

$D^0 \rightarrow K\pi\pi\pi$ decays at LHCb

Philip Hunt, University of Oxford*

*On behalf of the LHCb collaboration

Contents

- Introduction
- Open charm cross-section
 - Measurement strategy
 - Prompt-secondary separation
 - Preliminary results
 - Including $D^0 \rightarrow K\pi\pi\pi$ decays in final results
- $D^0 \rightarrow K\pi\pi\pi$ yields in 2010 data
 - $D^{*+} \rightarrow D^{0}(K^{-}\pi^{+}\pi^{-}\pi^{+})\pi^{+}$ (+c.c.)
 - $B^+ \rightarrow (K^+ \pi^- \pi^+ \pi^-)_D K^+$
- Conclusions

Introduction

- D⁰→Kπππ (D⁰→K3π) decays have many interesting physics applications at LHCb:
 - − D⁰→K⁻3π and D^{*+}→(D⁰→K⁻3π)π⁺:
 - D⁰ and D*+ charm cross-section measurements
 - $D^{*+} \rightarrow (D^0 \rightarrow K^+ 3\pi)\pi^+$:
 - Amplitude model of $D^0{\rightarrow}K^+3\pi$
 - Indirect CP violation and mixing
 - $B^+ \rightarrow (K^+ 3\pi)_D K^+ \text{ and } B^+ \rightarrow (K^+ 3\pi)_D \pi^+$:
 - Measurement of B(B⁺ \rightarrow DK⁺)/ B(B⁺ \rightarrow D π ⁺)
 - $B^+ \rightarrow (K^- 3\pi)_D K^+$:
 - Tree-level measurement of the CKM angle $\boldsymbol{\gamma}$

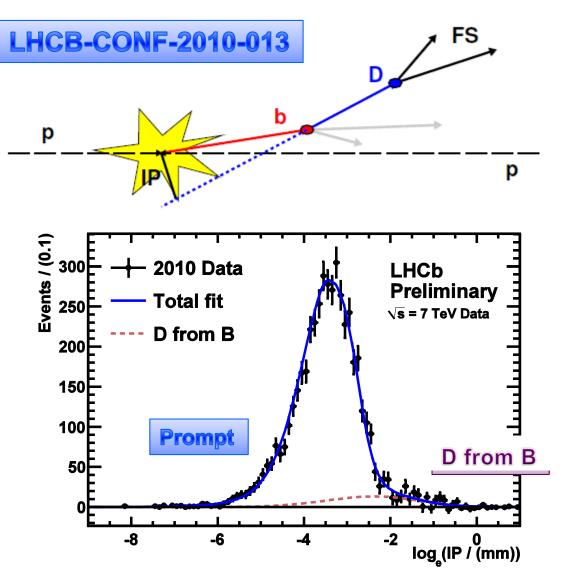
Charm physics at LHCb

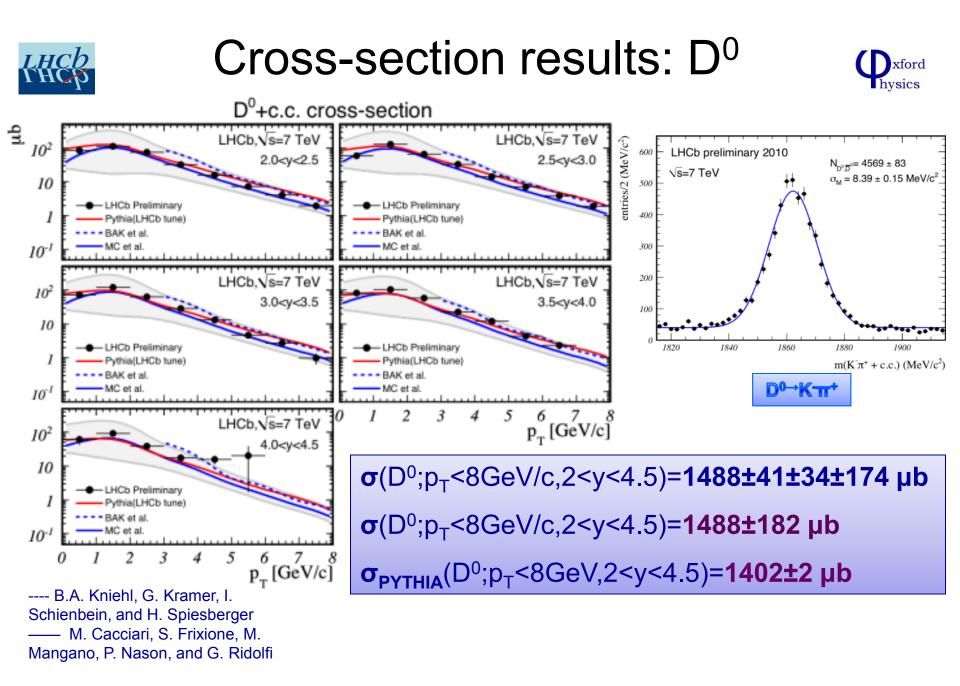
- Same aspects of LHCb that make us good for b-physics also aids charm physics
 - Low pileup
 - Great K-π discrimination
 - Excellent PV resolution
 - Good tracking and momentum resolution
- $c\bar{c}$ cross-section ~20x larger than $b\bar{b}$ cross-section
 - Can do many competitive analyses in charm sector with early data
- Crucial to charm physics at LHCb is the measurement of the open charm production cross-section

