	TAC	$0.01-50 \ eV$	$1.0 \cdot 10^{18}$	
\mathbf{P}		Natural	30mg	C_6D_6	$0.01-50 \ eV$	$1.5 \cdot 10^{18}$	
		$^{100}\mathrm{Er}$	200mg	C_6D_6	10 eV- $100 keV$	$1.0 \cdot 10^{18}$	
measurements in 2024			200mg	C_6D_6	50 eV-500 keV	$1.0 \cdot 10^{18}$	
			xiliary ar	$0.5 \cdot 10^{18}$			
		C_6D_6 au	xiliary ar	nd normaliz	ation measurements	$1.0 \cdot 10^{18}$	
				Total		$6.0 \cdot 10^{18}$	
GOBIERNO DE CIENCIA DE CIENCIA DE CIENCIA CIENCIA Centro de Investigaciones Energéticas, Medioambientales Energéticas, Medioambientales Centro de Investigaciones Energéticas, Medioambientales							

y Tecnológicas

l'energia e lo sviluppo economico sostenibile

- A measurement with a natural Er sample using the C₆D₆ and the TAC is proposed to fulfill the HPRL requirements between 0.01 and 50 eV.
- Measurements with ~200 mg enriched samples of ^{166,167}Er with C₆D₆ are also proposed to extend the energy range and to perform the correct resonance assignment.
- The work of <u>I. Knapova et al</u>, would be considered for the PSF, spin assignment and the 109 ns isomer state.

Measurement performed in 2023 ~

Plan to perform the measurements in 2024

Sample	Mass	Detector	Energy range	Number protons
Natural	30mg	TAC	$0.01-50 \ eV$	$1.0 \cdot 10^{18}$
Natural	30mg	C_6D_6	$0.01-50 \ eV$	$1.5 \cdot 10^{18}$
¹⁰⁰ Er	200mg	C_6D_6	10 eV-100 keV	$1.0 \cdot 10^{18}$
$^{167}\mathrm{Er}$	200mg	C_6D_6	50 eV-500 keV	$1.0 \cdot 10^{18}$
TAC aux	kiliary an	d normaliz	ation measurements	$0.5 \cdot 10^{18}$
C_6D_6 aux	$1.0 \cdot 10^{18}$			
	$6.0 \cdot 10^{18}$			
			ELER STUD	

Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas Agenzia nazionale per le nuove tecnologie, l'energia e lo sviluppo economico sostenibil

The natural Er measurement with C₆D₆

Two samples of Er (99% pure) of 2 cm diameter. One of 25 μ m to obtain the capture cross section and another of 1000 μ m to self-normalize the measurement.

The setup is the same as in the Ta campaign:

- 1 BICRON at 3.7 cm at 90° with respect to the beam.
- 2 BICRON at 9.0 cm at 125° with respect to the beam.
- 3 sTED at 10 cm at 90°, 110°, 130° with respect to the beam.

The same energy calibration, WF, Backgrounds, etc than in the Ta campaign would be used.

	Estimated	On target	
	protons(10 ¹⁷)	protons(10 ¹⁷)	Percentage
Empty	3.5	3.6	102
Carbon-2cm-6350um	1	1.1	108
Au-2 cm - 200 um	3	2.7	91
Lead-2cm-1000um	1	1.1	105
Au-1 cm	1	0.8	76
Carbon-2cm-6350um	1	1.1	108
Er-2 cm-25 um	10	9.6	96
Er-2 cm-1000um	2	2.5	125
Total protons used	22.5	22.4	108
		y Tecnológicas	

Preliminary results of natural Er

It has been found in the samples a contaminant of Tantalum of ~0.5%, it is not a problem for the analysis of the capture cross section of Er-167. Already the producer mention that it was possible to have Ta in the Er samples.

