MADX-PTC Review and Fixes after Cross-Checks with MAD-NG

Joshua Gray & Laurent Deniau

Context

I will refer to all indexing of arrays in the Fortran style

 i.e., knl[1] refers to the first index of the array knl.

- Red bullet points or numbers refer to a bug
 - A bug
 - An improvement
- In total there are **9** bugs fixed (closes 2 issues) **19** improvements (closes 1 issue), after cross-checks with MAD-NG.
- I have made all these changes and will open a pull request; this presentation is to list the changes I would like to make.

DA Map Output

• Flush the DA map output (cleans up debugging etc...)

@@ DRIF	Т 3	DRIF	T·1	-5.89754	4843	8622	89943	E-0)1 -3
*****	*******	*****	****	******	***				
89	-2.6043496	961749853E-02		Θ					Θ
90	-1.7488219	610837154E-02	4			2			Θ
ptc_end									
	r of warnin								
0 in C	and 4 in Fo	rtran							
									\mathbf{i}
+++++		+++++++++++++++++++++++++++++++++++++++		******	+++				
		finished nor							
+++++		******							
91		828200613E-01		9		2	0	1	0
92		209154681E-02			0	3		1	0
93		797881352E-01		2	0		2		0
94		592377241E-01		1	1		2	0	0
95		278832066E+00			2				0
96		187631519E-01		1	0		2		0
97		126078332E+00		0			2		0
98		971955837E+00				2	2		0
99	-7.5885440	827565945E-02		2			1		0
100	6.8204249	152166851E-01					1		0
101	-1.3061365	774495444E+00	4		2		1		0
102	-2.4589955	127679117E-02	4				1		0
103	1.8747494	947945205E+00	4				1		0
104	-1.1871996	646411476E+00				2	1		0
105	1.4751359	289164273E-01	. 4	2				2	0
106	-2.8599010	856843249E-01						2	0
107		313485019E+00							Θ
108		942994851E-02						2	Θ
109		933270552E+00							Θ
110		560265026E-01				2		2	Θ
111		683328297E+00							Θ
112		255231727E+00							0
113		616671680E+00							0
114		920989427E-01					2		Θ
115	6.2366371	340561146E+00) 4				2		Θ
116	-6.7417997	986474072E+00) 4				2		Θ
117	1 0002115	6720105245:00		1	0	0	1	2	0

JC.)									
	@@ DRIF	T 3 DRIFT	1 -5	. 89754	843	62289	943	E - 0	1	
	*****	***************************************	*****	*****	**					
	101	-1.3061365774495444E+00	4	0	2	0	1	1	0	
	102	-2.4589955127679117E-02	4	1	Θ	1	1	1	0	
	103	1.8747494947945205E+00	4		1	1	1	1		
	104	-1.1871996646411476E+00	4			2	1	1		
	105	1.4751359289164273E-01	4	2				2		
	106	-2.8599010856843249E-01	4	1	1			2		
	107	3.4648684313485019E+00			2			2		
	108	-3.7367703942994851E-02		1		1		2		
	109	-1.0863680933270552E+00	4		1	1		2		
	110	3.1988258560265026E-01	4			2		2		
	111	-1.1893837683328297E+00	4	1						
	112	-5.4245775255231727E+00	4							
	113	5.3539476616671680E+00	4							
	114	7.0879580920989427E-01	4				2	1		
	115	6.2366371340561146E+00	4				2	1		
	116	-6.7417997986474072E+00	4			1	2	1		
	117	-1.0083115672818534E+00	4	1			1	2		
	118	-7.2178118030252367E+00	4				1			
	119	4.5008983209985827E+00	4			1	1	2		
	120	-5.2852053858437595E-02	4	1						
	121	6.7523438621553578E-01	4							
	122	-2.2654006602476742E-01	4	0		1	0		0	
	123	8.2113792719648160E+00	4	0	Θ	0	4	Θ	0	
	124	-1.2480673652405665E+01	4	0	Θ	0	3	1	0	
	125	1.7859299681662243E+01	4	0	Θ	0	2	2	0	
		1.9960099564752261E+00	4				1			
	127	4.1985571264139848E-02	4	9	0		0	4		
	ptc_end									
	Numbe	f								
		r of warnings: 4 and 4 in Fortran								
	UINC	and 4 in Fortran								
	+++++	*****	+++++++		++					
		MAD-X finished norm								
$\mathbf{\mathbf{N}}$	+++++	+++++++++++++++++++++++++++++++++++++++			++					
		Λ.	2	•						
		A	iter							

