

12C(n, cp) physics cases: Validation of the nTD a-Si prototype using digital PSA

Physics motivation

Pressing need for (n, lcp) determination

- Nuclear Fusion
 - Neutron interactions with structural material cause displacement, transmutation, and gas formation
- Safety/Waste management
 - Scarce/Discrepant/Limited-energy-range data points available in online libraries, like FENDL(fusion), EAF (activation cross-sections), IRDFF (dosimetry)
- Theoretical models
 - Uncertainties up to 100%!
 - Refine calculations, especially for the emission of light-charged particles

Mo95 (n,d) or Nb94 production

UNIVERSITY

of IOANNINA

Physics motivation

Pressing need for (n, lcp) determination

- Nuclear Fusion
 - Neutron interactions with structural material cause displacement, transmutation, and gas formation
- Safety/Waste management
 - Scarce/Discrepant/Limited-energy-range data points available in online libraries, like FENDL(fusion), EAF (activation crosssections), IRDFF (dosimetry)
- Theoretical models

UNIVERSITY

f IOANNINA

- Uncertainties up to 100%!
- Refine calculations, especially for the emission of light-charged particles

For this development we have:

New Hardware

New Software

New PSA

Physics motivation

UNIVERSITY

of IOANNINA

Annular Silicon Detector

Producer: MICRON Semiconductor

Advantages:

- High-spatial resolution
 - Precise angular distribution ($\sim 2^{\circ}$)
- Reduced Dead Space:

UNIVERSITY

of IOANNINA

• The ring-shaped configuration maximizes the active detection area

Characteristics:

Si-wafer Thickness Inner diameter Outer diameter Metal coverage Interstrip gap Active area nTD 305 μ m 48 mm 96 mm 0.5 μ m SiO₂ layer 4 x16 strips 16 sectors

Setting up @ EAR1

Proposal: May 2022 INTC-P-629

Experiment on Sept 2023 with:

- Total protons: **1.75E+18 onto 5x5** cm2 targets
 - **PE** (1mm) & **LiF** (400nm)
 - **Rigid Graphite (**0.25 & 0.5 mm)
 - Empty
- Sample-to-detector distance: 5 cm
- θ: ~ **25 44** °
- **Reversed-injection** configuration
- Full-Depletion Voltage (FDV) @ 47V
- **32 channels** in total (16 sectors/strips)

•

reutrons

Setting up @ EAR1

- Cable ringing problem
 - Solved for the annular but **not for all detectors**

UNIVERSITY of IOANNINA

Energy Calibration @ EAR1

- Fully realistic conditions during setting up • the on-line experiment
 - The source was placed in the center of the sample ٠ position
 - Unsealed α -source with an active diameter of 7 mm •
 - Composed of four α -emitting isotopes with a total ٠ activity of 8 kBq

Isotope	$e \begin{vmatrix} \mathbf{Ener} \\ (\mathrm{keV}) \end{vmatrix}$	gy /)	$\frac{\mathbf{Intensity}}{(\%)}$		4	2	A 9
148 Gd	3182.69	${0(24)}$	100		F	ST.	
²³⁹ Pu	5156.59 5144.3 5105.8	9(14) 8(8) 5(8)	73.3(8) 15.1(8) 11.5(8)				
²⁴¹ Am	5485.6 5442.90 5388	(12) (13) (1)	$ \begin{array}{r} $				
²⁴⁴ Cm	5804.8 5762.7 5664	2(5) 0(3) (3)	$\begin{array}{r} \hline 76.4(2) \\ 23.6(2) \\ 0.022(1) \end{array}$				•
				\mathbf{X}			
						_, ,	Sector 13
1200	- 1 1 1 1	1					Sector 13 Sector 8
1200	¹⁴⁸ Gd					24	Sector 13 Sector 8
1200 1000 800	¹⁴⁸ Gd			2200		24'	Sector 13 Sector 8
1200 1000 800 600	¹⁴⁸ Gd			239Pu		24'	Sector 13 Sector 8
1200 1000 800 600 400	148Gd			239Pu		24'	Sector 13 Sector 8
1200 1000 800 600 400 200	148Gd			239Pu		24	Sector 13 Sector 8

^e IOANNINA

3500

Energy Calibration @ GEANT4

Source: α particles from a circle surface source

Strip 15: 2nd strip counting from the inner part of the Si

Response function of the detector to be implemented!

¢m

Energy Calibration @ GEANT4

Average offset:

• ~ 20 keV

Coincidences procedure

Principle of operation:

- One event gives rise to two signals simultaneously.
- Majority of events: same deposited energy
- The others? How much is the percentage?

UNIVERSITY

of IOANNINA

Coincidences procedure

Principle of operation:

- One event gives rise to two signals simultaneously.
- Majority of events: same deposited energy
- The others? How much is the percentage?

By plotting the difference of the energy one can set an energy limit window

Applying this condition we **keep > 96%** of the statistics!

UNIVERSITY

of IOANNINA

12C Experimental Campaign:

12C Experimental Campaign:

Energy loss per distance unit:

CERN

UNIVERSITY of IOANNINA

November 23, 2023

f IOANNINA

12C Experimental Campaign:

- Ringing issue: Solved for the annular detector
- First results from the experimental campaign detector: very promising
- Hardware and Software (analysis) are in extremely good shape
- Experimental campaign at ILL to collect waveform of light charge particles for developing the pulse shape routine and study the technique
- Next steps :
 - A. Refine GEANT4 Simulations (energy cal. Instrumental for the analysis)
 - B. GEANT4 Simulation for the **reproduction of the exact placement** of the interaction point
 - C. Extraction of the **energy/angular distribution** for each reaction channel
 - D. Comparison with evaluated data and theoretical calculations (TALYS)

tof to energy conversion: VERY preliminary!

This project has received funding from the Euratom research and training program 2014-2018 under grant agreement No 847594 (ARIEL).

styliani.goula@cern.ch

home.cern

Energy Calibration @ GEANT4

Particle Discrimination technique

Effective thickness

MC simulations: Full-energy-events recorded

Sectors

16

Strip Number

14