In **Blue** the resonances associated to Tantalum are presented

26

It has been found in the samples a contaminant of Tantalum of ~0.5%, it is not a problem for the analysis of the capture cross section of Er-167. Already the producer mention that it was possible to have Ta in the Er samples.

In **Blue** the resonances associated to Tantalum are presented

Natural Er sample 1 mm

The experimental compared with the yield obtained with SAMMY and JENDL-5.0 normalized to the first resonances.

Natural Er sample 25 µm

The experimental compared with the yield obtained with SAMMY and JENDL-5.0 normalized to the first resonances.

Differences in the resonance at 50 eV

The measurement with enriched samples

The idea is to do the measurement with enriched samples of ^{166,167}Er in 2024.

We already have the final quotation for the sample and we would start the purchase process this week.

P.O. Box 24/75 Box 24/75 B			QUOTATI Confidential Business I DATE: November GUOTE NUMBER: 23 SELLER CONTACT: Alia	ON 14, 2023 1114-1 n Pashkovski
MMR: Aft D: Victor Alcayne Alcua Victor alcayne alcua@gern.ch CERN Egyl des Particules 1 Egyl des Particules 1 Meyren CENEVA 1211 Switzerland	ТВС	Signee / Ship to:		
	QUOTATION SUMM	RY		
DESCRIPTION	PROPOSED DELIVERY	QUANTITY	UNIT PRICE	SUBTOTAL
Er-166 in oxide form with I.E. 98,1atom% Er-167 in oxide form with I.E. 96,3atom%	6-8 weeks ARO 1-2 weeks ARO	200 mg 200 mg	US\$5.60/ mg US\$5.90/ mg	US\$1,120.00 US\$1,180.00
Bank details: Bank Name: Cornerica Bank, Bank Address: 2001 Union SWIFT Code: MNBDUS33 For credit to Acct. # 1895755195 For benefit	Street, San Francisco. It of: ISOFLEX USA	CA 94123, USA	Subt Shipping, Handling and Insura	total: US\$2,300.00 nce: US\$250.00
Notes: ARO = After Receipt of Order	We Accept	VISA 💮	TOTAL (USD) at CIP terms:	US\$2,550.00

Isotopic Distribution

ISOTOPE	Er-162	Er-164	Er-166	Er-167	Er-168	Er-170
CONTENT (%)	<0.01	0.02	98.10(±0.10	1.33	0.45	0.10

Isotopic Distribution

ISOTOPE	Er-162	Er-164	Er-166	Er-167	Er-168	Er-170
CONTENT (%)	<0.01	0.01	0.96	96.30(±0.10)	2.57	0.16

The money to purchase the samples is already transfer to CERN from INFN-Bologna.

Similar setup to the Natural Er one.

Proposal number: 101164596

Proposal acronym: APRENDE

This work is part of APRENDE:

- 1 postdoc for ¹⁶⁶Er from Bologna
- 1 postdoc for ¹⁶⁷Er from CIEMAT

Back-up slides

Er-SHB: S&U analysis – EOC

- S&U analysis of the Er Xs(n,g) at high burnup (i.e., 60 GWd/MTU) on a Er-SHB FA system:
 - 1. The nuclide BU-related inventory was evaluated with the T-DEPL module of SCALE 6.2.3;
 - 2. The inventory of the most important isotopes for criticality (i.e., Ag, Am, Cm, Cs, Er, Eu, Gd, Mo, Nd, O, Pu, Rh, Ru, Sm, Tc, U) was imported in TSUNAMI-2D to perform a S&U analysis.

