Measurement of the 35Cl(*n, p***) 35S cross section**

Index:

-Introduction.

-Corrections:

*Flight path determination.

*Mass determination and correction.

*Transmission correction.

*Counts correction: selection cuts.

*Counts correction: dead-time.

*Efficiency correction.

-Preliminary results.

Marco Antonio Martínez-Cañadas, Pablo Torres-Sánchez, Ignacio Porras, Javier Praena

University of Granada; *Atomic, Molecular and Nuclear Physics Department*.

Measurement performed at EAR-2

Data taking in September - October 2017.

Joint measurement $14N(n,p)$ and 35 Cl(n,p)

Two parallel setups: 1 Stack of Micromegas (upstream) 1 DSSSD (downstream)

 L_0 ≡ Flight path(m). $c \equiv$ Speed of light in vacuum (m/s). m_n ≡ Neutron's rest mass (MeV/c²). $E =$ Neutron energy (MeV). To F \equiv Time of Flight (s).

1.-Corrections: *0: Flight path determination.

$$
E_n \leftrightarrow
$$
 ToF: $E_n = \frac{1}{2} \cdot m_n \cdot \left(\frac{L_0}{T \circ F}\right)^2$, we need to know the flight path.

In order to obtain it, comparison between experimental data of the 235U reference sample and the results from the Transport Code were made.

1.-Corrections: *(A): Mass determination and correction.

e ≡ Thickness (cm). $x, y \equiv$ Coordinates. Δe ≡ Incremental hickness (1/cm). e_o ≡ Thickness at centre (cm). r ≡ Distance from the centre (cm).

> 4400 4200 4000

> -20 -15 -10

X Direction (mm)

Measured thickness

2D Fit

1.-Corrections:

ä

 -5

Y Direction (mm)

 -10

 -15

 $\overline{15}$

1 - Experimental technique: **R**utherford **B**ack-**S**cattering (RBS) at different positions of the sample.

Performed at Centro Nacional de Aceleradores (CNA), Sevilla.

2 - Analysis of experimental data.

 10

15

 $20 - 20$

2.1–Calibration with the aluminium backing. 2.2–Centering of the sample and experimental grid. 2.3–Estimation of parameters e $_{o}$ *and* Δ *e.*

***(A): Mass determination.**

(22-23 November 2023, n_TOF Collaboration Meeting, Valencia (Spain))

 $e(r) = e_0 - \Delta e \cdot r^2$

***(A): Mass determination.**

- e' ≡ Effective thickness (cm).
- $S \equiv$ Surface intersected of sample by beam.
- $x, y \equiv$ Coordinates.
- e ≡ Thickness (1/cm).
- P ≡ 2D Profile of neutrons across surface (-).

10B 1.8E-6 1.7999…E-6 4.55E-13 %

#5 Cl 1.105E-4 1.10458E-4 0.020%

#6 Cl 0.999E-4 0.998271E-4 0.023%

 $\Delta_{\sf rel}$ = Relative difference (-).

1.-Corrections:

***(A): Mass correction.**

Neutron beam not homogeneous: 2D-profile obtained from Transport Code.

 E_{n} ≡ Neutron energy (MeV). Φ ≡ Flux (neutrons/s). T ≡ Transmition factor (-).

1.-Corrections: *(B): Transmission correction.

Samples at different distances from the neutron source and behind different layers of materials receive different amounts of neutrons as function of their kinetic energy!

We simulate the microMGAS set-up and ensemble with MCNP and use the same energy profile of neutrons at n TOF, obtained from the Transport Code.

⁽²²⁻²³ November 2023, n_TOF Collaboration Meeting, Valencia (Spain))

 C_{M} \equiv Measured counts (counts). $C_c \equiv$ Cut counts (counts). $C_{DT} \equiv$ Dead-time corrected counts (counts). ΔDT ≡ Dead –time (ns). $\Delta t \equiv$ Time period in which C_M is measured (ns). $C_R \equiv$ Real counts (counts). C ≡ Clean counts (counts). f ≡ Energy cuts correction factor (-).

1.-Corrections:

***(C): Counts corrections.**

We discard all counts beyond certain energy limits, knowing that the proton from the [35Cl + n \rightarrow *35S + p] reaction has around 613keV (at thermal energy).*

***(C): Counts corrections: dead-time.**

Dead-time (period after a particle detection during which the detector cannot resolve a new detection) calculation following ToF difference of consecutive detections.

Time difference of consecutive detections.

***(C): Counts corrections: dead-time.**

Dead-times obtained is verified with a validation method:

Coincidence between pile-up counts and the increase in counts predicted by non-paralyzable model.

1.-Corrections: *(C): Counts corrections: background.

Background obtained by doing the same procedure and corrections to measurements performed in the detectors at positions #5 and #6 with the KCl samples and with a dummy samples (Al backing).

(If necessary, background is smoothed by substituting the original measured value of each bin for the statistic median of its surroundings, in order to avoid negative cross sections in low-statistics areas.)

1.-Corrections: *(C): Counts corrections: energy cuts.

Once the background has been substracted and dead-time corrected, we have to account for the real detections discarded due to selection cuts. We fit the detected particles to a convolution of a Gaussian and an inverse Landau distribution to estimate how many counts were left behind.

Several fits are made at different ToF bins and true corrections are obtained by extrapolation.

(22-23 November 2023, n_TOF Collaboration Meeting, Valencia (Spain))

***(D): Counts corrections: efficiency correction.**

Angular distribution of emitted protons is theoretically calculated as a function of their inducing neutron energy in the CM system and for possible J^{π} combinations and simulated in MCNP.

The Angular Distribution of Scattering and Reaction Cross Sections

John M. Blatt and L. C. Biedenharn Rev. Mod. Phys. 24, 258 - Published 1 October 1952

$$
R_{L}(\alpha's';\alpha s) \equiv \frac{(-)^{s'-s}}{4[(E-E_{0})^{2}+(\frac{1}{2}\Gamma)^{2}]} \sum_{l_{1}=\lvert J_{0}-s\rvert}^{J_{0}+s} \sum_{l_{2}=\lvert J_{0}-s\rvert}^{J_{0}+s} \sum_{l_{1}'= \lvert J_{0}-s\rvert}^{J_{0}+s} \sum_{l_{2}'= \lvert J_{0}-s\rvert}^{J_{0}+s} \sum_{l_{2}'= \lvert J_{0}-s\rvert}^{J_{0}+s}
$$

× $Z(l_{1}J_{0}l_{2}J_{0},sL)Z(l_{1}'J_{0}l_{2}'J_{0},s'L)g_{\alpha s}l_{1}g_{\alpha s}l_{2}g_{\alpha's'l_{1}'}g_{\alpha's'l_{2}'}\cos[\xi_{\alpha l_{1}}-\xi_{\alpha l_{2}}+\xi_{\alpha'l_{1}}'-\xi_{\alpha'l_{2}}']$ (for $\alpha, s \neq \alpha', s'$).

Simulations of the actual efficiency using these angular distributions are ongoing.

DSSSD will help discriminate the correct angular distribution.

2.-(Very) preliminary results:

3.-Pending tasks:

To be done:

- -Simulation of geometrical efficiencies.
- Improve fits and selection cuts in the resonance region.
- Extend the high energy range above 100 keV.

-Include and properly propagate all uncertainties: *Mass: error from RBS + correction. *Reference cross-section (^{10}B) uncertainty. *Selection cuts and efficiency uncertainty. *Statistical uncertainty.

-Fit cross section with SAMMY.

-Start DSSSD analysis.

Thank you for your attention

Funded by:

