

Update on ²³⁵U(n,f) analysis with STEFF

n_TOF Collaboration Meeting Valencia, Spain 22nd November 2023 Toby Wright* Gavin Smith Adhitya Sekhar* Nikolay Sosnin

STEFF campaigns

2012 ²³⁵U

21 days in PF1B (ILL)

- 100 μg/cm² ²³⁵U target
- 50 μg/cm² Ni foil
- BARC

2016 235U 30 days of beam in EAR2 2.4x10¹⁸ protons on target Large collimator

51 days of beam in EAR2

Small collimator

5.1x10¹⁸ protons on target

2018

²³⁹Pu

- 300 µg/cm² ²³⁵U target
- 0.1 μ m Al + 1.5 μ m mylar backing
- 33 mm diameter active area
- IRMM / CERN
- 100 μg/cm² ²³⁵U target
- 0.7 µm aluminum backing
- 81 mm diameter active area
- CEA Orsay

- 24 µg/cm² ²³⁹Pu target
- 38 μg/cm² mylar support
- 50 mm diameter active area
- JRC Geel

STEFF detectors

University of Manchester STEFF team

Contents of this talk

- I) Analysis of fission fragment distributions
 - 1) Energy measurement
 - Gain corrections
 - Sum signal reconstruction
 - 2) Timing measurement
 - Start/Stop signal selection
 - Delay corrections
 - 3) Mass distribution from E-tof matrices
- II) Analysis of prompt gamma distributions
 - 4) Final results
 - 5) Neutron subtraction
 - Methodology

Target under study (²³⁵U / ²³⁹Pu) Calibration source pictured here

University of Manchester STEFF team

Anode segmentation in Bragg and Bragg Stop

Bragg anode pads gain corrections

n TOF Collaboration Meeting (Valencia)

Bragg sum signal reconstruction

2D map of charge-centres within Bragg chamber

Vertices represent anode pads Lines indicate charge-sharing

Charge mainly shared between adjacent pads

Sum signal reconstruction:

- A) Identify anode pad with highest charge collection
- B) Add traces from adjacent pads in a '+' configuration

University of Manchester STEFF team

22 November 2023

Timing signals selection

Start

n TOF Collaboration Meeting (Valencia)

22 November 2023

Stop

Bragg Stop anode delay corrections

FF tof and velocity spectra

Alignment done using light ff tof peak Spread in heavy ff peaks under 0.5 ns

Comparable to spread in signal rise times (calculated by S. Warren to be 0.48 ns)

Time resolution of start-stop system is 1.76 ns

	STEFF (preliminary)	Shiraishi and Hosoe (1973)	Andritsopoul os (1967)	Milton and Fraser (1962)
T _L (ns/cm)	0.71 ± 0.04	0.70 ± 0.03	0.71 ± 0.02	0.71 ± 0.02
T _H (ns/cm)	1.08 ± 0.10	1.04 ± 0.09	1.02 ± 0.09	1.03 ± 0.10
v _L (cm/ns)	1.41 ± 0.07	1.42 ± 0.06	1.42 ± 0.05	1.41 ± 0.06
v _H (cm/ns)	0.93 ± 0.09	0.97 ± 0.08	0.97 ± 0.09	0.97 ± 0.07

E-tof matrices and E,m distributions

Extending to higher neutron energies

University of Manchester STEFF team

n_TOF Collaboration Meeting(Valencia)

22 November 2023

Consistency across neutron energies

Summary + Next steps

- Bragg anode pads have been gain-corrected and sum signal has been reconstructed
- Bragg Stop anode pads have been delay-corrected and start-stop pairs have been identified
- Time of flight and velocity results are consistent for literature values with similar setups
- Energy-tof matrices show consistency across the segmented anode pads
- Energy-tof matrices show consistency across neutron energy decades
- Corrections for foils and windows to be done (SRIM)
- Mass distributions to be extracted and calibrated (Schmitt method)
- Analysis has to be extended to the Hips arm (aim to write paper on this analysis in early 2024)
- Analysis to be extended to the ²³⁹Pu dataset (new PhD student starting in January 2024)

Prompt Fission Gamma Ray Results

- Data from Nal scintillators analysed only for sub-thermal neutron energy induced fission to avoid gamma-flash induced gain effects
- Background from prompt fission neutrons subtracted based on expected detected counts distribution in time
- Results in good agreement with other recent works, publication submitted to EPJA

Neutron subtraction

- Referee's main points:
 - Is the 'Watt component' really a reasonable physical description of the detectors response to neutrons?
 Does it work at specific angles since it describes the energy distribution averaged over all emission angles?
 - Is taking the counts in the full time window reasonable? Why choose to include so many background counts?

Neutron Subtraction – Methodology

Thermal neutron induced fission on ²³⁵U results in the prompt fission neutrons – their energy spectrum is well characterized experimentally and can be described by the Watt distribution with known parameters

$$P(E) = a\sinh(\sqrt{2.29E})e^{-(bE)}MeV^{-1}$$

- The distribution mean moves to higher times as the detected gamma-ray energy increases – this is what we see in our data
- The shape seems to stay reasonably similar to that of the Watt distribution in time

Distribution in time the neutron reaches the scintillator

Neutron Subtraction – Methodology

Doppler shift of gamma-rays

- Doppler shift of detected gamma-rays will be different at different fixed angles of detection
- 1% effect, however, uncertainty introduced in detected energy

Final thoughts

- Estimation of neutron contribution can be defended
- The benefits of using the wide time window to include 'all' counts from PFGs are likely outweighed by the disadvantages due to the large background subtraction at high gamma-ray energies. Further, 'delayed' PFGs will originate from a FF which has travelled some unknown distance along the fission axis therefore our response matrix for gamma-rays originating from the target position is no longer valid
- Analysis with a narrow (2 sigma) window around the PFG peak is underway and the paper will be resubmitted. The final results are likely to not change very much.

Acknowledgements

- University of Manchester STEFF team (present and past)
 - A.G. Smith, T. Wright, N. Sosnin, S. Bennett, A. Sekhar, A. McFarlane, A. Smith, P.J. Davies, S. Warren, J. Ryan
- n_TOF local teams 2016 & 2018
- M.A. Millan-Callado (Universidad de Sevilla)
- National Nuclear Laboratory (NNL) Advanced Fuel Cycle Program (AFCP)
- UK Nuclear Data Network (UKNDN)
- Science and Technology Facilities Council (STFC)
- Engineering & Physical Sciences Research Council (EPSRC)