Isotope	Si (-)	Si/Si,tot (%)	∆k/k (-)	∆k (pcm)		
(-)	E > 10 eV					
Er-166	-2.28E-03	77.5	1.38E-04	15		
Er-167	-3,13E-04	6.3	7.08E-05	0		
Er-168	-1.40E-03	88.4	7.67E-05	17		
Er-170	-4.68E-04	73.9	5.37E-05	6		

- Due to the spectrum hardening the relative weight of the erbium 166,168,170 isotopes sensitivity increase at higher energy;
- Due to the low content of Er-167 the major contributor to uncertainty are Er-166 and Er-168;
- The overall contribute to criticality uncertainty of Er-166, Er-168, Er-170 at E > 10 eV is equal to 38 pcm (Cov. data: ENDF/B-VII.1).
- In order to have a precise assessment of the IBA reactivity penalty, any reduction of the criticality uncertainty at EOC is desirable

Slide by A. Guglielmelli

LFR-MOX: Design

- Research on the field of GEN IV LFR Reactor involves the use of MOX fuel in order to [1]:
- 22 09 09,3 010,5
 - 1. convert the uranium stored in Spent Nuclear Fuel (SNF) into fissile fuel;
 - 2. Burn the minor actinides (i.e, Np, Am, Cm, Cf) in SNF of LWR;
- S&U analysis on the LFR European conceptual design (ELSY):
 - 1. The ELSY open square design (ENEA) was chosen;
 - 2. S&U at BOC with and without Erbia as IBA was performed with TSUNAMI-2D.

[1] M. Ibrahim et al, Neutronic performance analysis of MOX fuel with different candidate austenitic stainless-steel cladding in ALFRED reactor

LFR-MOX FA: S&U analysis – BOC

			riance matrix	Cova				
ĸ∕k	delta-k/k	nuclide-reaction with nuclide-reaction						
	(%)		(-)					
00	1,01E+00	n,n'	u-238	n,n'	u-238			
01	4,02E-01	n,gamma	u-238	n,gamma	u-238			
01	3,25E-01	n,gamma	pu-239	n,gamma	pu-239			
01	2,16E-01	fission	pu-239	fission	pu-239			
01	1,99E-01	elastic	o-16	elastic	o-16			
01	1,87E-01	n,n'	pb-207	n,n'	pb-207			
01	1,69E-01	chi	pu-239	chi	pu-239			
01	1,47E-01	n,n'	pb-206	n,n'	pb-206			
01	1,43E-01	chi	pu-241	chi	pu-241			
01	1,37E-01	nubar	u-238	nubar	u-238			
01	1,11E-01	n,n'	pu-239	n,n'	pu-239			
01	1,07E-01	chi	u-238	chi	u-238			
02	-9,83E-02	elastic	u-238	n,n'	u-238			
02	8,90E-02	n,n'	pb-208	n,n'	pb-208			
02	6,71E-02	nubar	pu-239	nubar	pu-239			
02	6,49E-02	n,gamma	pu-241	n,gamma	pu-241			
02	6,02E-02	fission	pu-241	fission	pu-241			
02	5,91E-02	n,gamma	zr-90	n,gamma	zr-90			
02	5,32E-02	n,gamma	pu-240	n,gamma	pu-240			
02	5,14E-02	fission	u-238	fission	pu-239			
02	4,88E-02	chi	pu-240	chi	pu-240			
02	4,77E-02	elastic	pb-208	elastic	pb-208			
02	4,68E-02	n,gamma	zr-91	n,gamma	zr-91			
02	4,66E-02	n,gamma	zr-92	n,gamma	zr-92			
02	4,53E-02	n,gamma	pb-207	n,gamma	pb-207			
02	4,44E-02	n,gamma	pb-208	n,gamma	pb-208			
02	4,34E-02	n,gamma	er-167	n,gamma	er-167			
02	3,99E-02	n,n'	pu-240	n,n'	pu-240			
02	3,88E-02	n,n'	zr-94	n,n'	zr-94			
02	3,61E-02	fission	pu-240	fission	pu-240			
02	3,50E-02	n,n'	zr-92	n,n'	zr-92			
02	3,46E-02	n,gamma	pb-204	n,gamma	pb-204			
02	3,43E-02	fission	u-238	fission	u-238			
02	3,43E-02	nubar	pu-240	nubar	pu-240			
02	3,32E-02	n,n'	pu-241	n,n'	pu-241			
02	3,26E-02	n,gamma	u-235	n,gamma	u-235			