Measuring the open charm crosssection at LHCb

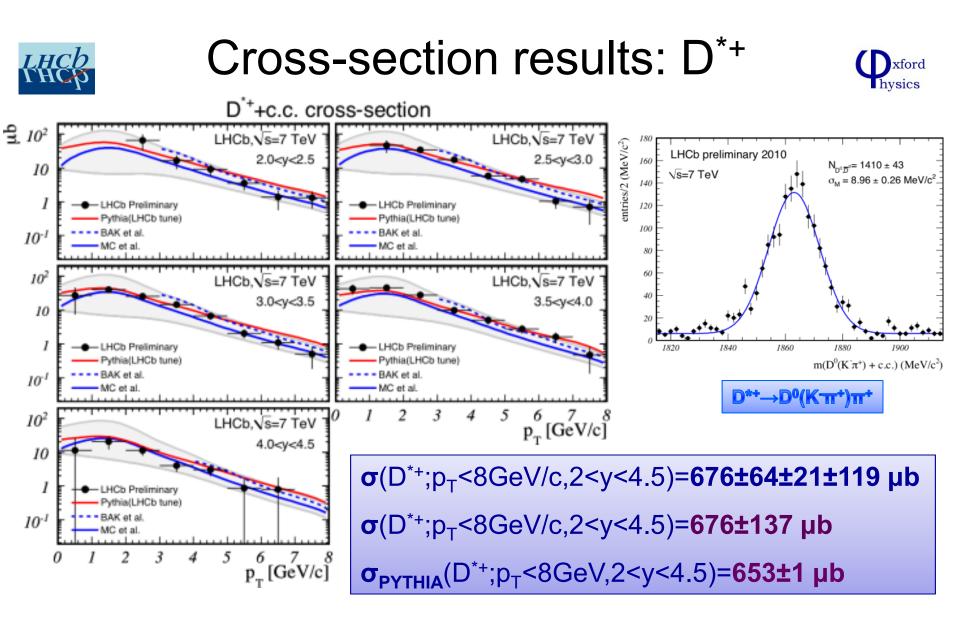
- Test predictions of QCD
- Input to sensitivity estimates for mixing, CP violation (CPV) and rare decays in the charm sector
- Ensure production cross-sections well described by MC
- Key features of LHCb cross-section measurements:
 - Measure transverse momentum (p_T) of the D hadron down to zero
 - Have access to all charm hadron species
- Preliminary cross-sections results produced for D⁰, D^{*+}, D⁺ and D_s⁺ with first 1.8nb⁻¹ of \sqrt{s} =7TeV LHCb collision data

04/04/2011


Measurement strategy


- $\sigma(\mathcal{L}_{int}; p_T, y) = \frac{N_{sig}(p_T, y)}{\varepsilon_{tot}(p_T, y) \cdot \mathcal{BR} \cdot \mathcal{L}_{int}}$
 - Raw signal yields determined in 2D bins of y, p_T
 - Signal separated from background
 - Contamination from secondary charm determined from fit to D IP in data
 - Selection efficiencies ϵ_{tot} determined from MC
 - Extensive cross-checks on data
 - PID cut efficiency determined separately using data
 - Branching ratios from Particle Data Group (PDG) 2010
 - Integrated luminosity measured by LHCb

