



UNIVERSITAT POLITÈCNICA DE CATALUNYA BARCELONATECH

Institut de Tècniques Energètiques

# Update on the status of the <sup>205</sup>Tl(n,γ) cross section measurement

A. Casanovas<sup>1</sup>, A.Tarifeño-Saldivia<sup>1</sup>, F. Calviño<sup>1</sup>, C. Domingo-Pardo<sup>2</sup>,
 E. Maugeri<sup>3</sup>, V. Alcayne, V. Babiano, J. Lerendegui, C. Guerrero and the n\_TOF Collaboration

<sup>1</sup> Universitat Politècnica de Catalunya (UPC), Barcelona, Spain
 <sup>2</sup> Instituto de Fisica Corpuscular (CSIC-Universitat de Valencia), Valencia, Spain
 <sup>3</sup>Paul Scherrer Institute, Switzerland

#### Outline of the presentation

- Reminder of the motivations for the measurement
- Report of the signal analysis work (still ongoing)
- Calibrations with simulations



UNIVERSITAT POLITÈCNICA DE CATALUNYA BARCELONATECH



## The <sup>205</sup>Pb-<sup>205</sup>Tl decay system

<sup>205</sup>Tl is the most abundant (71%) stable (at earth) thallium isotope (Z=81) ٠





Already measured at n TOF (A. Casanovas Ph.D. thesis (2020), submitted to PRL)

- The <sup>205</sup>Pb/<sup>204</sup>Pb ratio could be used as a "chronometer" of the sprocess<sup>1,2,3</sup>
  - Time elapsed since the last injection of main s-process products into the • pre-solar nebula
  - Stellar effects on <sup>205</sup>Pb: at s-process sites temperature, EC decay is so strongly enhanced that its **survival is compromised**
  - Activation of the **bound state**  $\beta$  decay of <sup>205</sup>Tl •



1. K. Yokoi et al., The production and survival of Pb-205 in stars, and the <sup>205</sup>Pb/<sup>205</sup>Tl s-process chronometry, Astronomy and Astrophysics 145, 339-346 (1985) 2. R.G.A. Baker et al., The thallium isotope composition of carbonaceous chondrites — New evidence for live <sup>205</sup>Pb in the early solar system, Earth and Plan. Sc. Lett (2010) 3. Mowlavi, N., Goriely, S., Arnould, M., The survival of <sup>205</sup>Pb in intermediate-mass AGB stars, Astron. Astrophys. 330, 206–214 (1998)



**UNIVERSITAT POLITÈCNICA DE CATALUNYA** BARCELONATECH

Institut de Tècniques Energètiques



## Main ideas

• <sup>205</sup>Tl is the most abundant (71%) stable (at earth) thallium isotope (Z=81)



/lowlavi, N., Goriely, S., Arnould, M., **The survival of <sup>205</sup>Pb in intermediate-mass AGB stars**, Astron. Astrophys. 330, 206–214 (1998

UNIVERSITAT POLITÈCNICA DE CATALUNYA BARCELONATECH

Institut de Tècniques Energètiques

 $\mathbf{O}$ 

000

n\_TOInCTOIDElocalitationationationseting, Valencia, 22-Granada, 27-223/W/6/Jember 2023



## Status of the data for <sup>205</sup>Tl(n,γ) : cross section

- Only one previous measurement: R. L. Macklin and R. R. Winters, *Stellar neutron capture in the thallium isotopes*, Astrophys. J. **208**, 812 (1976)
  - Experimental capture cross section or resonance parameters never published
  - Related EXFOR data: only resonance kernels, no uncertainties, up to 102 keV
  - Explicit correction factor for systematic error at ORNL: not known (0.95 for <sup>203</sup>TI)
- Most recent evaluations show **important discrepancies**:







## Status of the data for ${}^{205}Tl(n,y)$ : MACS

- MACS at 30 keV comparison: ٠
  - Kadonis reference value:  $52.6 \pm 3.9$  mb (ENDF evaluation)
  - Examination of ENDF data suggests it is based on 1976 ORNL measurement \_
  - No direct uncertainty assessment in the whole energy range (8 keV to 50 keV)