zr-90	elastic	zr-90	elastic	2,95E-02
pu-241	nubar	pu-241	nubar	2,80E-02
u-235	fission	pu-239	fission	2,62E-02
zr-90	n,n'	zr-90	n,n'	2,37E-02
pb-206	n,gamma	pb-206	n,gamma	2,31E-02
pb-207	elastic	pb-207	elastic	2,29E-02
pb-206	elastic	pb-206	elastic	2,26E-02
pu-239	n,n'	pu-239	elastic	-2,19E-02
u-238	elastic	u-238	n,gamma	-2,14E-02
zr-94	n,gamma	zr-94	n,gamma	1,89E-02
nb-93	n,gamma	nb-93	n,gamma	1,65E-02
u-238	elastic	u-238	elastic	1,49E-02
er-166	n,gamma	er-166	n,gamma	1,45E-02
zr-91	n,n'	zr-91	n,n'	1,41E-02
pu-239	fission	pu-239	n,gamma	-1,36E-02
zr-94	elastic	zr-94	elastic	1,30E-02
pu-239	elastic	pu-239	n,gamma	-1,22E-02
u-235	fission	u-238	n,gamma	-1,18E-02
pu-238	chi	pu-238	chi	1,12E-02
pb-204	n,n'	pb-204	n,n'	1,10E-02
zr-92	elastic	zr-92	elastic	1,06E-02
pu-242	n,gamma	pu-242	n,gamma	7,84E-03
am-241	n,gamma	am-241	n,gamma	7,77E-03
u-238	fission	u-238	n,gamma	7,41E-03
zr-91	elastic	zr-91	elastic	7,38E-03
er-168	n,gamma	er-168	n,gamma	7,23E-03
u-235	fission	u-238	fission	6,98E-03
u-235	chi	u-235	chi	6,81E-03
er-164	n,gamma	er-164	n,gamma	6,58E-03
pu-240	n,n'	pu-240	elastic	-5,83E-03
pu-238	n,gamma	pu-238	n,gamma	5,77E-03
u-235	fission	u-235	fission	5,71E-03
o-16	n,gamma	o-16	n,gamma	5,31E-03
er-170	n,gamma	er-170	n,gamma	5,24E-03
er-167	n,n'	er-167	n,n'	5,18E-03
pu-242	fission	pu-242	fission	5,15E-03

- <u>Sensitivity</u>: erbium sensitivity range between $10^2 10^6$ eV.
- <u>Uncertainty</u>: Er-167 (46 pcm), Er-166 (15 pcm), Er-168 (8 pcm), Er-170 (6 pcm).

Slide by A. Guglielmelli
The measurement with enriched samples

C6D6	162	164	166	167	168	170	Cost per mg
Er-166	0,002	0,02	98,1	1,33	0,45	0,1	5,6\$
Er-167	<0,01	<0,01	0,96	96,3	2,6	0,2	5,9\$
Total cost							2300\$ + 250€ (shipment)

P.O. Box 29475 San Francisco CA 94129 USA Tel: 415-440-4433 Fax: 415-563-4433 Email: info@isoflex.com.ru iusa@isoflex.com FEIN: 20-8066748 QUOTATION