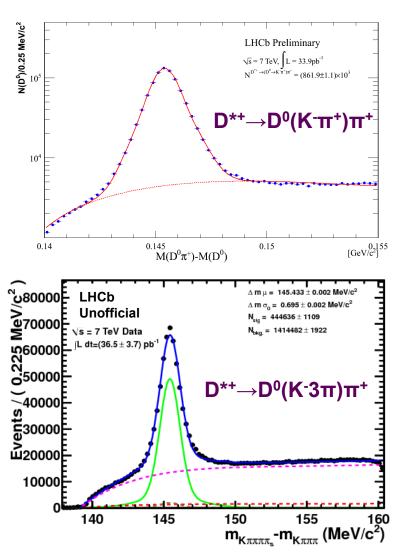
Prompt-secondary separation Ψ_{ysics}


- After background subtraction, the remaining background primarily comes from decays of long-lived particles – secondary charm
- Measure secondary fraction from the D impact parameter (IP) distribution

04/04/2011

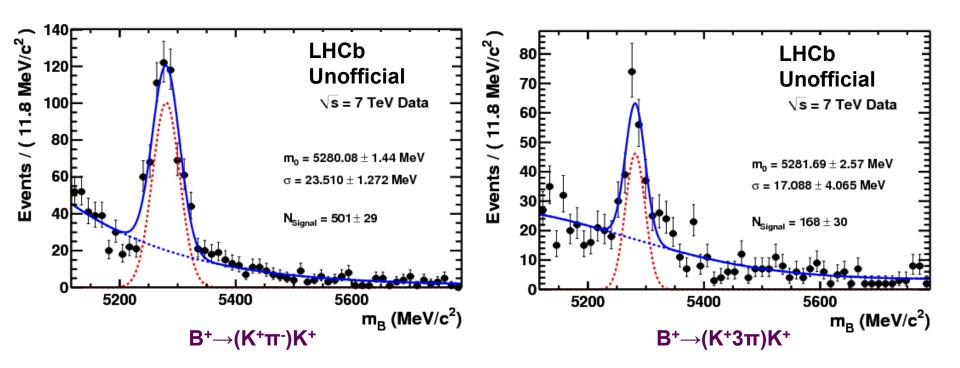
04/04/2011

Including $D^0 \rightarrow K3\pi$ decays in the cross-section measurement



- Work is on-going to produce a public note for the cross-section measurements with increased statistics
- For the D⁰ and D^{*+} cross-section measurements, only D⁰ \rightarrow K⁻ π ⁺ decays have been considered so far
- We also plan to include D⁰→K⁻3π decays in the final result
 - Consistent results between the two- and four-body measurements is important to show that we understand our tracking efficiencies

$D^{*+} \rightarrow D^0(K^-3\pi)\pi^+$ in 2010 data

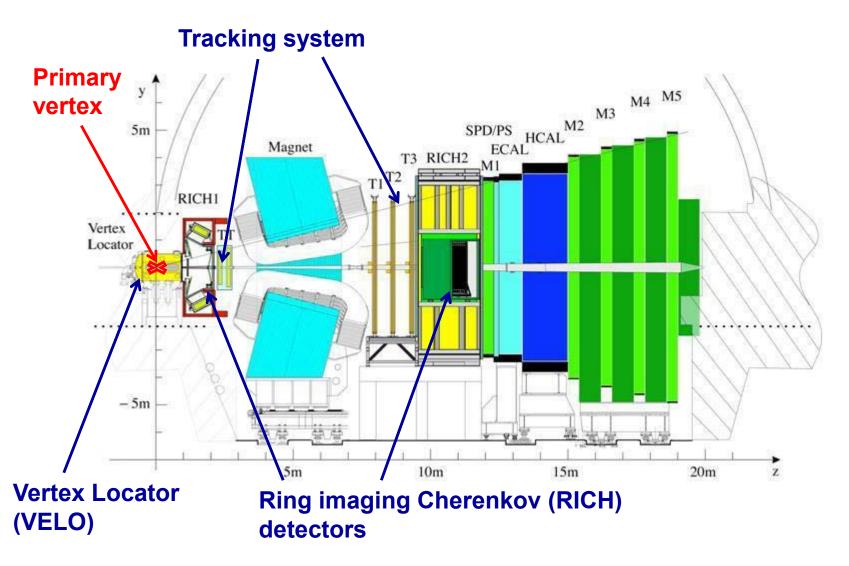

- Reconstructing and selecting D⁰→K⁻3π events in 2010 was hard work:
 - Pileup and track multiplicity much higher than LHCb design
 - As we approach nominal luminosity in 2011, LHCb can run with pileup closer to design
 - No dedicated four-body charm software trigger line in 2010
 - New trigger line commissioned for 2011 to handle four-body charm decays
- Despite these problems, we managed to reconstruct O(½M) events in 2010!

