Measurement of the zirconium-88 thermal neutron absorption cross section at EAR2

G. Alpar¹, D. Catlett¹, M. Bacak², J. Balibrea³, C. Domingo-Pardo³, <u>W. Flanagan¹</u>, C. Lederer-Woods⁴, J. Lerendegui-Marco³, J. Moldenhauer¹, T. O'Donnell¹

¹University of Dallas, USA ²European Organization for Nuclear Research (CERN), Switzerland ³Instituto de Fisica Corpuscular, CSIC- Universidad de Valencia, Spain ⁴The University of Edinburgh, United Kingdom

⁸⁸Zr(n,γ)⁸⁹Zr - Background

- In 2019, ⁸⁸Zr was discovered to have a thermal neutron absorption cross section of 861,000 barns (measured) rather than 10 barns (expected).
 - Larger than ¹⁵⁷Gd, ¹⁰B, ⁶Li, ³He
 - $\circ~$ Smaller than ^{135}Xe
 - Both ⁸⁸Zr and ¹³⁵Xe are radioactive
- n_TOF is uniquely positioned to measure a low energy resonance which explains the large cross section.

https://doi.org/10.1038/s41586-018-0838-z

The surprisingly large neutron capture cross-section of ⁸⁸Zr

Jennifer A. Shusterman^{1,2,3}*, Nicholas D. Scielzo¹, Keenan J. Thomas¹, Eric B. Norman⁴, Suzanne E. Lapi⁵, C. Shaun Loveless⁵, Nickie J. Peters⁶, J. David Robertson⁶, Dawn A. Shaughnessy¹ & Anton P. Tonchev¹

n_TOF Nov 23, 2023

88 Zr(n, γ) 89 Zr – Motivation (Continued)

UNIVERSITY **OF DALLAS**

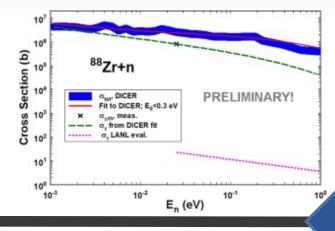
- DICER at LANL is also searching for a resonance. 0
 - We have been expecting a 2023 publication.

www.nature.com/scientificreports

Check for updates

ction (mb)

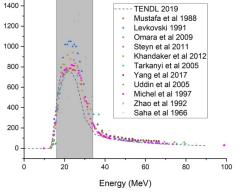
Cross


- There is a Nature scientific report on their sample prep.
- Since DICER is transmission-based and we are direct capture-based, our n TOF measurement will be relevant even if DICER publishes first. Published: 18 August 2022

DICER: a new instrument for nuclear data for nuclear security

Athanasios Stamatopoulos 2, Artem Matyskin, Paul Koehler, Aaron Couture, Brad DiGiovine, Veronika Mocko, Gencho Rusev, John Ullmann & Christian Vermeulen

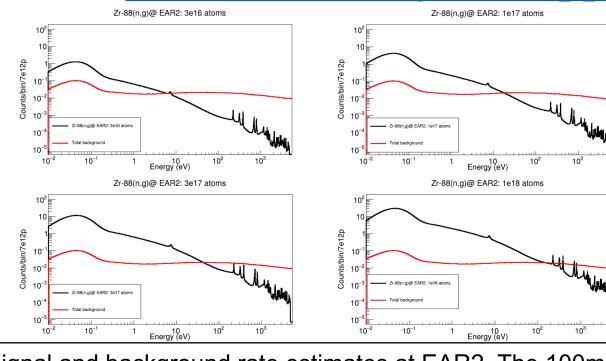
Journal of Radioanalytical and Nuclear Chemistry 331, 4857–4861 (2022) Cite this article


284 Accesses | 2 Citations | Metrics

scientific reports

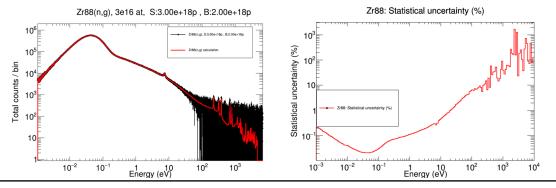
OPEN Production of zirconium-88 via proton irradiation of metallic yttrium and preparation of target for neutron transmission measurements at DICER

> Artem V. Matyskin^{1,2}, Athanasios Stamatopoulos³, Ellen M. O'Brien¹, Brad J. DiGiovine^{3,4}, Veronika Mocko¹, Michael E. Fassbender¹, C. Etienne Vermeulen¹ & Paul E. Koehler³



⁸⁹Y(p, 2n)⁸⁸Zr

⁸⁸Zr(n,γ)⁸⁹Zr – Sensitivity Study



- Jorge did a sensitivity study in June. Ο
 - https://docs.google.com/presentation/d/112T1jJfLVImO3u3At0SDTmkPzMqoOB 0 UDSra5IwFfn3k/edit#slide=id.g24d657861bc 0 146

Signal and background rate estimates at EAR2. The 100mCi

sample proposed here corresponds to 3×10^{16} atoms, top left.

Background subtracted counts (left) and statistical uncertainty (right) for 100mCi ${}^{88}Zr(n,\gamma){}^{89}Zr$ with 3×10^{18} protons on target for the sample and 2×10^{18} protons on target for background measurements.

Signal-to-background above unity and subpercent statistical uncertainty through 5 meV

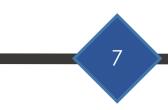
⁸⁸Zr(n,γ)⁸⁹Zr – 100 mCi Target Sample

UNIVERSITY OF DALLAS

- $\circ~$ Jorge's sensitivity study assumed 100 mCi $\,$
- The US DOE National Isotope Development Center (NIDC) offers ⁸⁸Zr
- The price is 2660 + 431.50/mCi
 - \circ 1 mCi is 3092 USD
 - o 100 mCi is 45811 USD
 - $\circ~$ Includes a packing fee
- o <u>Funding</u>
- $\circ~$ A first attempt for funding with UD, LLNL, UAB, and Cerium did not succeed.
- $\circ~$ Looking at another DOE STTR proposal due 3 JAN 2024 with grant starting 1 JUL 2024
- Considering other options and will bring a solution forward as soon as possible.
- NIDC purity quoted as >99%, radiopurity measured via ICP and gamma spectroscopy
- \circ Claudia was quoted 1mCi in 1mL H₂O from Oak Ridge National Lab a few years back
 - $\circ~$ 0.009 mCi/mL Y-88 and 6.07E-4 mCi/mL Zn-65
 - 0.22 Cu, 8.13 Fe, 0.44 Ni, 6.24 Zr (all ug/ml)
 - Ga and Nb >200 ug/ml

n_TOF Nov 23, 2023

⁸⁸Zr(n,γ)⁸⁹Zr – INTC Timeline



- INTC LOI draft attached to agenda.
 - LOI not submitted. Claudia advised a full proposal rather than LOI.
 - We plan to submit to INTC in early January for the meeting in early February.

⁸⁸Zr(n,γ)⁸⁹Zr – Repeat 2019 LLNL Result

- We plan to repeat the LLNL total thermal cross section measurement early next year.
 - At University of Texas NETL TRIGA reactor
 - \circ 3L facility with a thermal neutron flux of 4×10¹² n/cm²/s
 - Along with chemistry professor Dave Catlett
 - We have gold foils to place along with 1 mCi sample
 - With cross section of 861000 b, an 8 hour shift converts 10% of ⁸⁸Zr to ⁸⁹Zr
 - \circ Few days of 'irradiation \rightarrow HPGe overnight \rightarrow irradiation' cycle
- This measurement is an opportunity to resolve any operational difficulties with a 1 mCi sample before coordinating the n_TOF 100 mCi sample.
- Also an opportunity to check purity and any unexpected hurdles.