Confidential Business Matter DATE: November 14, 2023 QUOTE NUMBER:231114-I

SELLER CONTACT: Allan Pashkovski

BUYER:	CON	SIGNEE / SHIP TO	:			
Att: Dr. Victor Alcayne Aicua	TBD)				
victor.alcayne.aicua@cern.ch						
CERN						
Espl. des Particules 1						
Meyren GENEVA 1211						
Switzerland						
QUOTATION SUMMARY						
	PROPOSED					
DESCRIPTION	DELIVERY	QUANTITY	UNIT PRICE	SUBTOTAL		
Er-166 in oxide form with I.E. 98,1atom%	6-8 weeks ARO	200 mg	US\$5.60/ mg	US\$1,120.00		
Er-167 in oxide form with I.E. 96,3atom%	1-2 weeks ARO	200 mg	US\$5.90/ mg	US\$1,180.00		
Bank details: Bank Name: Comerica Bank, Bank Address: 2001 Union Street, San Francisco, CA 94123, USA Subtotol: US\$2,300.00						
SWIFT Code: MNBDUS33 For credit to Acct. # 1895755195 For benefit of	of: ISOFLEX USA	-	Shipping, Handling and Insura	nce: US\$250.00		
Notes: ARO = After Receipt of Order	We Accept	VISA	TOTAL (USD) at CIP terms:	US\$2,550.00		

Cientro de Investigaciones Energéticas, Medioambientales y Tecnológicas

The measurement at EAR1 with natural Er

Measurement of a Natural sample of Er in the range **from 0.02 eV to 50 eV** with an aimed accuracy of 2%. The idea is to use a very well characterized metallic sample of ~30 mg. Samples of higher mass would need considerable self-shielding and multiple scattering corrections. It is not possible to obtain precisely the RP for ¹⁶⁷Er at energies higher than 50 eV.

The measurement at EAR1 with enriched Er

The cross sections of ^{166,167,168,170}Er would be measured with enriched samples of ~200 mg using 3 L6D6 and 5 sTED at different angles. The detectors at different angles are to observe the possible angle effects in the p-waves and s-waves of Er.

Sample	Mass	Detector	Energy range	Number protons
166 Er	200mg	C_6D_6	10 eV- $100 keV$	$1.0 \cdot 10^{18}$
$^{167}\mathrm{Er}$	200mg	C_6D_6	50 eV- $500 keV$	$1.0 \cdot 10^{18}$
$^{168}\mathrm{Er}$	200mg	C_6D_6	50 eV- $100 keV$	$1.5 \cdot 10^{18}$
$^{170}{\rm Er}$	200mg	C_6D_6	50 eV-50 keV	$1.5 \cdot 10^{18}$

BIFRNC

Evaluations

For ^{166,168,170}Er the evaluations of JENDL-5, JEFF-3.3 and ENDF-VIII and the uncertainties are between 7-15% in the RRR.

The uncertainty for ¹⁶⁷Er in the RRR is 2.3%, this value is questionable.

BIFRNC

The measurement at EAR1 with enriched Er

The cross sections of ^{166,167,168,170}Er would be measured with enriched samples of ~200 mg using 3 L6D6 and 5 sTED at different angles.

The measurement at EAR1 with enriched Er

The cross sections of ^{166,167,168,170}Er would be measured with enriched samples of ~200 mg using 3 L6D6 and 5 sTED at different angles.

Outline of the presentation

- Introduction and motivation
- Previous measurements and evaluations of Ta
- Ta measurement at n_TOF EAR1
- Monitoring of the experiment

Reactors for space

The absence of hydrocarbon power sources in space and the limitations of batteries have led to the development of photovoltaic and nuclear devices.

For space missions to Jupiter and beyond and surface missions on Mars nuclear devices are the most suitable option. When spacecrafts require more than 100 kW for power, nuclear reactors are much more cost-effective than RPS.

The NASA projects

The Prometheus project

Radioisotope **Fission Surface** Power Systems Power 1000 Nuclear Electric Propulsion Specific Mass (kg/kWe) 100 Future Fission Systems \Diamond SNAP-10A (1965) Near Term kW-Class Fission 10 Power System Mid Term SMD RPS SMD/STMD STMD Nuclear Far Term Program Kilopower Project Systems Project 1 0.1 10 100 1000 10000 100000 Power (kWe)

The Kilopower project

nance map.¹ SMD is the NASA Science Mission Directorate; STMD is the NASA Space Technology Mission Directorate.

