⁶⁴Ni(n,γ) & ³⁰Si(n,γ) Motivations and Preliminary Results

Michele Spelta

Outline

- Motivations
- State of the art
- Measurements
- Preliminary Results (ToF spectra)
- Ongoing analysis

⁶⁴Ni(n,γ): Motivations

⁶⁴Ni is one of the **seeds of the s-process** and the knowledge of its capture cross section is essential to simulate the **weak s-process in massive stars**.

⁶⁴Ni(n,γ): Motivations

As a **"bottleneck"**, 64 Ni(n, γ) was also found to affect the isotopic abundances of many isotopes from the main s-process in AGB stars. **Cescutti et al.**, MNRAS 478, 4101 – 4127 (2018)

⁶⁴Ni(n,γ): Motivations

Discrepancy observed in SiC grains between measured isotopic ratios and predictions from magnetic-buoyancy induced mixing models in AGB stars.

D. Vescovi et al., ApJ Lett., 897 (2020) 25

³⁰Si(n,γ): Motivations

²⁸Si is mainly produced by α process, ²⁹Si and ³⁰Si are produced by **neutron capture reactions** mainly in the convective carbon shell of **massive stars** and released in **SN explosions**.

³⁰Si(n,γ): Motivations

²⁸Si, ²⁹Si, ³⁰Si(n,y) are important to explain the **isotopic ratios measured in SiC grains** (acc. < 5%)

³⁰Si(n,γ): Motivations

²⁸Si, ²⁹Si, ³⁰Si(n,y) are important to explain the **isotopic ratios measured in SiC grains** (acc. < 5%)

⁶⁴Ni(n,γ): State of the art

Only a few discrepant measurements available in literature, leading to discrepant MACS

³⁰Si(n,γ): State of the art

Only a few discrepant measurements available in literature, leading to discrepant MACS

Measurement in EAR1

June – July: ³⁰Si(n,y), ^{nat}Si(n,y) -> 3.81E+18 p

Measurement in EAR2

July-August ⁶⁴Ni(n,ɣ) -> 2.34E+18 p (**+56 %**) ³⁰Si(n,ɣ), ^{nat}Si(n,ɣ) -> 8.13E+17 p (**+11 %**)

Measurement

⁶⁴Ni(n,γ): Preliminary Results

⁶⁴Ni(n,γ): Preliminary Results

1E+02

⁶⁴Ni(n,γ): Preliminary Results

MACS from Kadonis 0.3 seems more in agreement with our data.

³⁰Si(n,γ): Preliminary Results

A. No resonance at 2.235 keV

B. Resonance at 4.98 keV

³⁰Si(n,γ): Preliminary Results

³⁰Si(n,γ): Preliminary Results

1E+03

1E+02

Si-30(n,g)

³⁰Si(n,γ): Ongoing Analysis

The analysis is currently devoted to detector calibration with G4 simulations.

First guess with gaussian fitting of the Compton edge:

³⁰Si(n,γ): Ongoing Analysis

The analysis is currently devoted to **detector calibration** with **G4 simulations**. Second guess with direct comparison with **resolution convoluted simulations**.

³⁰Si(n,γ): Ongoing Analysis

The analysis is currently devoted to **detector calibration** with **G4 simulations**.

Evaluation of the **uncertainty** on the calibration and **gain shift** during the measurement.

Summary

⁶⁴Ni(n,y) and ³⁰Si(n,y) are important measurement to accurately model s-process and explain the isotopic ratios measured in SiC.

⁶⁴Ni(n,γ)

- Measurement EAR2
- Preliminary results
- Detector calibrations
- WF
- Yield
- Resonance Fitting

³⁰Si(n,y) ^{nat}Si(n,y)

- Measurement EAR1 & EAR2
- Preliminary results EAR1
- Detector calibrations EAR1
- WF EAR1
- Yield EAR1
- Resonance Fitting EAR1
- Analysis EAR2 (thermal)
- Measurement

⁶⁴Ni(n,γ) & ³⁰Si(n,γ) Motivations and Preliminary Results

Michele Spelta

Gain shift STED - C6D6 (Ni-64)

C6D6 (Ni-64)

Protons (Ni-64)

	SCHEDULED PROTONS											
	<u>Ni-64</u>	Au brok	Au 15 mm	<u>Au</u> 14.7 mm	Au 20mm	С	Pb	Dum my *	Empty	Total	Scheduled	
Measured	1,2542835E+18	2,2183168E+16	2,37388164E+16	6,545407E+15	1,044931E+16	1,186222E+17	1,2276547E+17	6,4889696E+17	1,33061E+17	2,3405457E+18		
Planned	1,00E+18	4,00E+16				1,00E+17	1,00E+17	2,00E+17	1,00E+17	1,54E+18	1,50E+18	
% achieved	125,43%	157,29%				118,62%	122,77%	324,45%	133,06%	151,98%	156,04%	

Protons (Si)

											L
	SCHEDULED PROTONS										
	Si-30	Au 20mm	Au 22mm	С	Au 20mm 2	Si-nat-2	Si-nat	Dummy *	Empty		
Measured	1,68248E+18	8,69058E+16	1,13142E+17	2,60039E+17	1,20725E+16	2,462243E+17	7,70477E+17	4,853125E+17	1,48816E+17	3,8054691E+18	
Planned											
% achieved											
											Г

_								
		Si-30	<u>Au</u> 22 mm	<u>Au</u> 20 mm	Dummy *	Si-nat		
	Measured	2,69957E+17	1,1121E+16	1,5006E+16	3,22513E+17	1,94141E+17	8,12738E+17	
	Planned						7,33E+17	
	% achieved						110,83%	