**UNIVERSITAT POLITÈCNICA DE CATALUNYA** BARCELONATECH

Institut de Tècniques Energètiques

UPC



## Main points

• From the current status of the data a +10% to -40% uncertainty in the value of the  $^{205}TI(n,\gamma)$  is assumed

- This leads to an approx. 40% global uncertainty in the <sup>205</sup>Pb/<sup>204</sup>Pb ratio only due to this reaction
- Goal: increase precision and accuracy of  $^{205}TI(n,\gamma)$  to reduce the uncertainty in the  $^{205}Pb/^{204}Pb$  ratio



## <sup>205</sup>Tl(n,γ) measurement: sample issue

- Acquired "pure" sample was heavily contaminated with bromine
- A new, on-the-go sample of **natural thallium** was produced in a few days thanks to our PSI colleagues (E. Maugeri's team)
  - 3.7 g of natural thallium, of which 2.6 g is <sup>205</sup>Tl
  - Same diameter, similar thickness
- This sample luckily had no bromine (or an undetectable amount)
- As nat. Tl, sample contains also 29% of <sup>203</sup>Tl
- Resonance spacing of TI isotopes resonances is high
   → "easier" to separate them
- <sup>203</sup>Tl was measured in 2015, resonance information up to 25 keV
- Higher energy results could be used to complete <sup>203</sup>Tl(n,γ) analysis of 2015 measurement (to be carefully studied)
- Meas. Setup: standard C<sub>6</sub>D<sub>6</sub> Legnaro detectors, "old" PMT







UNIVERSITAT POLITÈCNICA DE CATALUNYA BARCELONATECH

Institut de Tècniques Energètiques



#### **Measurement summary**

| TOTAL                                                            | 2.508E+18                                        |                                                                       |
|------------------------------------------------------------------|--------------------------------------------------|-----------------------------------------------------------------------|
| Assigned                                                         | 2.60E+18                                         |                                                                       |
| Sum on good targets:<br>Sum backgrounds:<br>Sum useful data:     | 1.853E+18<br>4.315E+17<br>2.284E+18              |                                                                       |
| Sum TI-nat 99%:<br>Sum TI-nat 99% filters:                       | <b>1.613E+18</b><br>1.09E+17                     | 2.10 <sup>18</sup> protons approved<br>1.7.10 <sup>18</sup> allocated |
| Sum dummy:<br>Sum dummy filters:<br><b>Total dummy:</b>          | 2.322E+17<br>6.743E+16<br><b>2.996E+17</b>       |                                                                       |
| Sum Gold:                                                        | 1,314E+17                                        |                                                                       |
| Sum Pb-nat:<br>Sum Pb-nat filters:<br>Total Pb-nat<br>Sum empty: | 4.753E+16<br>4.403E+16<br>9.156E+16<br>4.036E+16 |                                                                       |
| Sum Br cont. thick:<br>Sum Br cont. thin:                        | 1.822E+17<br>4.165E+16                           |                                                                       |
| Sum contaminated:                                                | 2.238E+17                                        |                                                                       |





- EAR1 Legnaro  $C_6D_6$  detectors equipped with old PMT have always suffered from strong "rebound" signals, appearing around ~600 ns after the primary signal and with much les amplitude (for example, see multiple talks by V. Babiano on <sup>80</sup>Se(n,g), or more recently by F. García on <sup>176</sup>Yb(n,g), etc.)
  - Issue much worse in some detectors tan others
- Since Legnaro became the standard C6D6 setup, this issue has been circumvented by using high E. dep. thresholds (250 - 300 keV)
- "Official" PSA routine parameters not changed in years: parabolic fit to the amplitude, no PSF, no fit of the baseline
- As a first step in the analysis, we have been working in new sets parameters:
  - Same old parameters, but with PSF and adaptative baseline ("oldParPSF")
  - PSF + baseline + new more agressive parameters to try to eliminate 600 ns rebounds during PSA ("newPar" parameters)



UNIVERSITAT POLITÈCNICA DE CATALUNYA BARCELONATECH



#### ΔT between consecutive signals (E.dep. th = 120 keV)







## Rebounds in data (E. dep. = 120 keV)

- Rebound is artificial contribution to resonance integrals
- Can lead even to false double structures