Fig. 9. LANL and NASA engineers lowering the top of the vacuum chamber over the Stirling

The Krusty experiment has already test a 1kW fission power system on earth.

GOBIERNO

ESPAÑA

Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas

Refractory metals and critical experiments

Refractory metals are needed for the space nuclear reactors that operate at high temperatures. The available materials are Mo, W, Rh, and Ta.

Critical experiments in refractory materials were done as part of the Prometheus Project.

Uncertainty	Energy	Mass differences		
	$< 0.625 \ {\rm eV}$	$0.625~\mathrm{eV}\text{-}100~\mathrm{keV}$	< 100 keV	in percentage
Ta-2.5W-1	0.0%	14.0%	86.0%	0.17
Ta-2.5W-2	0.0%	20.7%	79.3%	9.25
Ta-2.5W-3	0.0%	31.1%	68.9%	7.67
Ta-2.5W-4	3.7%	43.4%	52.9%	7.48

 Centro de Investigaciones
Energéticas, Medioambientales y Tecnológicas Considerable differences for experiments with Ta in the keV region. There are also differences in the experiments with moderators.

Tantalum CS for fusion and ADS

Tantalum is considered one of the high-priority elements for which well-qualified evaluated data sets are required for the ITER and IFMIF fusion projects.

nergéticas, Medioambientales

y Tecnológicas

Test Blanket Module (TBM) includes Eurofer, that contains Tantalum. Ta is also present in the superconducting magnets of the reactor.

Previous works claim an uncertainty lower than 10% is needed in the Ta capture cross section from thermal to 1keV. This energy region is important due to the activation of Ta 316/SS30467/H₂0 by thermalized neutrons.

Tantalum have been also considered as the target for producing neutrons in Accelerator Driven Systems (ADS).

INNOVACIÓN

The ITER reactor

Previous measurements

The previous measurements used for the evaluations and the recent measurements are:

	Туре	Range
Harvey (1953)	Transmission	1-700 eV
Belanova (1973)	Transmission	2-70 eV
Mughabghab (1975)	Compilation	4-200 eV
Yamamuro (1980)	Capture	3-100 keV
Mackin (1984)	Capture	2.6-1900 keV
Tsubone (1987)	Transmission	100-4000 eV
Meaze (2005)	Transmission	1-100 eV
McDermott (2017)	Capture	0.1 eV-1 MeV
Brown (2018)	Cap/Trans	0.3-500 keV

GOBIERNO

DE ESPAÑA

Limitations of previous measurements

The Brown and McDemortt measurement have considerable limitations:

- All the detectors are at the same angle.
- The samples have more than 1 mm thickness, so considerable multiple scattering and photon attenuation corrections are needed (>30%).
- The measurements of Macklin, Tsobune and Yamamuro also use samples thicker than 1 mm.

The RP or the yield of the McDemortt measurement are not available.

OBIERNO

Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas

Evaluations

The JENDL-4 and JEFF-3.3 libraries take the values from JENDL-3.3

	Based in	Range RP
ENDF/B-VIII.0	Mughabghab and Macklin	4-300 eV
JENDL-3.3	Mughabghab, Macklin, Tsubone and Yamamuro	4-2400 eV
JENDL-5.0	Mughabghab, Macklin, Tsubone, Yamamuro and Endo (new measurement at J-PARC not published yet between 1 and 200 eV)	4-2400 eV

GOBIERNO

DE ESPAÑA

Ta experiment at n_TOF

The experiment start the 3 of May and it is still running.

We decided to measure samples of 4 cm diameter (BIF= ~95%) in order to avoid problems with the sample alignment.

We also decided to measure samples of 2 cm to check the various corrections.

