

Horia Hulubei National Institute for R&D in Physics and Nuclear Engineering

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

Proposal to the ISOLDE and Neutron Time-of-Flight Committee

Neutron capture cross section of 124 Sn and its impact on $(0\nu\beta\beta)$ process and stellar astrophysics

November 20, 2023

M. Boromiza¹, C. Borcea¹, A. Gandhi¹, F. Gunsing³ A. Negret¹, A. Olacel¹, A. Oprea², C. Petrone¹, and the n_TOF Collaboration⁴

¹Horia Hulubei National Institute of Physics and Nuclear Engineering, Magurele, Romania ²European Commission, Joint Research Centre, Geel, Retieseweg 111, B-2440 Geel, Belgium ³CEA Irfu, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France ⁴www.cern.ch/ntof

> Spokesperson: A. Gandhi [aman.gandhi@nipne.ro] M. Boromiza [marian.boromiza@nipne.ro] Technical coordinator: Oliver Aberle [oliver.aberle@cern.ch]

Table of contents

• Experimental details-Where and How ¹²⁴Sn(n, γ) will be measured?

loria Hulubei National Institute for R&D n Physics and Nuclear Engineering

M. Arnould, K. O. H. J. I. Takahashi, Reports on Progress in Physics 62.3 (1999): 395

Ioria Hulubei National Institute for R&D n Physics and Nuclear Engineering

Motivation-

(2020)

Background assessment of $Ov\beta\beta$ decay experiments

- ¹²⁴Sn is one of the neutrinoless double beta decay (Ονββ) candidates
 - To measure this decay process is to measure the Ονββ decay peak which is at an energy equal to the Q-value of the process, i.e., 2292.7 (4) keV
 - $O\nu\beta\beta$ is a second order weak interaction process and the event rates are very low since $T_{1/2} > 10^{21}$ y -> the neutron-induced background is a big limiting factor^{**}
 - Such measurements are extremely sensitive to **background** signals which <u>can mimic</u> the signal of interest: the neutroninduced background can produce γ-ray events in and around the region of interest (ROI) i.e., the Q-value region

*Dawson, J., et al., Physical Review C 78.3 (2008): 035503 *Gupta, G., et al., Applied Radiation and Isotopes 158 (2020): 108923

Horia Hulubei National Institute for R&D n Physics and Nuclear Engineering

1000 1500 200 Energy (keV)

Motivation-

Background assessment of Ονββ decay experiments

- Gammas following neutron capture on ¹²⁴Sn can mimic the Ονββ decay signal
- Literature* shows that, after bombarding a ¹²⁴Sn sample with a neutron thermal flux and measuring the offline/delayed γ-rays following neutron capture and subsequent beta decays with a HPGe detector, a strong summing peak of <u>2288.2 keV</u> has been observed*

→ Q_{2β}= <u>2292.7 (4)</u> keV *Gupta, G., et al., Applied Radiation and Isotopes 158 (2020): 108923

Motivation-

M. Arnould, K. O. H. J. I. Takahashi, Reports on Progress in Physics 62.3 (1999): 395

<u>s-r process nucleosynthesis modeling</u>

- Several neutron-rich stable isotopes in the A=124 mass region, including ¹²⁴Sn, are not reached by the s-process because of their short-lived neighbours. ¹²⁴Sn is synthesized by the r-only neutron capture process
- To better quantify the solar system s-processgenerated abundance of 'Te' stable isotopes, which also have r-process contributions, using stellar models requires, among other things, reliable and low uncertainty Maxwellian Averaged Cross Sections (MACS) for ¹²⁴Sn

Present status of $^{124}Sn(n,\gamma)$ MACS data - where are we?

Domingo-Pardo, C., Babiano-Suarez, V., Balibrea-Correa, J. et al., Eur. Phys. J. A 59.8 (2023)

MACS status in kadonis1.0 (2013) database:

Recommended value (Total MACS): 15.7 ± 3.9 mb (24%) Partial cross section to isomer: 9.79 ± 0.11 (1.12%)

Experimentally-extracted MACS:

V. Timokhov et al., (1989): @30 keV: 16.0 ± 2.4 mb (15%)

W. Stadler, Diploma Thesis TUV, (1998): @25 keV: 11.25 ± 0.13 (1.15%)-Partial cross section to ^{125m}Sn: @52 keV: 9.33 ± 0.16 (1.71%)-Partial cross section to ^{125m}Sn:

Extrapolated values to: 5 keV & 100 keV:

▼ MAC	S, SEF and	React	ion Rates	for differe	nt energie	s						
Energy	5keV	8keV	10keV	15keV	20keV	25keV	30keV	40keV	50keV	60keV	80keV	100keV
MACS	50.3 ± 11.6	j -	33.4 ± 8.3	25.9 ± 6.3	21.3 ± 5.1	18.0 ± 4.4	15.7 ± 3.9	12.6 ± 3.4	10.7 ± 3.1	9.4 ± 7.0	0 8.0 ± 2.7	7.4 ± 2.4
Xfactor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
SEF	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Rate	2.99	-	2.80	2.66	2.53	2.39	2.28	2.12	2.01	1.93	1.90	1.96

MACS:

Reference: endfb71, jendl40

Procedure: 'e+t' (The MACS from kT=5 keV to 100 keV are derived from calculated cross sections, which are then cormalized to experimental data, e.g. to the values at KT=25 keV obtained in activation measurements. In these cases the uncertainties should be linearly increased below 25 and above 30 keV to reach about 30% at the extreme kT values.) Year: 2013

https://exp-astro.de/kadonis1.0/selementquery.php?isotope=124Sn

- □ Nb₃Sn* compound is a component of the super-conducting wires used in the electromagnets surrounding the hot plasma during the ITER fusion experiment, or in the beam guiding system of the LHC & FCC @CERN**
- These super-conducting magnets are exposed to a very intense neutron field coming from hot plasma or LHC interaction point
- □ The initial neutron flux has energies in the MeV region (see figure) but after thermalization these neutrons can be captured
- □ Due to large radiation sensitivity of Nb₃Sn superconducting state, it is essential to examine how its superconducting properties are affected by radiation damage, in particular, by the neutron capture channel on ¹²⁴Sn

*Nishimura, A., et al., Superconductor Science and Technology 32.2 (2019): 024004 **Baumgartner, Thomas, et al. Superconductor Science and Technology 27.1 (2013): 015005.

Additional Motivation-

Figure 1.1.: Calculated neutron spectrum at the inner winding of quadrupole Q2 [24]. Baumgartner, Thomos. Effects of fast neutron irradiation on critical currents and intrinsic properties of state-of-the-art Nb₅5n wires. na, 2013.

Krasilnikov, Vitaly, MunSeong Cheon, and Luciano Bertalot. Advanced Technologies and Applications of Neutron Activation Analysis (2019): 71-87.

8

Present status of $^{124}Sn(n,\gamma)$ cross section data - where are we?

Cross Section (barns)

Present status of $^{124}Sn(n,\gamma)$ cross section data - where are we?

IFIN-HH

Horia Hulubei National Institute for R&D in Physics and Nuclear Engineering

Horia Hulubei National Institute for R&D in Physics and Nuclear Engineering

Where & How the $^{124}Sn(n, p)$ cross section will be measured?

EAR1 or EAR2 ?

Depends on neutron energy resolution of EAR1 versus EAR2

Depends on the mass & enrichment of sample

EAR1 or EAR2 - Neutron Energy resolution?

 Table:
 Average distance in-between resonances and energy resolution at EAR1 versus EAR2:

Neutron Energy range	No. of resonances (ENDF/B-VIII.O)	Avg. distance between Capture Resonances	Energy resolution in EAR1 *	Energy resolution in EAR2 *	
50 eV to 10 keV	7	1200 eV	10 eV	200 eV	
10 keV to 100 keV	67	1300 eV	300 eV	3000 eV	To resolve up
100 keV to 200 keV	68	1500 eV	800 eV	-	
200 keV to 314 keV	47	2400 eV	1200 eV	-	
					4

*Guerrero, C., et al. The European Physical Journal A 49 (2013): 1-15.