#### **Old PSA parameters and rebounds**





UNIVERSITAT POLITÈCNICA DE CATALUNYA BARCELONATECH



#### Old PSA parameters and rebounds



![](_page_13_Picture_2.jpeg)

![](_page_13_Picture_4.jpeg)

#### Old vs new parameters

|            |      |                                                                  |          |                             | _       | -      |       |         |           |           |                                         |          |           |          |
|------------|------|------------------------------------------------------------------|----------|-----------------------------|---------|--------|-------|---------|-----------|-----------|-----------------------------------------|----------|-----------|----------|
|            | C6D6 |                                                                  | 1        | PSA                         | 15      | 6      | 9     | 0       |           | 0         | Θ                                       | 12e3/    | 1E9       | 1        |
|            | i    | 9000                                                             |          | 2                           |         | 300    | )     |         | 0         |           |                                         |          |           |          |
|            | C6D6 |                                                                  | 2        | PSA                         | 15      |        | )     | 0       |           | Θ         | Θ                                       | 12e3/    | 1E9       | 1        |
|            | i    | 9000                                                             |          | 2                           |         | 300    |       |         | 0         |           |                                         |          |           |          |
|            | C6D6 |                                                                  | 3        | PSA                         | 20      | 6      | )     | 0       |           | Θ         | 0                                       | 12e3/    | 1E9       | 1        |
|            | 1    | 9000                                                             |          | 2                           |         | 300    |       |         | 0         |           |                                         | ,        |           |          |
|            | C6D6 |                                                                  | 4        | PSA                         | 15      | e      | 9     | Θ       |           | 0         | Θ                                       | 12e3/    | 1E9       | 1        |
|            | -:   | UserInd                                                          | out 2018 | EAR1 T                      | l205 of | ficial | .h To | DD (4   | .0)       | (C/l /    | Abbrev)                                 |          |           |          |
|            | 0    | 500                                                              | _        | 4000                        | )       |        |       | C       |           | (-)       |                                         |          |           |          |
|            | #### |                                                                  |          |                             |         |        |       |         |           |           |                                         |          |           |          |
|            | C6D6 | 1                                                                |          | PSA                         | 15      |        | 0     | Θ       |           | 0         | 0                                       | 10       | 00e6      | 1        |
|            |      | 9000                                                             | 2        |                             |         | 300    | 3     | cs137   | det1.     | dat v88   | high de                                 | t1.dat v | /hiah     | det1.dat |
|            | C6D6 | 2                                                                | -        | PSA                         | 15      |        | 0     | 0       |           | 0         | 0                                       | 10       | 00e6      | 1        |
|            | 9(   | <u> </u>                                                         | 2        | 1 5/1                       | 300     | 0      | ř.    |         |           |           | , i i i i i i i i i i i i i i i i i i i | li       | ah de     | t2.dat   |
|            | C6D6 | 3                                                                | -        | Ρςδ                         | 15      | -<br>- | . г   |         |           |           |                                         | C        | 00e6      | 1        |
|            | 9000 | 9                                                                | 2        |                             | 300     |        | • L   | Jeriv   | alive     | step      |                                         |          | ih det    | 3.dat    |
|            | C6D6 | 4                                                                | -        | PSA                         | 30      |        |       |         |           |           |                                         | 0        | )e6       | 1        |
| 9000 2 300 |      |                                                                  | 300      | 3 • Threshold in derivative |         |        |       |         | - F       | det4      | l.dat                                   |          |           |          |
|            |      |                                                                  | -        |                             |         |        |       | in co   |           | in acri   | vative                                  |          |           |          |
|            | -:   | UserInp                                                          | out_2018 | _EAR1_T                     | L205_V0 | Ld_wPS |       |         | 000 (0    | 52,1027   |                                         | DUTEV    |           |          |
|            | SILI | 4                                                                |          | PSA 5                       | 600     | 0      | 0     |         | Θ         | Θ         | 1e9                                     | /1e9     | 0         | 500.     |
| 0 500      |      | _                                                                | 4000     |                             |         |        | e     |         |           |           |                                         |          |           |          |
|            | C6D6 |                                                                  | 1        | PSA                         | 30/25   | 0      |       | 0       | 0         | )         | 0                                       | 100e6    |           | 1        |
|            | i    | 9000                                                             |          | 10                          |         | 300    | 2     | y88     | _high_    | _det1.dat | : vhigh_                                | au197_de | et1.da    | it       |
|            | C6D6 |                                                                  | 2 1      | PSA                         | 30/28   | Θ      |       | 0       | O         | )         | 0                                       | 100e6    |           | 1        |
|            | i    | 9000                                                             |          | 10                          |         | 300    | 2     | y8      | 8_high    | _det2.da  | nt vhigh                                | _au197_d | det2.0    | lat      |
|            | C6D6 |                                                                  | 3 I      | PSA                         | 35/35   | 0      |       | Θ       | O         | )         | 0                                       | 100e6    |           | 1        |
|            | i    | 9000 10                                                          |          |                             | 300     | 3      | cs1   | .37_det | :3.dat y8 | 8_high_   | det3.dat                                | t vhig   | jh_au197_ |          |
|            | C6D6 |                                                                  | 4 I      | PSA                         | 35/25   | 0      |       | Θ       | O         | )         | 0                                       | 100e6    |           | 1        |
|            | i –  | 9000                                                             |          | 10                          |         | 300    | 2     | y88     | _high_    | det4.dat  | vhigh_                                  | au197_de | et4.da    | it       |
|            |      | -: UserInput_2018_EAR1_Tl205_v01_local.h 83% (82,0) (C/l Abbrev) |          |                             |         |        |       |         |           |           |                                         |          |           |          |
|            | -:   |                                                                  |          |                             |         |        |       |         |           |           |                                         |          |           |          |
|            |      |                                                                  |          |                             |         |        |       |         |           |           |                                         |          |           |          |