Ta -4 cm- 500 um	4	<mark>4.0</mark>	99
Ta-4 cm - 100 um	3	3.3	111
Ta -2 cm- 100 um	0.5	<mark>0.6</mark>	114
Ta-4 cm - 10 um	5	2.9	58
Ta-2 cm - 10 um	0.5	0.5	100
Empty	3	3.0	99
Au-4 cm-200 um	4	<mark>4.4</mark>	109
Au-2 cm - 200 um	3	1.8	60
Lead-4 cm	1	0.0	0
Lead-2 cm	1	0	0
Carbon- 2 cm	1	0.0	0

 Centro de Investigaciones
Energéticas, Medioambientales y Tecnológicas

Setup

- 1 BICRON at 3.7 cm at 90° with respect to the beam
- 2 BICRON at 9.2 cm at 125° with respect to the beam
- 3 sTED at 10 cm at 90°, 110°, 130° with respect to the beam

Centro de Investigaciones

y Tecnológicas

Energéticas, Medioambientales

Ciema

GOBIERNO

ESPAÑA

MINISTERIO

DE CIENCIA

E INNOVACIÓN

Setup

Cierro de Investigaciones Energéticas, Medioambientales y Tecnológicas

Calibrations were performed with 8 sources (¹³³Ba, ¹³⁷Cs, ⁵⁴Mn, ⁶⁰Co, ²⁰⁹Bi, ⁸⁸Y, AmBe, CmC) from 200 keV to 6 MeV.

Calibrations were performed with 8 sources (¹³³Ba, ¹³⁷Cs, ⁵⁴Mn, ⁶⁰Co, ²⁰⁹Bi, ⁸⁸Y, AmBe, CmC) from 200 keV to 6 MeV.

All the sources were placed in the same place as the Ta samples. The differences between the calculated and the obtained efficiencies are below 10%. This differences are compatible with the uncertainties in the position of the detectors.

All the sources were placed in the same place as the Ta samples. The differences between the calculated and the obtained efficiencies are below 10%. This differences are compatible with the uncertainties in the position of the detectors.

All the sources were placed in the same place as the Ta samples. The differences between the calculated and the obtained efficiencies are below 10%. This differences are compatible with the uncertainties in the position of the detectors.

Gain shifts during the experiment

The gain of the detectors is check every few days with calibration sources.

The gain of BICRON 1 (3.7 cm) suffers considerable shifts and also this detectors has shifts with the light. The gain shifts in the rest of detectors are smaller than 1%.

Monitoring of the experiment

Capture cascades with NuDEX

CS of Ta and Au

The CS of ¹⁹⁷Au is very similar to the one of Ta, so we would extract the yield of Au to validate the one of Ta.

The Au sample compared with JEFF-3.3

63

The Au sample compared with JEFF-3.3

The different Ta and Au samples are compared with JEFF-3.3

Preliminary calculation of the WF

Preliminary determination of the WF with Geant4 without considering the effects of the sample (γ -ray attenuation)

Preliminary calculation of the WF

The values to normalize to the saturated resonances of gold are close to one. We are missing the threshold and other corrections. Using RF RF_EAR1_test_18447_rEn1_rL1.txt provided by Adria.

Compare Au with JEFF-3.3

Preliminary comparison for Ta-500 µm

Yield of the Ta of 500 µm normalized to the first resonance

70

Summary and conclusions

- The experiment is still on going but the data looks promising.
- The preliminary calibrations with 8 γ-rays sources looks very nice in all the range of the measurement.
- The monitoring of the experiment shows that there are not major problems.
- Different samples and detectors would allow to check all the corrections and to reduce the uncertainties.