*Lerendegui-Marco, J., et al. The European Physical Journal A 52 (2016): 1-10.

Enriched ¹²⁴Sn

<u>natSn or Enriched 124Sn - Why enriched sample?</u>

EAR1 or EAR2 - sample mass?

- ➢ In EAR2 : 1.0 g sample
- RRR up to 10 keV only
- No MACS at high energy

- ➢ In EAR1 : 3.0 g sample
 - RRR up to, probably, 100 keV
 - MACS @ 100 keV

Horia Hulubei National Institute for R&D in Physics and Nuclear Engineering

Experimental Details [EAR1]-

How will $^{124}Sn(n, \gamma)$ be measured in EAR1?

- We hope to measure the thermal-to-500 keV range
- We will use 3.0 g of enriched material (~99.4% of ¹²⁴Sn) to lower as much as possible the contamination from other isotopes
- Setup of four C₆D₆ detectors (At what distance?)
- We will also measure a ^{nat}Sn, ¹⁹⁷Au, ^{nat}C, ^{nat}Pb and a Dummy/Empty

Proton Requests [EAR1]-

Counts estimation using Transport Code (TC):

Input parameters:

- ¹²⁴Sn(n,γ) cross section : ENDF/B-VIII.O evaluation
- Atoms/barn: 0.00464
 (3 g weight and a disk: 2 cm diameter)
- Hbins: 13750 in Energy(eV) range from 10° to 5e10⁵ bpd: 2500

□ efficiency: 8% ~2.0% for each C₆D₆ at ~9cm

Proton Requests [EAR1]-

For ¹²⁴Sn and ^{nat}Sn: ~<u>2.2x10¹⁸ protons</u> and ~<u>0.5x10¹⁸ protons</u>, respectively

For normalisation and background (dummy) estimation: ~<u>0.2x10¹⁸ protons and ~0.8x10¹⁸ protons</u>, respectively

In total: ~3.7x10¹⁸ protons with the rate estimation 1.0x10¹⁷ proton per day (~37 days beam time)

How will $^{124}Sn(n, \gamma)$ be measured in EAR2?

- □ We hope to measure the thermal-to-10 keV range
- We will use 1.0g of enriched material (~99.4% of ¹²⁴Sn) to lower as much as possible the contamination from other isotopes
- Setup of array of nine sTED and two C₆D₆ detectors
- We will also measure a ^{nat}Sn, ¹⁹⁷Au, ^{nat}C, ^{nat}Pb and a Dummy/Empty

Experimental Details [EAR2]-

Array of sTED and C_6D_6 setup at EAR2 used in ${}^{160}\text{Gd}(n,\gamma)$ experiment

Proton Requests [EAR2]-

Counts estimation using Transport Code (TC):

Input parameters:

- ¹²⁴Sn(n,γ) cross section : ENDF/B-VIII.O evaluation
- Atoms/barn: 0.001547
 (1.0 g weight and disk: 2 cm diameter)
- Hbins: 12500 in Energy (eV) range from 10° to 10⁵ bpd: 2500
- efficiency: 4.5%
 ~0.5% for each sTED [9 detector] at ~5 cm

Proton Requests [EAR2]-

For ¹²⁴Sn and ^{nat}Sn: ~<u>2.2x10¹⁸ protons</u> and <u>0.5x10¹⁸ protons</u>, respectively

For normalisation and background (dummy) estimation: ~<u>0.2x10¹⁸ protons and 0.8x10¹⁸ protons</u>, respectively

In total: ~3.7x10¹⁸ protons with the rate estimation 1.0x10¹⁷ proton per day (~37 days beam time)

EAR1 vs EAR2 - 2.2x10¹⁸ proton flux (22 days) on ¹²⁴Sn

➢ In EAR2 : 1.0 g sample

In EAR1 : 3.0 g sample

Horia Hulubei National Institute for R&D in Physics and Nuclear Engineering

Motivation:

 Ονββ, Nuclear Astrophysics, and Nb₃Sn semiconductor

Status of data:

- No high resolution ToF neutron capture data exist to map out CN resonances (only very short flight path ~2 m data were reported)
- There is only a single transmission measurement reported in EXFOR which extracted resonance parameters (10 keV to 320 keV)

Experiment goals:

- ✓ To provide reliable, low uncertainty and high resolution neutron capture ToF data from thermal to 500 keV
- ✓ To provide lowered-uncertainty (ideally 5-10%) neutron capture data for the MACS from kT=5 keV to (ideally) 100 keV relevant for modelling the s & r-process in the A=124 mass region
- \checkmark To better understand the neutron-induced background for neutrinoless double beta decay ($0\nu\beta\beta$) experiments
- ✓ Very optimistically, to at least partially clarify the differences between the different evaluations

Proposal [proton requests]:

Case I. EARL 30a 37 days

<u>ease i</u> . E/	ar <mark>s.eg</mark> s, aays	<u></u> ,,,,,,,,,					
Energy range	: Thermal to 500 keV	Energy range: Thermal to 10 keV					
<mark>Sample</mark>	<mark>Protons</mark>	<mark>Sample</mark>	Protons				
¹²⁴ Sn	2.2x10 ¹⁸	¹²⁴ Sn	2.2x10 ¹⁸				
^{nat} Sn	0.5x10 ¹⁸	^{nat} Sn	0.5x10 ¹⁸				
C, Pb, Dummy	0.8x10 ¹⁸	C, Pb, Dummy	0.8x10 ¹⁸				
Au	0.2x10 ¹⁸	Au	0.2x10 ¹⁸				
Total	3.7x10 ¹⁸	Total	3.7x10 ¹⁸				

10 times more statistics than EAR

Summary-

Case 2. FAR2-10a 37 days

Thanks

Do you have any questions?

aman.gandhi@nipne.ro https://www.nipne.ro/proiecte/pn3/ntof/ https://www.nipne.ro/

Contact Us Address: Str. Reactorului no.30, P.O.BOX MG-6, Bucharest - Magurele, ROMANIA Phone: +(4021) 404.23.00 Fax: +(4021) 457.44.40

Available to use for n_TOF measurement from Czech group Nuclear Physics Institute, Czech Academy of Sciences (Tomandl/ mare

Available to use for n_TOF measurement from IFIN-HH Target lab

Summary of presentation:

1. OvBB (cosmic ray-rocks-neutron-thermal-capture-124Sn-gammas-mimic-Q-value-ROI-delayed-prompt-probality-yield of such gammas rays-capture cross section)

2. Astrophysics-r-only- proton shell closure-small cross section-contribution of r-only abundance in 125-126Te stable isotope-precise MACS-only experiment MACS @30 kT [tof], 25kT, 52kT [activation]-r-only-means high temp-means higher neutron energies-100 kT-extrapolated 5 kT to 100 kT-motive to provide experiment capture cross section precise-which help in get precise experiment extracted MACS.