![](_page_14_Picture_2.jpeg)

UNIVERSITAT POLITÈCNICA DE CATALUNYA BARCELONA**TECH** 

Institut de Tècniques Energètiques

![](_page_14_Picture_6.jpeg)

- New parameters: increase in step size and derivative threshold ۲
- Goal: eliminate rebounds while keeping signals of similar amplitude ٠

![](_page_15_Figure_3.jpeg)

Derivative - Event 2 Movie 60 (C6D6-4)

![](_page_15_Figure_5.jpeg)

![](_page_15_Figure_6.jpeg)

![](_page_15_Picture_7.jpeg)

UNIVERSITAT POLITÈCNICA DE CATALUNYA BARCELONATECH

![](_page_15_Picture_10.jpeg)

- New parameters: increase in step size and derivative threshold ۲
- Goal: eliminate rebounds while keeping signals of similar amplitude ٠

![](_page_16_Figure_3.jpeg)

Derivative - Event 1 Movie 20 (C6D6-4)

![](_page_16_Picture_5.jpeg)

**UNIVERSITAT POLITÈCNICA DE CATALUNYA** 

Institut de Tècniques Energètiques

![](_page_16_Picture_9.jpeg)

- New parameters: increase in step size and derivative threshold
- Goal: eliminate rebounds while keeping signals of similar amplitude

![](_page_17_Figure_3.jpeg)

![](_page_17_Picture_4.jpeg)

![](_page_17_Picture_6.jpeg)

- New parameters: increase in step size and derivative threshold
- Goal: eliminate rebounds while keeping signals of similar amplitude

![](_page_18_Figure_3.jpeg)

Derivative - Event 1 Movie 64 (C6D6-2)

Clean signal - Event 1 Movie 64 (C6D6-2)

![](_page_18_Figure_6.jpeg)

23 November 2023

![](_page_18_Picture_7.jpeg)

UPC

- New parameters: increase in step size and derivative threshold
- Goal: eliminate rebounds while keeping signals of similar amplitude

![](_page_19_Figure_3.jpeg)

Derivative - Event 1 Movie 110 (C6D6-2)

#### Clean signal - Event 1 Movie 110 (C6D6-2)

![](_page_19_Figure_6.jpeg)

20

- New parameters: increase in step size and derivative threshold
- Goal: eliminate rebounds while keeping signals of similar amplitude