DA Map Output

• Expand the monomial number output

6	@@ ELM	tennaps, ootpac,	KICKCAV	:1	0.000	000	0000	900	000	000E+00
	******	*****	*****		*****	***	р. ар. 			
2	etall	1, NO = 10,		_6, J	NA =	్రో	54			
9	234	5.76833553800815	49E+00	9	Θ	0	0	4	1	4
	235	1.20498206093919	42E-05	9	Θ	0	0	2	3	4
	236	4.32636713224414	11E-12	9	0	0	0	0	5	4
2	237	-1.15366642979954	05E+00	9	Θ	0	0	4	0	5
3	238	-4.61466873165073	02E+00	9	Θ	0	0	2	2	5
4	239	-2.00830340089102	95E-06	9	Θ	0	0	0	4	5
5	240	-1.98211458795204	06E-06	9	Θ	0	0	2	1	6
6	241	-1.55270925444474	89E-12	9	Θ	0	0	0	3	6
	242	1.44587026028783	90E+00	9	Θ	0	0	2	0	7
	243	1.13263690632577	88E-06	9	Θ	0	0	0	2	7
9	244	4.90418009393827	03E-22	9	Θ	0	0	0	1	8
	245	-2.78241885996475	26E-16	9	0	0	0	0	Θ	9
	246	-1.42863330195995	70E-02	10	Θ	10	0	0	0	0
2	247	-7.14316650979977	82E-02	10	0	8	0	2	U	0
3	248	-1.07913136711622	22E+00	10	Θ	8	0	0	2	0
	249	-1.45438046026010	54E+00	10	Θ	8	0	0	1	1
5	250	5.91699788473973	31E-01	10	0	8	0	0	0	2
	251	-1.42863330195995	62E-01	10	Θ	6	0	4	0	0
	252	-4.31652546846488	86E+00	10	Θ	6	0	2	2	0
	253	-4.19705401473784	26E+00	10	Θ	6	0	0	4	0
	254	-5.81752184104042	32E+00	10	0	6	0	2	1	1
	255	-1.99155025920679	95E+00	10	Θ	6	0	0	3	1
	256	2.36679915389589	32E+00	10	0	6	0	2	0	2
2	257	1.38077425161337	39E+01	10	Θ	6	0	0	2	2
2	250	1 40200050002072	515.00	10	0	6	0	0	1	2

Les.	la / leal D		ט.נאנ						
(@@ ELM	KICKCAV	:1 0	. 00000	0000	000	000000	E+0	0
	*****	*****	*****	*****	***				
	etall	1, NO = 10, NV =	6, IN/	A = _	64	v	U	v	
	234	3.6722337237710541E+00	9	0	0	0	4	1	4
	235	4.8963187921362090E+00	9	0	0	0	2	3	4
	236	1.9177893576377052E-06	9	Θ	0	0	Θ	5	4
	237	1.8121749902757052E+00	9	0	0	0	4	0	5
	238	6.6247322443617635E-06	9	Θ	Θ	0	2	2	5
	239	3.0890178477180160E-12	9	0	0	0	Θ	4	5
	240	-3.2216448477745856E+00	9	Θ	0	0	2	1	6
	241	-1.6824716641774347E-06	9	Θ	0	0	Θ	3	6
	242	-1.4612588014982471E-15	9	Θ	0	0	2	0	7
	243	-4.6456940180095866E-13	9	Θ	0	0	Θ	2	7
	244	5.9304714225912283E-07	9	Θ	0	0	Θ	1	8
	245	-3.3646920012370019E-01	9	0	Û	Û	0	0	9
	246	4.8014835048110605E-02	10	0	10	0	Θ	0	0
	247	2.4007417524055297E-01	10	0	8	0	2	Ũ	0
	248	1.0416239041217277E+00	10	Θ	8	0	Θ	2	0
	249	-1.5067513729838369E+00	10	Θ	8	0	Θ	1	1
	250	-5.7113356183108543E-01	10	Θ	8	0	Θ	0	2
	251	4.8014835048110593E-01	10	0	6	0	4	0	0
	252	4.1664956164869080E+00	10	0	6	0	2	2	0
	253	7.1317321663917921E-01	10	0	6	0	Θ	4	0
	254	-6.0270054919353457E+00	10	0	6	0	2	1	1
	255	-1.1720380584689499E+01	10	0	6	0	0	3	1
	256	-2.2845342473243417E+00	10	0	6	0	2	0	2
	257	-2.3462345049992215E+00	10	0	6	0	Θ	2	2

Before

After

PTC Setup

- Fix sector_nmul_max inconsistency reported <u>here</u>
- Added warning when sector_nmul_max < order + 1
- Enable integration order 8 (method = 8) (validified in same <u>report</u> as above)
- Fix model check in quadrupole so that unnecessary warning is not emitted
- Add to ptc_setswitch in MAD-X, called nocharge, which defaults to true.
- Stop charge defaulting to 1 when nocharge is false and retrieve charge from the beam.