3 Additional motivation-Nb3Sn-super semiconductor-facilities like ITER-radiation damage-fast neutrons-thermalised-capture channel can help

4. Status of data: thermal energy (activation)-above 10 keV (activation and TOF both)-TOF with short flight path-latest JPARC-at 62 eV through gamma spectroscopy-transmission data reported above 10 keV up to 320 keV-less than 10 keV unpublished 1962-Mughlabad 1973-so new precise TOF resolved resonance region data helps in map out the CN resonance-also which help further in estimating the precise MACS-

5. ENDF status: comparison between different evaluation-two problem-first in between the resonance-100% difference-same in peak height difference in the RRR <10 keV

6. EARI versus EAR2-depend on energy resolution available in both Areas- Natural versus Enriched (or mass)-EAR1(up to 100 keV)-EAR2 (up to 10 keV)-3g for EAR1-1g for EAR2enriched by 98%

7. How to measure-C6D6 in EAR1- as elastic to capture ratio is of the order 3 difference--sTED & C6D6-for both to reduce signal to background and elastic channel background-

8. Proton request: EAR1 (35 days beam time)- EAR2-(35 days beam time)-for 124Sn and normalization and background

9. Counts comparison between EAR1 (3g) and EAR2(1g)

10. Summary-Precise neutron capture data from thermal to 500 keV (included RRR data)-Precise MACS extraction from 5 kT to 100 kT- improve or solve the difference between evaluations-help the **OvBB** community-background assessment

Er (eV)	Dist. (eV)	Er(keV)	Er (keV)	Dist. (keV)	Dist. (eV)	Er
62	517	14.862	14.977	O.115	115	51
02	517	14.977	16.138	1.161	1161	54
579	371	16.138	16.745	0.607	607	54
950	1430	16.745	17.18	0.435	435	5/
0380	1010	17.18	20.913	3.733	3733	59
2300	1010	20.913	22.621	1.708	1708	5
3390	1970	22.621	23.032	0.411	411	60
5360	4610	23.032	23.238	0.206	206	6
0070	4800	23.238	23.305	0.067	67	6
9970	4092	23.305	24.731	1.426	1426	62
14862		24.731	25.829	1.098	1098	63
		25.829	30.628	4.799	4799	6
		30.628	32.383	1.755	1755	60
Distant		32.383	32.497	0.114	114	67
Distar	ice	32.497	35.848	3.351	3351	7
betwe	en	35.848	35.906	0.058	58	7
		35.906	37.358	1.452	1452	73
captui	re	37.358	37.883	0.525	525	7.
resond	inces	37.883	38.159	0.276	276	80
		38.159	38.561	0.402	402	80
		38.561	39.518	0.957	957	8
Backur	-slide	39.518	39.556	0.038	38	82
Dackap	Jinac	39.556	40.344	0.788	788	82
		40.344	41.301	0.957	957	0
		41.301	44.577	3.276	3276	86
		44.577	44.906	0.329	329	86
		44.906	44.979	0.073	73	87
		44.979	46.504	1.525	1525	87
		46.504	46.676	0.172	172	9
		46.676	50.854	4.178	4178	93
		50.854	51.036	0.182	182	94
						1 08

Er(keV)	Er (keV)	Dist. (keV)	Dist. (eV)
51.036	54.641	3.605	3605
54.641	54.834	0.193	193
54.834	57.463	2.629	2629
57.463	58.617	1.154	1154
58.617	59.468	0.851	851
59.468	59.68	0.212	212
59.68	60.133	0.453	453
60.133	60.82	0.687	687
60.82	61.845	1.025	1025
61.845	62.953	1.108	1108
62.953	63.257	0.304	304
63.257	64.413	1.156	1156
64.413	66.784	2.371	2371
66.784	66.951	0.167	167
66.951	67.422	0.471	471
67.422	71.05	3.628	3628
71.05	72.12	1.07	1070
72.12	73.066	0.946	946
73.066	73.717	0.651	651
73.717	80.261	6.544	6544
80.261	80.403	0.142	142
80.403	81.447	1.044	1044
81.447	82.784	1.337	1337
82.784	82.927	0.143	143
82.927	84.24	1.313	1313
84.24	84.457	0.217	217
84.457	86.051	1.594	1594
86.051	86.108	0.057	57
86.108	87.472	1.364	1364
87.472	87.602	0.13	130
87.602	93.261	5.659	5659
93.261	93.576	0.315	315
93.576	94.144	0.568	568
94.144	98.646	4.502	4502
98.646	99.236	0.59	590
99.236	0		1278.394

Neutron capture cross section measurements of ¹²⁰Sn, ¹²²Sn and ¹²⁴Sn with the array of Ge spectrometer at the J-PARC/MLF/ANNRI

Atsushi Kimura^{1, a}, Hideo Harada¹, Shoji Nakamura¹, Yosuke Toh¹, Masayuki Igashira², Tatsuya Katabuchi², Motoharu Mizumoto², and Jun-ichi Hori³

¹ Nuclear Science and Engineering Center, Japan Atomic Energy Agency, Shirakata 2-4, Tokai-mura, Ibaraki 319-1195, Japan

² Laboratory for Advanced Nuclear Energy, Tokyo Institute of Technology, O-okayama, Meguro, Tokyo 152-8550, Japan
 ³ Research Reactor Institute, Kyoto University, Kumatori, Sennan, Osaka 590-0494, Japan

Abstract. Preliminary neutron capture cross section of ¹²⁰Sn, ¹²²Sn and ¹²⁴Sn were obtained in the energy range from 20 meV to 4 keV with the array of germanium detectors in ANNRI at MLF,J-PARC. The results of ¹²⁰Sn, ¹²²Sn and ¹²⁴Sn were obtained by normalizing the relative cross sections to the data in JENDL-4.0 at the largest 426.7-, 107.0- and 62.05-eV resonances, respectively. The 67.32- and 150-eV resonances for ¹²⁰Sn and the 579- and 950-eV resonances for ¹²⁴Sn which are listed in JENDL-4.0 and/or ENDF/B VII.1 were not observed.

Table 3

A list of possible pathways for coincident summing of two gamma rays in the decay of ¹²⁵Sn for a few energies of interest. The corresponding branching ratio/partial branching ratio in percent is indicated in parentheses for each gamma ray.

$E_{\rm level} (I_{\gamma 0})$	1	P_0	E_{γ_1} (I_{γ_1})	E_{γ_2} (f_{γ_2})	P _{sum}	P_{12}
keV	mm	(%)	keV	keV	(%)	(%)
1889.9	120	$1.7 imes10^{-4}$	1557.3 (0.0041)	332.1 (100)	$2.5 imes10^{-3}$	$1.0 imes10^{-7}$
(0.074)			822.5 (4.3)	1067.1 (100)	$1.4 imes 10^{-3}$	$6.1 imes10^{-5}$
			800.3 (1.1)	1089.2 (100)	$1.3 imes10^{-3}$	$1.4 imes10^{-5}$
			469.9 (1.5)	1419.7 (29)	$4.7 imes10^{-4}$	$7.1 imes10^{-6}$
1982.9	120	$7.1 imes10^{-6}$	915.6 (4.1)	1067.1 (100)	$1.4 imes 10^{-3}$	$5.9 imes10^{-5}$
(0.0032)			893.4 (0.29)	1089.2 (100)	$1.3 imes10^{-3}$	$3.8 imes10^{-6}$
2240.7	9	_	1173.3 (0.18)	1067.1 (100)	0.14	$2.5 imes10^{-4}$
			1151.2 (0.11)	1089.2 (100)	0.14	$1.5 imes10^{-4}$
*List of coincide	ence aamma ravs co	mina due to neutron	890.5 (0.009)	1349.4 (14.5)		${<}1 imes10^{-5}$
capture which a	can mimic in ROI for	OvBB experiment	434.1 (0.024)	1806.7 (96.8)		$<\!\!1 imes 10^{-5}$
			351.0 (0.26)	1889.9 (1.06)		$<\!\!1 imes 10^{-5}$
			258.3 (0.01)	1982.5 (0.07)		$<1 \times 10^{-5}$
2275.8	9	$4.2 imes10^{-3}$	684.0 (0.011)	1591.4 (37.9)	$4.5 imes 10^{-2}$	$5.0 imes10^{-6}$
(0.18)			1186.1 (0.009)	1089.2 (100)	0.15	$1.3 imes10^{-5}$
			1208.4 (0.008)	1067.1 (100)	0.14	$1.2 imes 10^{-5}$
2288.2	9	-	1220.9 (0.27)	1067.1 (100)	0.13	$3.6 imes10^{-4}$
			1198.7 (0.016)	1089.2 (100)	0.14	$2.2 imes 10^{-5}$
			286.2 (0.0058)	2002.1 (88)	0.22	$1.2 imes10^{-5}$

1. Sec. 1. Sec			1	≥ (γ) ☑		0		M(Y)	Final Level	5	В	ackup	-slide			
E(level)	XREF	J ^{II} (level)	$T_{1/2}$ (level)	E(Y)	Ι(γ)	M(Y)	Final L	evels				•				
0.0	ABCDEFGH	11/2-	9.64 d 3	(xev)					2760 10	AB	7/2-					
			$8 \beta^{-} = 100$						2800 10	в						
27.50 14	ABCDEF	3/2+	9.52 m 5						2883 10	в	(5/2-,7/2-)					
			% β ⁻ = 100						2990 15	в						
215.12 15	BCDE	1/2+		187.63 3	100	M1+E2	27.50	3/2+	3020 15	в						
617.89 8	CF	(9/2-)		617.88 10	100	(M1,E2)	0.0	11/2-	3080 10	в	5/2-,7/2-					
854.69 17	BCD F	7/2+		827.15 10	100	(E2)	27.50	3/2+	3109 3	в						
930.38 23	CD	1/2,3/2		715.4 2 902.3 4	28 100		215.12 27.50	1/2+ 3/2+	3180 10	в						
936.49 8	BCD F	(7/2) -		936.50 10	100	(E2)	0.0	11/2-	E(level)	XREF	J^{Π} (level)	T _{1/2} (level)	E (Y)	I(Y)	M(Y)	Final Levels
1059.25 18	BC F	7/2+		1031.75 10	100		27.50	3/2+	(keV)				(keV)			
1072.0 4	BCD	1/2,3/2		857.1 4	86 7		215.12	1/2+	3195 7	AB	5/2-,7/2-					
108																
125			311	thor: J. Kat	akura I. Ci	tation:	Nucl. Da	ta Shee	495 (2011) 1 (utoff da	te: 1-Jap-20	10				
136:			Au	thor: J. Kat	akura <u>Ci</u>	tation:	NUCI. Da	ta snee	495 (2011) 1	utorr da	<u>ite:</u> 1-Jan-20	10				
						11 ENST	DF file	Adopto								
					-	urr buot	,	Adopte	s (PDF version)							
154								Adopte	s (PDF version)							
154				Q(β-)=2360 k	eV3 S(n)	= 5733.	50 keV 20) s(p	s (PDF version) 2×10 ⁴ keV 3 Q	(α)= -724	7.5 keV 22					
154 175 180				Q(β-)=2360 k	eV3S(n)	= 5733.	50 keV 20 Refer) S(p ence: 2	s (PDF version) 2×10 ⁴ keV 3 Q	(α)= -724	7.5 keV <i>22</i>					
154 175 180 187				Q(β−)=2360 k	r .eV3 S(n)	= 5733.	50 keV 20 Refer) S(p ence: 2	s (PDF version) 2×10 ⁴ keV 3 Q	(α)= -724	7.5 keV 22					
154) 175 180 187				Q(β-)=2360 k	eV 3 S(n) Referenc	es:	50 keV 20 Refer) S(p	s (PDF version) 2×10 ⁴ keV 3 Q	(α)= -724	7.5 keV 22					
154) 175 180 187 188				Q(β-)=2360 k	eV 3 S(n) <u>Referenc</u> A 124	es: Sn (α, ³ He	50 keV 20 Refer	S (p	s (PDF version) 2×10 ⁴ keV 3 Q n(d,p)	(α)= −724	7.5 keV 22					
154) 175 180 187 188) E (1 ()				Q(β-)=2360 k	r eV 3 S(n) <u>Referenc</u> <u>A</u> 124 C 124	es: Sn (α, ³ He Sn (α, py)	50 keV 20 Refer) S(p ence: 2	<pre>s (PDF version) 2×10⁴ keV 3 Q n(d,p) n(n,y) E=0.05-1;</pre>	(α) = -724	7.5 keV 22					
154 175 180 187 188 E (1 (189				Q(β-)=2360 k	eV 3 S(n) <u>Referenc</u> A 124 C 124 E 125	es: Sn(α, ³ He Sn(d,pγ) In β ⁻ de	50 keV 20 Refer	S (p ence: 2	s (PDF version) 2×10 ⁴ keV 3 Q n(d,p) n(n,γ) E=0.05-1; n δ ⁻ decav (2.3)	(α) = -724 5 KEV	7.5 keV 22					
154 175 180 187 188 E (1 (189)				Q(β-)=2360 k	r eV 3 S(n) <u>Referenc</u> A 124 C 124 E 125 G 125	es: $(\alpha, {}^{3}\text{He})$ $(\alpha, {}^{3}\text{He})$	50 keV 20 Refer	2 S)	s (PDF version) 2×10^4 keV 3 Q n(d,p) $n(n,\gamma)$ E=0.05-1: $n\beta^{-}$ decay (2.3) IT decay (6.2)	(α) = -724 5 KEV (S)	7.5 keV 22					
154 175 180 187 188 E (1 (189) 205				Q(β-)=2360 k	r eV 3 S(n) <u>Referenc</u> A 124 E 125 G 125	$es:$ $sn(\alpha, {}^{3}He$ $sn(d, p\gamma)$ In β^{-} de sn IT de	50 keV 20 Refer a) acay (12.1 acay (0.2	2 S) 3 µs)	s (PDF version) 2×10^4 keV 3 Q n(d,p) $n(n,\gamma)$ E=0.05-1; $n\beta^-$ decay (2.3) n IT decay (6.2	(α) = -724 5 KEV (5) μs)	7.5 keV 22					
154 175 180 187 188 E (1 () 189 205 205				Q(β-)=2360 k	eV 3 S(n) <u>Referenc</u> A 124 C 124 E 125 G 125	= 5733. = 5733. Sn (α , ³ He Sn (d, py) In β^{-} de Sn IT de	50 keV 20 Refer a) acay (12.2	2 S) 2 S) 3 μs)	x (PPF version) 2×10 ⁴ keV 3 Q n(d,p) n(n,γ) E=0.05-1; n β ⁻ decay (2.30 n IT decay (6.2	(α) = -724 5 KEV S) μs)	7.5 keV 22					
154 175 180 187 188 E(1 () 189 205 205 207 2135.6 <i>3</i>	G	(19/2-)		Q(β-)=2360 k	r eV 3 S(n) <u>Reference</u> A 124 C 124 E 125 G 125	$= 5733.$ $= 5733.$ $Sn (\alpha, {}^{3}He$ $Sn (d, p\gamma)$ $In \beta^{-} de$ $Sn IT de$	50 keV 20 Refer a) acay (12.2 acay (0.2)	2 S) 3 μs) (15/2-)	s (PDF version) 2×10 ⁴ keV 3 Q n(d,p) n(n,γ) E=0.05-1: n β ⁻ decay (2.30 n IT decay (6.2	(α) = -724 5 KEV S) μs)	7.5 keV 22					
154 175 180. 187 188 £ (1 (189: 205 207 2135.6 <i>3</i> 2176.1 <i>4</i>	G F	(19/2-) 7/2,9/2,11/2		Q(β-)=2360 k 1048.3 3 1558.2 4	r ev 3 S(n) <u>Referenc</u> a 124 C 124 E 125 G 125 100 100	$= 5733.$ $= 5733.$ $Sn (\alpha, ^{3}He$ $Sn (d, p\gamma)$ In β^{-} de Sn IT de	50 keV 22 Refer a) b) bcay (12.1 scay (0.2) 1087.35 617.89	 Adopte S (p ence: 2 2 S) 3 μs) (15/2-) (9/2-) 	s (PDF version) 2×10^4 keV 3 Q n(d,p) $n(n,\gamma)$ E=0.05-1: $n\beta^-$ decay (2.30 n IT decay (6.2 4510 15 4550 15	(α) = -724 5 KEV S) μs) - B λB	7.5 keV 22					
154 175 180 187 188 E(1 (189 205 207 207 2135.6 3 2136.1 4 2249.5 9	G F B D	(19/2-) 7/2,9/2,11/2 (3/2+,5/2+)		Q(β-)=2360 k 1048.3 3 1558.2 4 2034.5 10 221.5 7 4	rev 3 S(n) <u>Reference</u> A 124 C 124 E 125 G 125 100 100 100 20	$= 5733.$ $= 5733.$ $Sn (\alpha, ^{3}He Sn (d, p\gamma) In \beta^{-} de Sn IT d$	50 keV 2(Refer b) bcay (12.: bcay (0.2) 1007.35 617.89 215.12 27.50	 Adopte S (p ence: 2 2 S) 3 μs) (15/2-) (9/2-) 1/2+ 3/2+ 	s (PDF version) 2×10^4 keV 3 Q n(d,p) n(n, γ) E=0.05-1: n β^- decay (2.34) n IT decay (6.2 4510 15 4550 15 4650 25	(α) = -724 5 KEV S) μs) B AB B	7.5 keV 22 (9/2-,11/2-) (5/2-,7/2-)					
154 175 180 187 188 2 (1 () 189 205 207 2135.6 3 2135.6 3 2176.1 4 2249.5 9 2284.2 10	G F B D	(19/2-) 7/2,9/2,11/2 (3/2+,5/2+)		Q(β-)=2360 k 1048.3 3 1558.2 4 2034.5 10 221.5 15 2255.7 10	rev 3 S(n) <u>Referenc</u> a 124 C 124 E 125 G 125 100 100 100 100	$= 5733.$ $= 5733.$ $sn (\alpha, ^{3}He$ $sn (d, p\gamma)$ In β^{-} de $sn IT$ de	50 keV 20 Refer e) scay (12.: scay (0.2) 1087.35 617.89 215.12 27.50 27.50	<pre>Adopte S(p ence: 2 S) (15/2-) (9/2-) 1/2+ 3/2+</pre>		(α) = -724 5 KEV (5) μs) 	(5/2-,11/2-) (5/2-,7/2-) (5/2-,7/2-)					
154 175 180 187 188 205 207 2135.6 <i>3</i> 2176.1 <i>4</i> 2249.5 <i>9</i> 2284.2 <i>10</i> 2386.1 <i>4</i>	G F B D D	(19/2-) 7/2,9/2,11/2 (3/2+,5/2+) (21/2+)		Q(β-)=2360 k 1048.3 3 1558.2 4 2034.5 10 2221.5 15 2256.7 10 415.3 3	rev 3 S(n) <u>Referenc</u> A 124 C 124 E 125 G 125 100 100 100 100 100 100 100 10	$= 5733.$ $= 5733.$ $\sin (\alpha, ^{3}\text{He})$ $\sin (d, p\gamma)$ $\ln \beta^{-} de$ $Sn IT de$	50 keV 2(Refer a) bcay (12.: cay (0.2) 1007.35 617.89 215.12 27.50 27.50 1892.8	<pre>Adopte S(p ence: 2 S) (15/2-) (9/2-) 1/2+ 3/2+ (19/2+)</pre>	s (PDF version) 2×10^4 keV 3 Q n (d,p) n (n, γ) E=0.05-1; n β^- decay (2.36 n IT decay (6.2 4510 15 4550 15 4750 15 4750 15	(α) = -724 5 KEV (5) μs) - - - - - - - - - - - - - - - - - - -	(5/2-,11/2-) (5/2-,7/2-) (5/2-,7/2-)					
154 175 180 187 188 188 205 207 2135.6 3 2176.1 4 2249.5 9 2284.2 10 2208.1 4 2231.5 14	G F B D D G D	(19/2-) 7/2,9/2,11/2 (3/2+,5/2+) (21/2+)		Q(β-)=2360 k 1048.3 3 1558.2 4 2034.5 10 2221.5 15 2256.7 10 415.3 3	rev 3 S(n) Reference A 124 C 124 E 125 G 125 100 100 100 100 100 100 100 10	$es: = 5733.$ $es: = Sn (\alpha, {}^{3}He Sn (d, p\gamma) In \beta^{-} de Sn IT de Sn IT$	50 keV 20 Refer) cay (12.1 scay (0.2) 1087.35 617.89 215.12 27.50 27.50 1892.8 1072.0	<pre>Adopte S(p ence: 2 S) (15/2-) (9/2-) 1/2+ 3/2+ 3/2+ (19/2+) 1/2.3/2</pre>	s (PDF version) 2×10^4 keV 3 Q $n(n,\gamma)$ E=0.05-1: $n\beta^-$ decay (2.34 n IT decay (6.2 4550 15 4550 15 4730 15 4730 15 4730 15	(α) = -724 5 KEV S) μs) - - - - - - - - - - - - - - - - - - -	(5/2-,11/2-) (5/2-,7/2-) (5/2-,7/2-) (5/2-,7/2-)					