![](_page_20_Figure_3.jpeg)

Derivative - Event 1 Movie 21 (C6D6-2)

21

#### ΔT between consecutive signals: th=120 keV

![](_page_21_Figure_1.jpeg)

- Flat distribution also for low threshold
- Increase in step size increases
  "dead time" (i.e. time under which two signals can't be distinguished)
  from ~30 to ~40 ns → 25%

additional pile up correction

• Due to wider stepsize, not reliable for TOF  $\lesssim$  25-30 us (~200 keV)

![](_page_21_Picture_6.jpeg)

UNIVERSITAT POLITÈCNICA DE CATALUNYA BARCELONATECH

Institut de Tècniques Energètiques

![](_page_21_Picture_9.jpeg)

#### ΔT between consecutive signals: th=250 keV

![](_page_22_Figure_1.jpeg)

- Flat distribution also for low threshold
- Increase in step size increases "dead time" (i.e. time under which two signals can't be distinguished) from  $\sim$ 30 to  $\sim$ 40 ns  $\rightarrow$  25% additional pile up correction
- Due to wider stepsize, not reliable for TOF  $\lesssim$  25-30 us (~200 keV)

![](_page_22_Picture_5.jpeg)

UNIVERSITAT POLITÈCNICA DE CATALUNYA BARCELONATECH

Institut de Tècniques Energètiques

![](_page_22_Picture_8.jpeg)

#### ΔT between consecutive signals: th=600 keV

![](_page_23_Figure_1.jpeg)

- Flat distribution also for low threshold
- Increase in step size increases
  "dead time" (i.e. time under which two signals can't be distinguished)
  from ~30 to ~40 ns → 25%
  additional pile up correction
- Due to wider stepsize, not reliable for TOF  $\lesssim$  25-30 us (~200 keV)

![](_page_23_Picture_5.jpeg)

UNIVERSITAT POLITÈCNICA DE CATALUNYA BARCELONATECH

Institut de Tècniques Energètiques

![](_page_23_Picture_8.jpeg)

#### ΔT between consecutive signals: th=1000 keV

![](_page_24_Figure_1.jpeg)

- Flat distribution also for low threshold
- Increase in step size increases "dead time" (i.e. time under which two signals can't be distinguished) from  $\sim 30$  to  $\sim 40$  ns  $\rightarrow 25\%$ additional pile up correction
- Due to wider stepsize, not reliable ٠ for TOF  $\leq$  25-30 us (~200 keV)

![](_page_24_Picture_5.jpeg)

**UNIVERSITAT POLITÈCNICA DE CATALUNYA** BARCELONATECH

Institut de Tècniques Energètiques

![](_page_24_Picture_8.jpeg)

#### ΔT between consecutive signals: same detector

![](_page_25_Figure_1.jpeg)

UNIVERSITAT POLITÈCNICA DE CATALUNYA BARCELONATECH

Institut de Tècniques Energètiques

UPC

L6D6-2-C

ullet

![](_page_25_Picture_4.jpeg)

- Linear or double linear calibrations provide a satisfactory agreement with sources for all detectors
- Overall very good gain stability (±1-2%) along the measurement

![](_page_26_Figure_3.jpeg)

![](_page_26_Picture_4.jpeg)

![](_page_26_Picture_6.jpeg)

- Linear or double linear calibrations provide a satisfactory agreement with sources for all detectors
- Overall very good gain stability (±1-2%) along the measurement

![](_page_27_Figure_3.jpeg)

![](_page_27_Picture_4.jpeg)

![](_page_27_Picture_6.jpeg)

- Linear or double linear calibrations provide a satisfactory agreement with sources for all detectors
- Overall very good gain stability (±1-2%) along the measurement
- Example L6D6 1-G: Good agreement with a single linear calib for Cs-137 (0.662 MeV)

![](_page_28_Figure_4.jpeg)

![](_page_28_Picture_5.jpeg)

![](_page_28_Picture_7.jpeg)

- Linear or double linear calibrations provide a satisfactory agreement with sources for all detectors
- Overall very good gain stability (±1-2%) along the measurement
- Example L6D6 1-G: Good agreement with a single linear calib for Y-88 (0.898 MeV)

![](_page_29_Figure_4.jpeg)

![](_page_29_Picture_5.jpeg)

![](_page_29_Picture_7.jpeg)

- Linear or double linear calibrations provide a satisfactory agreement with sources for all detectors ٠
- Overall very good gain stability  $(\pm 1-2\%)$  along the measurement ٠
- Example L6D6 1-G: Good agreement with a single linear calib for Y-88 (1.8 MeV) •

![](_page_30_Figure_4.jpeg)

![](_page_30_Picture_5.jpeg)

Institut de Tècniques Energètiques

![](_page_30_Picture_8.jpeg)

- Linear or double linear calibrations provide a satisfactory agreement with sources for all detectors ٠
- Overall very good gain stability  $(\pm 1-2\%)$  along the measurement ٠
- Example L6D6 1-G: Good agreement with a single linear calib for AmBe (4.43 MeV) ٠

![](_page_31_Figure_4.jpeg)

![](_page_31_Picture_5.jpeg)

![](_page_31_Picture_7.jpeg)

- Linear or double linear calibrations provide a satisfactory agreement with sources for all detectors
- Overall very good gain stability (±1-2%) along the measurement
- Example L6D6 1-G: Good agreement with a single linear calib for CmC source (6.12 MeV)

![](_page_32_Figure_4.jpeg)

![](_page_32_Picture_5.jpeg)

![](_page_32_Picture_7.jpeg)

- Linear or double linear calibrations provide a satisfactory agreement with sources for all detectors
- Overall very good gain stability (±1-2%) along the measurement
- But... agreement with Ba-133 source bad → second double linear needed for low energy

![](_page_33_Figure_4.jpeg)

![](_page_33_Picture_5.jpeg)

![](_page_33_Picture_7.jpeg)

- Linear or double linear calibrations provide a satisfactory agreement with sources for all detectors ٠
- Overall very good gain stability  $(\pm 1-2\%)$  along the measurement ٠
- Second linear at low E. dep. (<400 keV) for det. 1 and  $3 \rightarrow$  Ba-133 source calibration very ٠

![](_page_34_Figure_4.jpeg)

![](_page_34_Picture_5.jpeg)

![](_page_34_Picture_6.jpeg)

UNIVERSITAT POLITÈCNICA DE CATALUNYA BARCELONATECH

Institut de Tècniques Energètiques

![](_page_34_Picture_9.jpeg)

## Ratios between resonance integrals

- Ratios obtained for four Au resonances (4.9 eV, 60 eV, 79 eV, 110 eV) for each threshold and detector
- L6D6-1-G

![](_page_35_Figure_3.jpeg)

![](_page_35_Picture_4.jpeg)

![](_page_35_Picture_6.jpeg)

## Ratios between resonance integrals

- Ratios obtained for four Au resonances (4.9 eV, 60 eV, 79 eV, 110 eV) for each threshold and detector
- L6D6-3-D

![](_page_36_Figure_3.jpeg)

![](_page_36_Picture_4.jpeg)

![](_page_36_Picture_6.jpeg)

## Ratios between resonance integrals

- Ratios obtained for four Au resonances (4.9 eV, 60 eV, 79 eV, 110 eV) for each threshold and detector
- L6D6-4-D

![](_page_37_Figure_3.jpeg)

![](_page_37_Picture_4.jpeg)

![](_page_37_Picture_6.jpeg)

## Summary and outlook

- A fine tuning of the PSA values should allow for a "clean" elimination of the rebounds, while allowing to keep the threshold in deposited energy as low as possible
- Work still in progress
  - Check comparison signal Area-amplitude ratio, C6D6 low amplitude signal high dispersion in shape
- I warmly encourage everyone working on C6D6 data analysis to play with the PSA and provide new (and possible) better parameters
- Detector calibrations with simulations confirm very stable and linear behaviour of the four detector
- Next meeting: analysis should be in advanced stage

![](_page_38_Picture_7.jpeg)

UNIVERSITAT POLITÈCNICA DE CATALUNYA BARCELONATECH Institut de Tècniques Energètiques

![](_page_38_Picture_10.jpeg)