MADX-PTC (global setup)

 sector_nmul_max, sector_nmul: (≠ → segfault...) default in PTC is 22 default in MADX-PTC k0 → snm = 3 for n=0 kn, kns → snm = 3,4,5 for n=1,2,3 (inconsistent: should have snm = 4,5,6). knl[1..n], ksl[1..n] → snm = n+2 for n=1..

Fringe Maps – Current

How to activate the fringe maps in PTC (it's complicated)

- A checkmark (✓) indicates that for the map (row) to run, the column title must be true.
 Therefore, to activate the map, all checkmarks on the same row need to be true.
- A slash (/) means the map will be run independent of the column, but if the column title is false, the map will have no effect.
- Greyed out ()means that this attribute (column) has absolutely no effect on the map.

Мар	Kill_e(nt/xi)		El%fringe ∞ → 0	Bend_fringe	k0	k1	nmul	fint(x)	hgap	Exact
	= False	fringe = True	$ \begin{bmatrix} 01 \rightarrow 1 \\ 10 \rightarrow 2 \end{bmatrix} \rightarrow 11 \rightarrow 3 $	= True	≠ 0	≠ 0	> 1	> 0	> 0	= True
fringe_dipole	\checkmark			\checkmark	/			\checkmark	/	\checkmark
multipole_fringe	\checkmark	\checkmark 0	or $x1$				\checkmark	\checkmark		
fringe2quad	\checkmark		1x			/		\checkmark		

fint > 0 and fintx > 0 \rightarrow Error

Highest multipole in the fringe $\rightarrow 2$

El%fringe > 3 equivalent to el%fringe = 0

Fringe Maps – Proposed (MAD-NG)

How to activate the fringe maps in PTC (it's complicated)

- A checkmark (✓) indicates that for the map (row) to run, the column title must be true.
 Therefore, to activate the map, all checkmarks on the same row need to be true.
- A slash (/) means the map will be run independent of the column, but if the column title is false, the map will have no effect.
- Greyed out () means that this attribute (column) has absolutely no effect on the map.

Мар	Kill_e(nt/xi)	ptc_set_switch	El%fringe	Benu fring -	k0	k1	nmul	fint(x)	hgap	Exact	el%frngmax
	= False	fringe = True	$000 \rightarrow 0$ $001 \rightarrow 1$ $010 \rightarrow 2 100 \rightarrow 4$	= Tru	≠ 0	≠ 0	>1	> 0	> 0	= True	> 0
fringe_dipole	\checkmark		<i>xx</i> 1		/			/	/	\checkmark	
multipole_fringe	\checkmark	\checkmark (or $x1x$				\checkmark				/
fringe2quad	\checkmark		1xx			/					

Highest multipole in the fringe $\rightarrow el%$ frngmax (default = 2)

- fringe_none = 0
- fringe_bend = 1
- fringe_mult = 2
- fringe_qsad = 6

= 8

= 3

= 7

fringe rfcav

fringe comb

fringe combqs

$Fringe\ Maps-Proposal\ (\text{MAD-NG})$

How to activate the fringe maps in PTC (it's complicated)

- A checkmark (✓) indicates that for the map (row) to run, the column title must be truefringe_all =-1
 Therefore, to activate the map, all checkmarks on the same row need to be true.
- A slash (/) means the map will be run independent of the column, but if the column title is false, the map will have no effect.
- Greyed out ()means that this attribute (column) has absolutely no effect on the map.

Мар	Kill_e(nt/xi)	ptc_set_switch	El%fringe 0000 → 0	k0	k1	nmul	fint(x)	hgap	Exact	el%frngmax
	= False	fringe = ->	$\begin{array}{c} 0001 \rightarrow 1 \\ 0010 \rightarrow 2 \dots \end{array}$	≠ 0	≠ 0	>1	> 0	> 0	= True	> 0
fringe_dipole	\checkmark	xxx1	xxx1	/			/	/	\checkmark	
multipole_fringe	\checkmark	xx1x	xx1x			\checkmark				/
fringe2quad	\checkmark	x1xx	x1xx		/					
rfcav_fringe	\checkmark	1xxx	1xxx							

ptc_set_switch, fringe = fringe_all; (default)