154 175 180 187 189 205 207 2135.6 3 2176.1 4 2249.5 9 2284.2 10 2308.1 4 233.5 16 2347.2 516	G F B D D G D	(19/2-) 7/2,9/2,11/2 (3/2+,5/2+) (21/2+)		Q(β-)=2360 k 1048.3 3 1558.2 4 2034.5 10 2221.5 15 2256.7 10 415.3 3 1259.5 15 1275.2 70	rev 3 S(n) <u>Referenc</u> a 124 c 124 g 125 G 125 100 100 100 100 100 100 100 10	e = 5733. e = 5733. s =	50 keV 20 Refer 50 50 50 50 50 50 50 50 50 50 50 50 50	<pre>Adopted S (p ence: 2 2 S) 3 µs) (15/2-) 1/2+ 3/2+ 3/2+ (19/2+) 1/2,3/2 1/2,3/2</pre>	s (PDF version) 2×10^4 keV 3 Q n(d,p) n(n, γ) E=0.05-1: n β^- decay (2.34 n IT decay (6.2 	(α) = -724 5 KEV S) μs) B B B B B B B B B B B B B B B B B B B	(9/2-,11/2-) (5/2-,7/2-) (5/2-,7/2-) (5/2-,7/2-)					
154 175 180 187 188 205 207 2135.6 3 2176.1 4 2249.5 9 2284.2 10 2308.1 4 2331.5 16 2334.5 16 2334.2 21	G F BD D G D D B	(19/2-) 7/2,9/2,11/2 (3/2+,5/2+) (21/2+) (1/2-,3/2-)		Q(β-)=2360 k 1048.3 3 1558.2 4 2034.5 10 2221.5 15 2256.7 10 415.3 3 1259.5 15 1275.2 10	rev 3 S(n) <u>Referenc</u> a 124 C 124 E 125 G 125 100 100 100 100 100 100 100 10	$= 5733.$ $= 5733.$ $sn(\alpha, {}^{3}He$ $sn(d, py)$ $In \beta^{-} de$ $sn IT de$	50 keV 20 Refer) 1087.35 617.89 225.12 27.50 27.50 1892.8 1072.0 1072.0	(15/2-) (15/2-) (9/2-) 1/2+ 3/2+ 3/2+ (19/2+) 1/2,3/2 1/2,3/2	s (PDF version) 2×10^4 keV 3 Q $n(n, \gamma)$ E=0.05-1: $n\beta^-$ decay (2.30 n IT decay (6.2 4550 15 4550 15 4650 25 4730 15 4650 15 4650 15 4650 15 (kev)	(α) = -724 5 KEV S) μs) B B B B B B B B B B B B B	7.5 keV 22 (9/2-,11/2-) (5/2-,7/2-) (5/2-,7/2-) (5/2-,7/2-) J ⁿ (level)	T _{1/2} (level)	Ε (γ) (keV)	Ι(Υ)	М(ү)	Final Levels
154 175 180 187 188 205 207 2135.6 3 2176.1 4 2249.5 9 2284.2 10 2306.1 4 2331.5 16 2347.2 11 2335 10 2462.2 3	G F B D D G D S B B G	(19/2-) 7/2,9/2,11/2 (3/2+,5/2+) (21/2+) (21/2+) (23/2-)		Q(β-)=2360 k 1048.3 3 1558.2 4 2034.5 10 2256.7 10 415.3 3 1259.5 15 1275.2 10 164.0 3	rev 3 S(n) <u>Reference</u> A 124 C 124 E 125 G 125 G 125 100 100 100 100 100 100 100 10	es: $sn(\alpha, {}^{3}He$ sn(d, py) In β^{-} de sn IT de	50 keV 20 Refer 9) 3ccay (12.1 9) 215.12 27.50 27.50 27.50 1892.8 1072.0 1072.0	<pre>Adopted S(p ence: 2 S) (15/2-) (9/2-) 1/2+ 3/2+ (19/2+) 1/2,3/2 (21/2+) (21/2+)</pre>	s (PDF version) 2×10^4 keV 3 Q n(d,p) n(n, y) E=0.05-1; n β^- decay (2.3) n IT decay (6.2 4510 15 4550 15 4550 15 4650 15 4650 15 4650 15 4680 15 4680 15 E(level) 4890 15	(α) = -724 5 KEV S) μs) 	7.5 keV 22 (9/2-,11/2-) (5/2-,7/2-) (5/2-,7/2-) (5/2-,7/2-) J ^R (level) (9/2-,11/2-)	T _{1/2} (level)	E (Y) (keV)	Ι(γ)	M(Y)	Final Levels
154 175 180 187 188 E (1 (189 205 207 2135.6 3 2276.1 4 2249.5 9 2284.2 10 2305.1 6 2331.5 16 2347.2 11 2355.10 2466.2 3 3	G F B D D G D B B B G	(19/2-) 7/2,9/2,11/2 (3/2+,5/2+) (21/2+) (21/2+) (23/2-) (23/2-)		Q(β-)=2360 k 1048.3 3 1558.2 4 2034.5 10 2221.5 15 1259.5 15 1259.5 15 1275.2 10 154.0 3 3266.7 3 385.9 3	rev 3 S(n) <u>Reference</u> A 124 C 124 E 125 G 125 100 100 100 100 100 100 100 10	= 5733. es: $Sn(\alpha, ^{3}He$ $Sn(\alpha, Q)$ $In \beta^{-} de$ Sn IT de	50 keV 2(Refer))) coay (12.1 coay (0.2) 1087.35 617.89 215.12 27.50 1892.8 1072.0 1892.8 1072.0 1892.8 1072.0	x (a) p (c) x (a) p (c) y (a)	s (PDF version) 2×10^4 keV 3 Q n (d,p) n (n, γ) E=0.05-1; n β^- decay (2.34 n IT decay (6.2 4550 15 4550 15 4550 25 4650 15 4730 15 4830 15 E(level) (keV) 4980 15	(α) = -724 5 KEV S) μ5) - - - - - - - - - - - - -	7.5 keV 22 (9/2-,11/2-) (5/2-,7/2-) (5/2-,7/2-) (5/2-,7/2-) y ^{ff} (level) (9/2-,11/2-)	T _{1/2} (level)	Ε (γ) (keV)	Ι(γ)	M(Y)	Final Levels
154 175 180 187 188 E (1 () 189 205 207 2135.6 3 2176.1 4 2249.5 9 2284.2 10 2308.1 4 2331.5 26 2347.2 11 2355 10 2462.2 3	G F B D D D D B B B B G	(19/2-) 7/2,9/2,11/2 (3/2+,5/2+) (21/2+) (1/2-,3/2-) (23/2-)		Q(β-)=2360 k 1048.3 J 1558.2 4 2034.5 10 2221.5 15 2226.7 10 415.3 J 1259.5 15 1275.2 10 154.0 J 326.7 J 326.7 J 326.7 J 326.9 J	Lev 3 S(n) <u>Referenc</u> A 124 C 124 C 124 C 125 G 125 100 100 100 100 100 100 100 10	= 5733. es: $Sn(\alpha, ^3He$ $Sn(d, p\gamma)$ In β^- de Sn IT de	50 keV 20 Refer) 1087.35 617.89 215.12 27.50 27.50 1892.8 1072.0 1072.0 1072.0	(15/2-) (9/2-) (9/2-) (9/2-) 1/2+ 3/2+ (19/2-) (1/2,3/2 (21/2+) (19/2-) (19/2-) (23/2+)	s (PDF version) 2×10^4 keV 3 Q n(n, γ) E=0.05-1: n β^- decay (2.34 n IT decay (6.2 4550 15 4550 15 4650 15 4650 15 4680 15 E (kev) (kev) 4500 15 5060 15	(α) = -724 5 KEV (5) μ5) - - - - - - - - - - - - -	7.5 keV 22 (9/2-,11/2-) (5/2-,7/2-) (5/2-,7/2-) (5/2-,7/2-) J[#](level) (9/2-,11/2-) (9/2-,11/2-)	T _{1/2} (level)	E (γ) (keV)	Ι (γ)	M(y)	Final Levels
154 175 180 187 188 E (1 (C 189 205 207 2135.6 3 2176.1 4 2249.5 9 2284.2 10 2308.1 4 2331.5 16 2347.2 11 2355 10 2462.2 3	G F BD D G D D B B B G S B	(19/2-) 7/2,9/2,11/2 (3/2+,5/2+) (21/2+) (1/2-,3/2-) (23/2-)		Q(β-)=2360 k 1048.3 3 1558.2 4 2034.5 10 22215 15 2256.7 10 415.3 3 1259.5 15 1275.2 10 154.0 3 326.7 3 385.9 3 402.9 3	Lev 3 S(n) <u>Reference</u> A 124 C 124 E 125 G 125 100 100 100 100 100 100 100 10	$= 5733.$ $= 5733.$ $sn(\alpha, {}^{3}He$ $sn(d, py)$ $In \beta^{-} de$ $sn IT de$	50 keV 20 Refer) 1087.35 617.89 215.12 27.50 27.50 1892.8 1072.0 107	(15/2-) (9/2-) (9/2-) (9/2-) (9/2-) (1/2+ 3/2+ (19/2-) (1/2,3/2 (1/2,4) (19/2-) (19/2-) (19/2-) (23/2+)	s (PDF version) 2×10^4 keV 3 Q $n(n,\gamma)$ E=0.05-1: $n\beta^-$ decay (2.30 n IT decay (6.2 4510 15 4550 15 4650 15 4650 15 4650 15 4680 15 4680 15 4680 15 4680 15 4680 15 4680 15 5100 15 4980 15 5000 15 5000 15 5000 15 5120 40	(α) = -724 5 KEV S) μs) - - - - - - - - - - - - -	7.5 keV 22 (9/2-,11/2-) (5/2-,7/2-) (5/2-,7/2-) (5/2-,7/2-) (9/2-,11/2-) (9/2-,11/2-) (9/2-,11/2-) (9/2-,11/2-)	T _{1/2} (level)	Ε (γ) (keV)	Ι(γ)	м(ү)	Final Levels
154 175 180 187 189 205 207 203 207 203 207 203 207 203 203 207 203 203 203 203 203 203 203 203 203 203	G F B D D G D S B B B G B B C	(19/2-) 7/2,9/2,11/2 (3/2+,5/2+) (21/2+) (1/2-,3/2-) (23/2-)		Q(β-)=2360 k 1048.3 3 1558.2 4 2034.5 10 2221.5 15 2226.7 10 415.3 3 1259.5 15 1275.2 10 146.0 3 365.9 3 402.9 3 1460.6 15	rev 3 S(n) <u>Referenc</u> a 124 c 124 g 125 G 125 G 125 100 100 100 100 100 100 100 10	es: $sn(\alpha, {}^{3}He$ sn(d, py) In β^{-} de sn IT de	50 keV 20 Refer 50 50 50 50 50 50 50 50 50 50	x (a) p (c) x (p) ence: 2 S) 3 μs) (15/2-) (9/2-) 1/2,3/2 (19/2-) 1/2,3/2 (19/2-) (19/2-) (21/2+) (19/2-) (23/2+) 1/2,3/2	s (PDF version) 2×10^4 keV 3 Q n(d,p) n(n, γ) E=0.05-1: n β^- decay (2.34) n IT decay (6.2 4510 15 4550 15 4550 15 4650 15 4650 15 4680 15 E(level) 4980 15 5060 15 5120 40 5230 40	(α) = -724 5 KEV (5) μ3) 	7.5 keV 22 (9/2-,11/2-) (5/2-,7/2-) (5/2-,7/2-) (5/2-,7/2-) J^R(level) (9/2-,11/2-) (9/2-,11/2-) (9/2-,11/2-) (9/2-,11/2-)	T _{1/2} (level)	E (Y) (keV)	Ι(γ)	M(Y)	Final Levels

XREFs	J ⁿ ☑	T _{1/2} /Decay ✓	· Ε(γ))	I (Y)	M (Y) Fina	l Levels							
E(level) (keV)	XREF	J^{π} (level) T_{1}	/2(level)	<mark>Ε (γ)</mark> (keV)	Ι(γ)	М(ү)	Final Level	s		1894 10 1913.77 8	r c 3/2+,5/2	430 1581 1913	03 14 63 96 20 53 66 10 100	16 21 21	1403.78 3/2+,5/2+ 332.06 5/2+ 0.0 7/2+
0.0	в											1015			2/2* 1+,5/2* 5/2* 7/2*
332.06 <i>3</i>	в		ADC	Эрте	D LE	VEL	.S. G/	١М	MAS	for ¹	25S	b			11/2+ 9/2+
642.97 <i>2</i>	в						,					-			9/2+ 1/2+ 9/2+ 7/2+
921.67 3	в														1/2+ 7/2+ 1/2+ 9/2+ 7/2+
1067.30 <i>3</i>		<u>Author:</u> J	. Katakura	a <u>Cita</u>	tion: Nuc	l. Dat	a Sheets 1	.12, 4	95 (2011)) <u>Cut</u>	off dat	<u>e:</u> 1-Jai	n-201	0	.5/2- 7/2+
1089.50 <i>3</i>															1/2+
1349.60 <i>3</i>				Ful	1 ENSDF f	ile	Adopted Le	vels	(PDF ver:	sion)					-,13/2- 3/2+ 7/2+ 9/2-) 5/2- 1/2+ 7/2+
1419.85 4		0/8	_766 7 he		a(m) = 0.70	7 117	2 (m)-	7211 1	- 17 2						1/2- -,11/2- 9/2)* 7/2*
1483.78 <i>2</i>	в	Q(p-	() = 700.7 Ke	= 22	5(II) - 870	/ Kev .	5 5(p)-	1311 1	cev 5 ($Q(\alpha) = -4$.84×10°	Kev 3			9/2* 1/2- -,11/2-
						Refere	nce: 20120	IA 38							7/2+ :1/2+ :+,9/2+
1560 5	в														11/2+ 9/2+ 7/2+
1591.57 <i>5</i>				Referenc	ces:										
				A 124	Sp (pol p		в	124cn	(^{3}Hod)						
1660 <i>20</i>	в			c 125	Sh(por p,	p) IAN		1250	(ne, u)	10					
1700.69 5				- 126	Sn þ dec	ay (9.	52 M) D	Sn	p decay	7 (9.64	a)				
1706 10 0				E 120	Te(d, He)		F.	¹²⁰ Te	(t,α)						
1736.13 3	в			G 238	¹ U(¹² C,xγ)		н	¹²⁴ Sn	$(^{7}Li, \alpha 2n)$	()					
				I 125	Sb IT dec	ay (25	μs)								
E(level) (keV)															
1800 <i>20</i>	в														
1806.700 <i>16</i>					9	<u>ener</u>	al Comm	ents	:						
1889.848 15	в														
			15 18	57.3 1 89.884 16	0.095 <i>23</i> 1.7 1		332.06 5 0.0 7	/2+ /2+			18838 20 18128 20	Liver State of the	(1)'s der besche sommerling with p ¹ Gerwice gehef	(s. Others from	

VII. MAXWELLIAN AVERAGED CROSS SECTIONS

The Maxwellian averaged cross section in a stellar plasma of thermal energy kT is defined as:⁴³

$$\langle \sigma \rangle = \frac{\langle \sigma v \rangle}{v_T} = \frac{2}{\sqrt{\pi}} \frac{\int_0^\infty \sigma_{n\gamma} E \exp(-E/kT) dE}{\int_0^\infty E \exp(-E/kT) dE}$$
$$= \frac{2}{\sqrt{\pi}} \frac{1}{(kT)^2} \int_0^\infty \sigma_{n\gamma} E \exp(-E/kT) dE \quad . \tag{3}$$

Since cross sections have only been measured over a limited energy range in the present work, it is convenient to subdivide the integral into four separate parts according to the different data from which they are calculated as schematically indicated in Fig. 10:

https://journals.aps.org/prc/pdf/10.1103/PhysRevC.42.1731 K. Wisshak, F. Voss, F. Käppeler, and G. Reffo Phys. Rev. C **42**, 1731 – Published 1 October 1990

FIG. 10. Subdivision of the neutron energy range for the determination of Maxwellian averaged cross sections.

$$\langle \sigma \rangle = \frac{2}{\sqrt{\pi}} \frac{1}{(kT)^2} \left[\int_0^{E_1} \cdots dE + \int_{E_1}^{E_2} \cdots dE + \int_{E_2}^{E_2} \cdots dE + \int_{E_3}^{\infty} \cdots dE \right]$$

= $I_1 + I_2 + I_3 + I_4$. (4)

TABLE 14.1. $2\beta^{-}$ -decays of natural isotopes, with their Q-value and experimental measurements of the half-life of the 2ν and 0ν decay modes. The values are taken from Ref. [1024]. The percentage in parentheses is the confidence level. Results obtained in geochemical and radiochemical experiments are indicated, respectively, with (G) and (R).

Backup-slide

Giunti, Carlo, and Chung W. Kim. Oxford university press Book

//doi.org/10.1093/acprof:oso/97801

(2007). https:

98508717.001.0001

$2\beta^{-}$ -decay	$Q_{2\beta} [\mathrm{keV}]$	$T_{1/2}^{2\nu}$ [y]	$T_{1/2}^{0\nu}$ [y]
$^{46}\mathrm{Ca} ightarrow ^{46}\mathrm{Ti}$	990.4 ± 2.4		$> 1.0 \times 10^{17} (90\%)$
${\rm ^{48}Ca} \rightarrow {\rm ^{48}Ti^a}$	4272 ± 4	$4.2^{+3.3}_{-1.3} \times 10^{19}$	$> 1.5 \times 10^{21} (90\%)$
$^{70}{\rm Zn} \rightarrow {^{70}{\rm Ge}}$	1000.9 ± 3.4	1.0	$>4.8 imes10^{14}$
$^{76}\mathrm{Ge} \to {^{76}\mathrm{Se}}$	2039.006 ± 0.050	$(1.8 \pm 0.1) \times 10^{21}$	$> 1.9 \times 10^{25} (90\%)$
$^{80}\mathrm{Se} \to {}^{80}\mathrm{Kr}$	133.9 ± 3.7		
$^{82}\mathrm{Se} \rightarrow {}^{82}\mathrm{Kr}$	2995.1 ± 2.0	$(8.3 \pm 1.2) \times 10^{19}$	$> 2.7 \times 10^{22} (68\%)$
$\rm ^{86}Kr \rightarrow \rm ^{86}Sr$	1255.6 ± 2.4		
$^{94}\mathrm{Zr} \rightarrow ^{94}\mathrm{Mo}$	1144.1 ± 2.0	$> 1.1 \times 10^{17} (90\%)$	$> 1.9 \times 10^{19} (90\%)$
$\rm ^{96}Zr \rightarrow \rm ^{96}Mo^{a}$	3350.4 ± 2.9	$2.1^{+0.8}_{-0.4} \times 10^{19}$	$> 1.0 \times 10^{21} (90\%)$
$^{98}\mathrm{Mo} ightarrow ^{98}\mathrm{Ru}$	112 ± 6		$> 1.0 \times 10^{14}$
$^{100}\mathrm{Mo} \rightarrow {}^{100}\mathrm{Ru}$	3034 ± 6	$6.8^{+0.8}_{-0.9} \times 10^{18}$	$> 5.5 \times 10^{22} (90\%)$
$^{104}Ru \rightarrow {}^{104}Pd$	1300 ± 4	0.0	
$^{110}\mathrm{Pd} \rightarrow ^{110}\mathrm{Cd}$	2000 ± 11	$> 6.0 \times 10^{16}$	$> 6.0 imes 10^{16}$
$^{114}\mathrm{Cd} \rightarrow ^{114}\mathrm{Sn}$	536.8 ± 3.3	$> 9.2 \times 10^{16} (99\%)$	$> 2.0 \times 10^{20} (90\%)$
$^{116}\mathrm{Cd} \rightarrow ^{116}\mathrm{Sn}$	2805.0 ± 3.8	$2.6^{+0.7}_{-0.4} \times 10^{19}$	$> 7.0 \times 10^{22} (90\%)$
$^{122}Sn \rightarrow ^{122}Te$	366.2 ± 2.8	011	$> 5.8 \times 10^{13}$
$^{124}\mathrm{Sn} \rightarrow ^{124}\mathrm{Te}$	2287.0 ± 1.5	$> 1.0 \times 10^{17}$	$> 2.4 \times 10^{17} (95\%)$
$^{128}\mathrm{Te} \rightarrow {}^{128}\mathrm{Xe}$	867.2 ± 1.0	$(2.2 \pm 0.3) \times 10^{24} \text{ (G)}$	$> 8.6 \times 10^{22} (90\%)$
$^{130}\mathrm{Te} \rightarrow ^{130}\mathrm{Xe}$	2528.8 ± 1.3	$(7.9 \pm 1.0) \times 10^{20} (G)$	$> 1.4 \times 10^{23} (90\%)$
$^{134}\mathrm{Xe} \rightarrow ^{134}\mathrm{Ba}$	830.1 ± 3.0	$> 1.1 \times 10^{16}$	$> 8.2 \times 10^{19} (68\%)$
$^{136}\mathrm{Xe} \rightarrow {}^{136}\mathrm{Ba}$	2468 ± 7	$> 8.1 \times 10^{20} (90\%)$	$> 4.4 \times 10^{23} (90\%)$
$^{142}\mathrm{Ce} \rightarrow ^{142}\mathrm{Nd}$	1416.9 ± 2.1	$> 1.6 imes 10^{17} (90\%)$	$> 1.5 \times 10^{19} (68\%)$
$^{146}\mathrm{Nd} \rightarrow ^{146}\mathrm{Sm}$	70.2 ± 2.9		
$^{148}\mathrm{Nd} \rightarrow ^{148}\mathrm{Sm}$	1928.8 ± 1.9	$> 3.0 imes 10^{18} (90\%)$	$> 3.0 imes 10^{18} (90\%)$
$^{150}\mathrm{Nd} \rightarrow ^{150}\mathrm{Sm}$	3367.5 ± 2.2	$(6.8 \pm 0.8) \times 10^{18}$	$> 1.2 \times 10^{21} (90\%)$
$^{154}\mathrm{Sm} \rightarrow ^{154}\mathrm{Gd}$	1251.0 ± 1.3	$> 2.3 imes 10^{18} (68\%)$	$> 2.3 imes 10^{18} (68\%)$
$^{160}\mathrm{Gd} \rightarrow ^{160}\mathrm{Dy}$	1729.7 ± 1.3	$> 1.9 \times 10^{19} (90\%)$	$> 1.3 \times 10^{21} (90\%)$
$^{170}\mathrm{Er} \rightarrow ^{170}\mathrm{Yb}$	653.6 ± 1.7	$> 3.2 \times 10^{17} (68\%)$	$> 3.2 \times 10^{17} (68\%)$
$^{176}\mathrm{Yb} \rightarrow ^{176}\mathrm{Hf}$	1086.7 ± 1.9	$> 1.6 \times 10^{17} (68\%)$	$> 1.6 \times 10^{17} (68\%)$
$^{186}W \rightarrow ^{186}Os$	488.0 ± 1.7	$> 5.9 imes 10^{17} (90\%)$	$> 2.7 \times 10^{20} (90\%)$
$^{192}Os \rightarrow ^{192}Pt$	413.5 ± 3.0		$> 9.8 \times 10^{12}$
$^{198}\text{Pt} \rightarrow ^{198}\text{Hg}$	1047 ± 3		$> 3.2 \times 10^{14}$
$^{204}\text{Hg} \rightarrow ^{204}\text{Pb}$	416.3 ± 1.5		
$^{232}\text{Th} \rightarrow ^{232}\text{U}$	842.2 ± 2.5		
$^{238}\text{U} \rightarrow ^{238}\text{Pu}$	1145.0 ± 1.3	$(2.0 \pm 0.6) \times 10^{21} (R)$	

^a β^- -decay energetically allowed but enormously suppressed.

histfluka

Time (ns)

SIMON

C6D6

Neutron beam

Sample

Question to be discuss:

- At what distance? What efficiency?)
- Anisotropy
- Amount of sample
- Experimental area
- Offline without beam measurement for isomers
- Negligible contribution from contamination of other isotopes impurities

KOEHLER, HARVEY, WINTERS, GUBER, AND SPENCER

PHYSICAL REVIEW C 64 065802

FIG. 1. Path (solid arrows) of the *s* process in the region near Sn. Stable and radioactive isotopes are shown as solid and dashed boxes, respectively. The reaction path is complicated by branchings at isomers and radioactive isotopes. Contributions from the *r* process (via β decay) are depicted as dashed arrows. *s*-only (¹¹⁰Cd, ¹¹⁶Sn, and ^{122,123,124}Te), *r*-only (¹²⁴Sn), and *p*-only (¹¹²Sn and ¹²⁰Te) isotopes are shown as heavy boxes.

Signal & Background

Tagging $0\nu\beta\beta$ decay events:

- two-electron summed energy = Q-value
- two-electron event topology
- (gamma-rays from de-excitation)
- (daughter isotope)

Backgrounds:

- cosmic-ray induced
- U/Th decay chains
- neutrons
- solar neutrinos
- 2vbb decay (only irreducible background)

Credit: Matteo Agostini STFC Ernest Rutherford Fellow at UCL

Multivariate background discrimination:

- non uniform event rate in time or space
- spatially extended event topology
- particle identification
- energy (only way to mitigate 2vbb)

Figure 1.1.: Calculated neutron spectrum at the inner winding of quadrupole Q2

*Baumgartner, Thomas. Effects of fast neutron irradiation on critical currents and intrinsic properties of state-of-the-art Nb3Sn wires. na, 2013.

Figure 14. Neutron spectra at tally 15 and tally 25.

*Krasilnikov, Vitaly, MunSeong Cheon, and Luciano Bertalot. "Neutron activation system for ITER tokamak." Advanced Technologies and Applications of Neutron Activation Analysis (2019): 71-87.