Summary, conclusions and requested protons

- Erbium has been proposed to be used as **burnable absorber** in commercial nuclear reactors, instead of gadolinium.
- The uncertainty CS of ¹⁶⁷Er in the RRR in ENDF-VIII is ~2.3%, it has been shown that this value is underestimate. There is a new entrance in the HPRL of NEA for new measurements with uncertainties close to 2%.
- The cross sections of ^{166,168,170}Er also play a important role for reactors and the uncertainties are from 7 to 15% in the RRR. New precise measurements are needed
- A measurement with a natural Er sample using the C6D6 and the TAC is proposed to fulfill the HPRL requirements between 0.01 and 50 eV.
- Four measurements with ~200 mg enriched samples of ^{166,167,168,170}Er with C6D6 are also proposed.

	Sample	Mass	Detector	Energy range	Number protons
	Natural	30mg	TAC	$0.01-50 \ eV$	$1.0 \cdot 10^{18}$
	Natural	30mg	C_6D_6	$0.01-50 \ eV$	$1.5 \cdot 10^{18}$
	166 Er	200mg	C_6D_6	10 eV- $100 keV$	$1.0 \cdot 10^{18}$
	$^{167}\mathrm{Er}$	200mg	C_6D_6	50 eV-500 keV	$1.0 \cdot 10^{18}$
	$^{168}\mathrm{Er}$	200mg	C_6D_6	$50 \text{ eV} \cdot 100 \text{ keV}$	$1.5 \cdot 10^{18}$
	$^{170}\mathrm{Er}$	200mg	C_6D_6	50 eV-50 keV	$1.5 \cdot 10^{18}$
	TAC aux	$0.5 \cdot 10^{18}$			
t	C_6D_6 aux	$1.0 \cdot 10^{18}$			
		$9.0 \cdot 10^{18}$			
Comparison of the Au results with evaluations

The new flux reproduce the shape of Au in the thermal region very accurate

Measurements with beam

In general terms the response of the detectors are reliable:

E INNOVACIÓN

y Tecnológicas

Thermal Epithermal experiments (TEX)

TEX is a project to perform critical experiments that span a wide range of fission energy. The ²³⁹Pu experiments of TEX were performed with Ta as a diluent.

Preliminary results with ZPPR

Adding tantalum worsened the calculated results, with intermediate and fast systems calculating approximately 0.5-1.5% differences pointing to issues with the tantalum cross sections.

Fig. 2. Plutonium TEX Calculational over Experimental (C/E) Results (colored markers), Overlaid with Plutonium Benchmark Configurations (gray markers) as a Function of Medium Fission

ESPAÑA

The measurement with the Thick sample (0.1 mm)

A *Thick* sample of 0.1 mm would be measured, this samples is thinner than the ones used in previous measurements, so no strong shelf-shielding, photon attenuation or multiple corrections would be needed.

The yield for the *Thick* sample at energies below 200 is close to 1, in order to avoid the considerable corrections a *Thin* sample of 0.01 mm would be used.

GOBIERNO DE ESPAÑA

The counting rates estimations

Two samples to measure two different energy regions, the counts estimates with $7x10^{17}$ protons.

At energies below 4 eV ENDF/B-VIII.0 is ~5% higher than JENDL-5

Differences in the RRR between ENDF-8, JENDL-3.3 and JENDL-5

Differences in the URR are as high as 10% between ENDF-8 and JENDL-5

Background subtraction Ta-4cm-500um

Background subtraction Au-4cm-200um

IE

Compare Primary and parasitic

MINISTERIO DE CIENCIA E INNOVACIÓN

iemo

Compare 3 BICRON

E ESPAÑA

Compare 3 sTED

iemo

Compare sTED and BICRON

Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas

Jema

Compare CR of Au-4cm-200um-BICRON

iema

Compare CR of Au-4cm-200um-sTED

Compare CR of Ta-4cm-500um-BICRON

Compare CR of Ta-4cm-500um-sTED

DBIERNO

CS Ta-181

Incident neutron data / JENDL-4.0 / Ta181 / / Cross section

CS Ta-181

Incident neutron data / JENDL-4.0 / Ta181 / / Cross section

Incident energy (MeV)

Capture C.S. of 181 and 180m

y Tecnológicas