Fringe and Pole Face

- <u>Speed-up PTC fringe fields</u> · <u>Issue #1160</u>
 - Sets n_wedge = 0, instead of 5, this will save 150 yrotation done for each element
 - + Running ptc_normal through 20 rbends 100 times, n_wedge = 0 $\sim 5 x \; faster$
- <u>Fringe executed twice on exit of magnet in PTC · Issue #1135</u> Comment out a single line
- Add and connect the following:
 - Sbend
 - f1, f2 \rightarrow fringe2quad
 - Rbend
 - f1, f2 \rightarrow fringe2quad
 - Quadrupole, Sextupole, Octupole
 - e1, e2
 - h1, h2 \rightarrow face
 - fint, fintx, hgap \rightarrow fringe_dipole
 - f1, f2 \rightarrow fringe2quad
 - Solenoid
 - fint, fintx, hgap \rightarrow fringe_dipole
 - f1, f2 \rightarrow fringe2quad

- Connect the following for the rbend¹:
 - tilt
 - fint(x), hgap
 - h1, h2
 - kill_ent_fringe, kill_exi_fringe
 - fringe, bend_fringe
 - nst
 - aperture
 - knl, ksl

Normal and Skew Multipole Components

• From the MAD-X manual:

To preserve the reference orbit of straight elements, the dipole components for those elements are ignored and must be specified as zero: KNL(0)=0, KSL(0)=0.

- We did not think this was good enough argument to remove it from knl and ksl i.e., multipole and rfmultipole. Therefore, we now allow it.
- Stop removing corresponding strength in knl and ksl. Instead, behaviour is to follow the philosophy of the (s/r)bend.

Quadrupole:	Sextupole:	Octupole:
k1 _{final} = k1 + knl[2]/l	k2 _{final} = k2 + knl[3]/l	k3 _{final} = k3 + knl[4]/l
k1s _{final} = k1s + ksl[2]/l	k2s _{final} = k2s + ksl[3]/l	k3s _{final} = k3s + ksl[4]/l

In above, if | == 0, then | is set to 1.

• Stop MADX-PTC reversing the sign of the dipole skew component

RF Multipole

- 1. Fix ksl[1] in rfmultipole
- 2. Fix thick rfmultipole (I≠0) from not dividing knl and ksl by length (I)
- 3. Add no_cavity_totalpath to match attributes of rfcavity¹.

Crab Cavity

- 1. Add no_cavity_totalpath to match attributes of rfcavity.
- 2. Add harmon to match attributes of rfcavity.

1605		- l, skew(0)=-skew(0) ! frs error found 30.08.2008 - Negated
1606		 key%list%thin_h_angle=bvk*normal(0)
1607		- key%list%thin_v_angle=bvk*skew(0)Effect
	1721	<pre>+ key%list%thin_h_angle= bvk*normal(0)</pre>
	1722	+ key%list%thin_v_angle=-bvk*skew(0)
1608	1723	<pre>lrad=node_value('lrad ')</pre>
1609	1724	if(lrad.gt.zero) then
1610	1725	<pre>key%list%thin_h_foc=normal(0)*normal(0)/lrad</pre>
1611	1726	<pre>key%list%thin_v_foc=skew(0)*skew(0)/lrad</pre>
1612	1727	endif
	1728	+
	1729	+ 2. if (1 .ne. 0) then
	1730	+ div = 1
	1731	+ else
	1732	+ div = one
	1733	+ endif
1613	1734	
1614	1735	do i=0,nn Multipole not
1615		- key%list%k(i+1)=normal(i)
	1736	+ key%list%k(i+1)=normal(i)/div
1616	1737	<pre>if (normal(i) /= zero) icav=1</pre>
1617	1738	enddo
1618	1739	
1619	1740	do i=0,ns
1620		<pre>- key%list%ks(i+1)=skew(i)</pre>
	1741	+ key%list%ks(i+1)=skew(i)/div change
1621	1742	<pre>if (normal(i) /= zero) icav=1</pre>
1622	1743	enddo

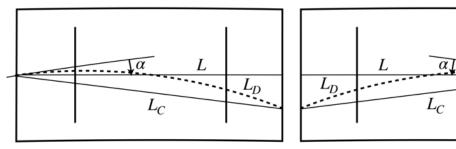
Sbend and Rbend Skew Components

- MADX-PTC attempts to convert the skew component to a tilt, like in MAD-X.
- This calculation is performed

The angle
used by PTC
$$\theta = l \times \sqrt{\left(\frac{\ln[1]}{l}\right)^2 + \left(\frac{\ln[1]}{l}\right)^2 + \left(\frac{\ln[1]}{l}\right)^2 + \ln[1]}$$

• If the square root is non-zero, below is performed

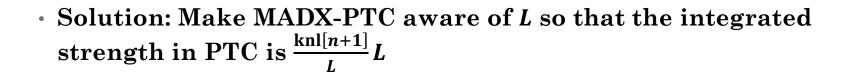
$$\operatorname{tilt} = \operatorname{atan2}\left(-\frac{\operatorname{ksl}[1]}{l}, \frac{\operatorname{knl}[1]}{l}\right)$$

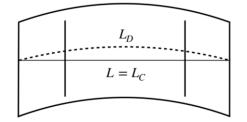

- Problem 1: This was before the modification to MAD-X that allowed $k_{0l} \neq \theta$
- Problem 2: Formula is wrong.
- Solution: Remove these calculations and let PTC integrate this component in the kick.

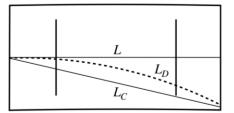
Restore True Parallel Rbend

Current

- To activate straight rbend (see definition <u>here</u>):
 - ptcrbend = true and truerbend = false
 - e1, e2 are considered as expected
- To activate true parallel rbend
 - ptcrbend = true and truerbend = true
 - * If e1≠0 and e2≠0 sets e2 to 0
 - This setup goes to straight rbend (misuse)
 - Therefore, **no** true parallel rbend


True Parallel R
bend with angle α


Proposed


- To activate straight rbend (see definition <u>here</u>):
 - ptcrbend = true and truerbend = false
 - e1, e2 are considered as expected
- To activate true parallel rbend
 - ptcrbend = true and truerbend = true
 - * If e1 > 2π , patch will be performed on the entry of the rbend
 - * If $e_2 > 2\pi$, patch will be performed on the exit of the rbend
 - If $e_1 > 2\pi$ and $e_2 > 2\pi$, an error is emitted (like in MAD-NG)

Rbend Length Scaling

- For knl and ksl components, PTC/MAD-NG integrates using L as the length
- PTC only accepts non-integrated strengths, i.e., MAD-X needs to convert knl and ksl components for PTC.
- MADX-PTC is unaware of L so divides the integrated strength by L_D .
- Therefore, the integrated strength in PTC is $\frac{\text{knl}[n+1]}{L_{\text{P}}}L^{1}$
- If you use k_n instead, the integrated strength is $k_n L$

The lengths and path lengths for different rbends

15

Solenoid

Current

cas		code_solenoid) ! case(9) ! PTC accepts mults y%magnet="solenoid "
		· -
		=node_value('ks ')
	if	(l.ne.zero) then
		key%list%bsol=bvk*ks
	el	se
		ksi=node_value('ksi ')
		lrad=node value('lrad ')
		if(lrad.eq.zero.and.ks.ne.zero) lrad=ksi/ks
		if(ksi.eq.zero.or.lrad.eq.zero) then
		key%magnet="marker"
		<pre>print*,"Thin solenoid: ",name," has no strength - set to marker"</pre>
		else
		key%list%bsol=bvk*ksi/lrad
		key%list%ls=lrad
		endif
	an	dif
	! VI	
	CA	LL SUMM_MULTIPOLES_AND_ERRORS (l, key, normal_0123,skew_0123,ord_max)

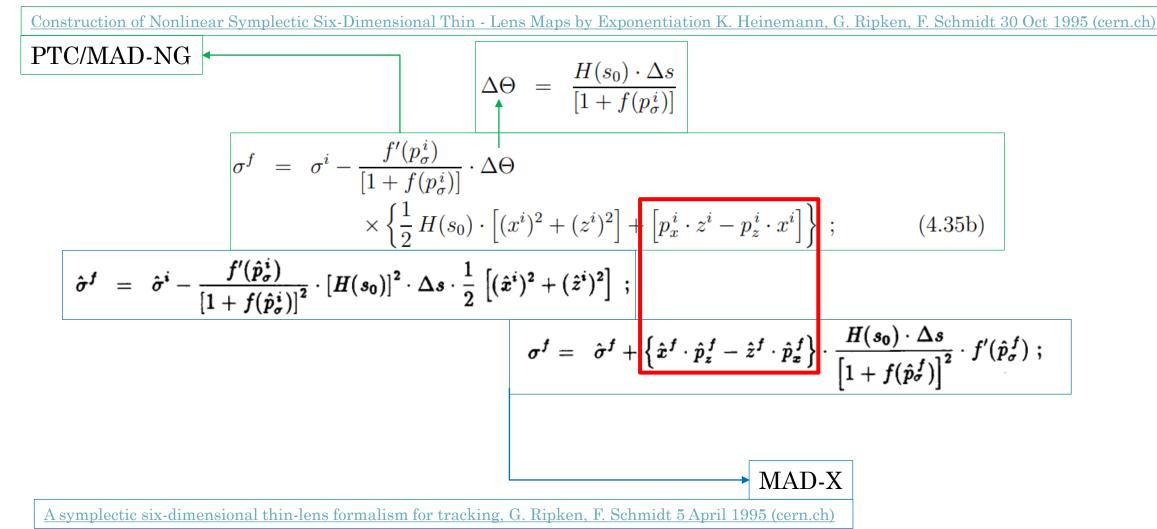
Remove, as it could have multipoles

Proposed

<pre>case(code_solenoid) ! case(9) ! PTC accepts mults kev%magnet="solenoid"</pre>							
!VK							
CALL SUMM_MULTIPOLES_AND_ERRORS (l, key, normal_0123,skew_0123,ord_max)							
ks=node value('ks ')							
if(l.ne.zero) then ! JG 21.04.2023 L != 0 means thick solenoid							
key%list%bsol=bvk*ks							
!JG: 18.04.2023 Allowed k0 and k0s for solenoid							
key%list%k (1)=normal_0123(0)							
key%list%ks(1)= skew_0123(0) thick							
else							
! JG 21.04.2023 L = 0 means thin solenoid, therefore needs multipole							
! thin_h_angle, thin_v_angle, thin_h_foc, thin_v_foc							
ksi=node_value('ksi ')							
<pre>lrad=node_value('lrad ')</pre>							
if(lrad.eq.zero.and.ks.ne.zero) lrad=ksi/ks							
key%list%thin_h_angle= bvk*normal_0123(0)							
key%list%thin_v_angle=-bvk*skew_0123(0)							
if(lrad.gt.zero) then							
key%list%thin_h_foc=normal_0123(0)*normal_0123(0)/lrad							
<pre>key%list%thin_v_foc=skew_0123(0)*skew_0123(0)/lrad</pre>							
key%list%bsol=bvk*ksi/lrad							
endif thin							
key%list%ls=lrad							
endif							

Add dipole component to thick and thin solenoid

Multipole Solenoid Component


- Add and connect solenoid component to a multipole
 - Changes nothing by default
 - If ksi specified but Irad is not, a warning is emitted

Solenoid in MAD-X

- <u>Solenoid in MAD-X Thin-Lens Tracking Implementation.pdf (cern.ch)</u>
- Affects the t variable in trsol (MAD-X track) when I=0
- Testing the thin map vs the thick map in MAD-NG¹ we find the error by order of the t variable to be¹:
 - $0^{\text{th}} \text{ order} \text{PTC eq. 57 times better than MAD-X eq. (PTC error <math>4.9 \times 10^{-11}$)
 - 1^{st} order -PTC eq. **25** times **better** than MAD-X eq. (PTC error 2.8×10^{-7})
 - 2^{nd} order PTC eq. 6 times better than MAD-X eq. (PTC error 4.7×10^{-4})
 - 3^{rd} order PTC eq. 8 times **better** than MAD-X eq. (PTC error 9.4×10^{-4})
 - $4^{\text{th}} \text{ order} \text{No difference (Error } 7.5 \times 10^{-2})$
- The wrong equation is being used by MAD-X or PTC Given above, I would suggest MAD-X is incorrect.

Equation Direct Comparison

Patches

• Fix changeref from throwing memory access outside program range error

1354	1449		key%magnet="CHANGEREF"
1355	1450		PATCH_ANG = zero
1356	1451		PATCH_TRANS = zero
1357			<pre>call get_node_vector('patch_ang ',3,patch_ang)</pre>
1358			<pre>call get_node_vector('patch_trans ',3,patch_trans)</pre>
	1452	+	np = 3
	1453	+	<pre>call get_node_vector('patch_ang ',np,patch_ang)</pre>
	1454	+	<pre>call get_node_vector('patch_trans ',np,patch_trans)</pre>

- Add shortcuts to patches so that identity transformations are not performed
 - increasing accuracy

-		
		@@ -390,6 +390,8 @@ SUBROUTINE ROT_YZP(A,X,b,EXACT,ctime)
390	390	<pre>real(dp),INTENT(IN):: A,b</pre>
391	391	LOGICAL(1p),INTENT(IN):: EXACT,ctime
392	392	
	393	+ if (A == 0.0_dp) return
	394	
393		<pre>call PRTP("ROT_YZ:0", X)</pre>
394		
395	397	CALL ALLOC(XN,6)
¥ .±.		@@ -456,6 +458,7 @@ SUBROUTINE TRANSP(A,X,b,EXACT,ctime)
456		<pre>real(dp),INTENT(IN):: A(3),b</pre>
457		LOGICAL(1p),INTENT(IN):: EXACT,ctime
458		
	461	+ if (A(1) == 0.0_dp .and. A(2) == 0.0_dp .and. A(3) == 0.0_dp) return

		@@ -527,6 +530,7 @@ SUBROUTINE ROT_XYP(A,X)
		real(dp),INTENT(IN):: A
		real(dp) :: cosa, sina
529		
	533	+ if (A == 0.0_dp) return
		<pre>call PRTP("ROT_XY:0", X)</pre>
		cosa = COS(A)
		@@ -610,6 +614,8 @@ SUBROUTINE ROT_XZP(A,X,b,EXACT,ctime)
	614	real(dp) sina, cosa, tana
61 1		LOGICAL(1p),INTENT(IN):: EXACT,ctime
612		
	617	+ if (A == 0.0_dp) return
	618	
613		<pre>call PRTP("ROT_XZ:0", X)</pre>
	620	
615	621	IF(EXACT) THEN

Tilting Elements

- Connect the tilt for the elseparator (currently does nothing).
- Connect the tilt for the rbend (already mentioned).

Thanks for Listening!

Solenoid Equations (PTC/MAD-NG)

$$\hat{A}_{01} = \Delta s \cdot \frac{H^{2}}{[1+f(\hat{p}_{\sigma})]} \cdot \begin{pmatrix} 0 & 0 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 \end{pmatrix} \qquad (4.29a) \longrightarrow \underline{M}_{0} = [1 + \hat{A}_{01}] \cdot \begin{pmatrix} \cos(\Delta \Theta) & 0 & +\sin(\Delta \Theta) & 0 \\ 0 & \cos(\Delta \Theta) & 0 & +\sin(\Delta \Theta) \\ 0 & \cos(\Delta \Theta) & 0 & \cos(\Delta \Theta) \\ 0 & -\sin(\Delta \Theta) & 0 & \cos(\Delta \Theta) \end{pmatrix}. \quad (4.33)$$

$$\vec{y}_{0} = \begin{pmatrix} x \\ p_{x} \\ z \\ p \end{pmatrix} \longrightarrow \vec{y}_{0}^{f} = \underline{M}_{0} \vec{y}_{0}^{i}; \qquad (4.35a)$$

$$\sigma^{f} = \sigma^{i} - \frac{f'(p_{\sigma}^{i})}{[1+f(p_{\sigma}^{i})]} \cdot \Delta \Theta \\
\times \left\{ \frac{1}{2} H(s_{0}) \cdot \left[(x^{i})^{2} + (z^{i})^{2} \right] + \left[p_{x}^{i} \cdot z^{i} - p_{z}^{(i)} \cdot x^{i} \right] \right\}; \quad (4.35b)$$

$$p_{\sigma}^{f} = p_{\sigma}^{i} \qquad (4.35c)$$

with

$$\Delta\Theta = \frac{H(s_0) \cdot \Delta s}{[1 + f(p_{\sigma}^i)]}$$
(4.35d)

Construction of Nonlinear Symplectic Six-Dimensional Thin - Lens Maps by Exponentiation K. Heinemann, G. Ripken, F. Schmidt 30 Oct 1995 (cern.ch)

Solenoid Equations (MAD-X)

$$\hat{x}^{f} = \hat{x}^{i};$$

$$\hat{p}_{x}^{f} = \hat{p}_{x}^{i} - \frac{\hat{x}^{i}}{[1+f(\hat{p}_{\sigma}^{i})]} \cdot [H(s_{0})]^{2} \cdot \Delta s;;$$

$$\hat{z}^{f} = \hat{z}^{i};$$
Extra terms in t (o^f)

$$\hat{p}_{x}^{f} = \hat{p}_{x}^{i} - \frac{\hat{z}^{i}}{[1+f(\hat{p}_{\sigma}^{i})]} \cdot [H(s_{0})]^{2} \cdot \Delta s;;$$

$$\hat{\sigma}^{f} = \hat{\sigma}^{i} - \frac{f'(\hat{p}_{\sigma}^{i})}{[1+f(\hat{p}_{\sigma}^{i})]^{2}} \cdot [H(s_{0})]^{2} \cdot \Delta s \cdot \frac{1}{2} \left[(\hat{x}^{i})^{2} + (\hat{z}^{i})^{2} \right];$$

$$\hat{p}_{\sigma}^{f} = \hat{p}_{\sigma}^{i}.$$

$$x^{f} = \hat{x}^{f} \cdot \cos \Delta \Theta + \hat{z}^{f} \cdot \sin \Delta \Theta;$$

$$x^{f} = \hat{z}^{f} \cdot \sin \Delta \Theta + \hat{z}^{f} \cdot \cos \Delta \Theta;$$

$$x^{f} = -\hat{x}^{f} \cdot \sin \Delta \Theta + \hat{z}^{f} \cdot \cos \Delta \Theta;$$

$$p_{x}^{f} = -\hat{p}_{x}^{f} \cdot \sin \Delta \Theta + \hat{p}_{x}^{f} \cdot \cos \Delta \Theta;$$

$$p_{x}^{f} = -\hat{p}_{x}^{f} \cdot \sin \Delta \Theta + \hat{p}_{x}^{f} \cdot \cos \Delta \Theta;$$

$$p_{x}^{f} = -\hat{p}_{x}^{f} \cdot \sin \Delta \Theta + \hat{p}_{x}^{f} \cdot \cos \Delta \Theta;$$

$$p_{x}^{f} = -\hat{p}_{x}^{f} \cdot \sin \Delta \Theta + \hat{p}_{x}^{f} \cdot \cos \Delta \Theta;$$

$$p_{x}^{f} = -\hat{p}_{x}^{f} \cdot \sin \Delta \Theta + \hat{p}_{x}^{f} \cdot \cos \Delta \Theta;$$

$$p_{x}^{f} = -\hat{p}_{x}^{f} \cdot \sin \Delta \Theta + \hat{p}_{x}^{f} \cdot \cos \Delta \Theta;$$

$$p_{x}^{f} = \hat{p}_{x}^{f} \cdot \frac{f(\hat{p}_{\sigma}^{f})}{[1+f(\hat{p}_{\sigma}^{f})]^{2}} \cdot f'(\hat{p}_{\sigma}^{f});$$

$$p_{\sigma}^{f} = \hat{p}_{\sigma}^{f},$$

$$p_{\sigma}^{f} = \hat{p}_{\sigma}^{f}$$

A symplectic six-dimensional thin-lens formalism for tracking, G. Ripken, F. Schmidt 5 April 1995 (cern.ch)

List of Bug Fixes

- 1. <u>Multiple Fringes on exit of magnet in PTC · Issue #1135</u> Comment out a single line
- 2. Allow tilt, fint, hgap, h1, h2, kill_fringe, fringe, etc... to be communicated to the rbend.
- 3. If ksi == 0 or lrad == 0, stop solenoid being turned into a marker, due to possible multipole components.
- 4. Fixed ksl[1] (k0s) in rfmultipole
- 5. Fix tilt not being communicated to PTC in elseparator
- 6. Fix sector_nmul_max inconsistency reported <u>here</u>
- 7. Fix changeref from throwing ++ memory access outside program range ++ error
- 8. Fix thick rfmultipole from not dividing knl and ksl by length
- 9. Stop MAD-X-PTC attempt to convert the skew component to a tilt

List of Improvements

- 1. <u>Speed-up PTC fringe fields</u> · Issue #1160
 - 1. n_wedge = 0
 - 2. instead of 5, this will save 5*(8+7)*2 = 150 yrotation done for each element
- 2. Flush the DA map output (cleans up debugging etc...)
- 3. Expand the monomial number output i.e. 10 0 0 0 0 not 100 0 0 0
- 4. Allow the entry fint and exit fint to be different
- 5. Add f1 and f2 to enable the qsad_fringe
- 6. Add frngmax to dictate the highest multipole used in the multipole fringe
- 7. Add all the fringe and face parameters to sbend, rbend, quadrupole, sextupole, octupole
- 8. Add Yoshida method 8
- 9. Stop fint/fintx = 0, killing the entry/exit fringe
- 10. If fringe is set to > 3, then it is reduced to 3, assuming all fringes would like to be activated in PTC
- 11. For sextupole and octupole, stop corresponding strength in knl and ksl being removed (instead added to k_n and k_{na})
- 12. Allowed knl[1] and ksl[1] for multipole integration.
- 13. Added solenoid component to a multipole
- 14. Add no_cavity_totalpath to crab-cavity and rf-multipole (therefore add fix for harmon)
- 15. Add a tilt to the multipole
- 16. Restore true parallel rbend
- 17. Allow Charge to work in PTC, therefore add option to MAD-X called nocharge, which defaults to true.
- 18. Fix model check in quadrupole so that unnecessary warning is not emitted
- 19. Add shortcuts to patches so that identity transformations are not performed