 $B^+ \rightarrow (K^+ 3\pi)_D K^+$ in 2010 data

 Even with a fraction of a nominal year of LHCb data, we can already see the first multi-body B⁺→DK⁺ events

Conclusions

- D⁰→Kπππ decays have many physics applications at LHCb in the charm and beauty sectors
- Current open charm cross-section results show good consistency with MC
 - − The inclusion of $D^0 \rightarrow K\pi\pi\pi$ decays in the final results will give important corroboration of our tracking efficiencies
- Even with the less than ideal 2010 detector conditions, LHCb has proved that multi-body decays can be reconstructed at a hadron collider
- First physics results with $D^0 \rightarrow K\pi\pi\pi$ decays very soon



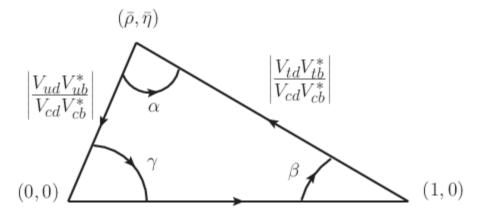
Overview of LHCb

The CKM matrix

 The Cabibbo–Kobayashi–Maskawa (CKM) matrix quantifies the mixing between the different flavours of quarks in weak force interactions

$$V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

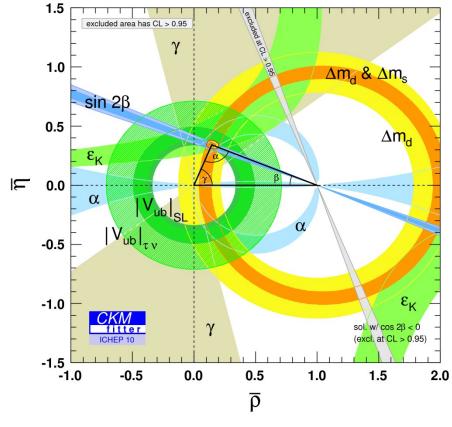
- The CKM matrix can be fully describes by three mixing angles and one complex phase
 - CP violation (CPV) is generated in the Standard Model (SM) by this complex phase


Unitarity of the CKM matrix

 Invoking unitarity gives a series of relations between the elements of the CKM matrix V_{ij}:

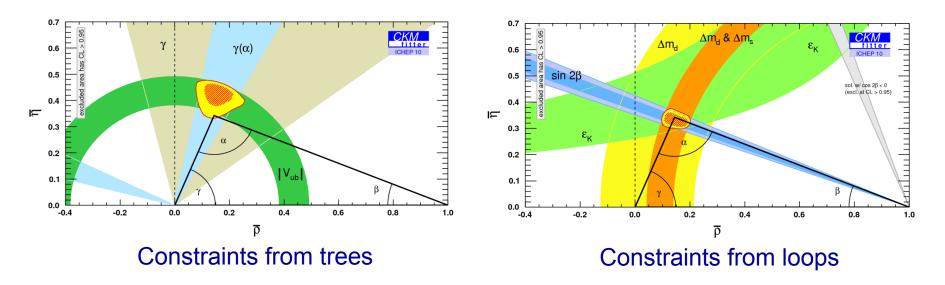
 $- \sum_{k} V_{ik} V^*_{jk} = \delta_{ij}; \quad \sum_{k} V_{ik} V^*_{kj} = \delta_{ij}.$

- When i=j, we have the constraint that the couplings of an up-type quark (u,c,t) to the down-type quarks (d,s,b) are the same for all generations (universality)
- The six remaining relations (when i≠j), can be represented as triangles in a complex plane, known as a unitarity triangle


04/04/2011

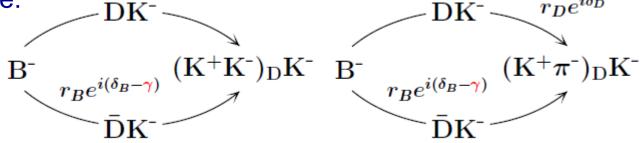
The CKM angle γ

- Of the three standard CKM angles,γ is by far the least constrained
- One of LHCb's primary objectives is to reduce the uncertainty on γ to a few %

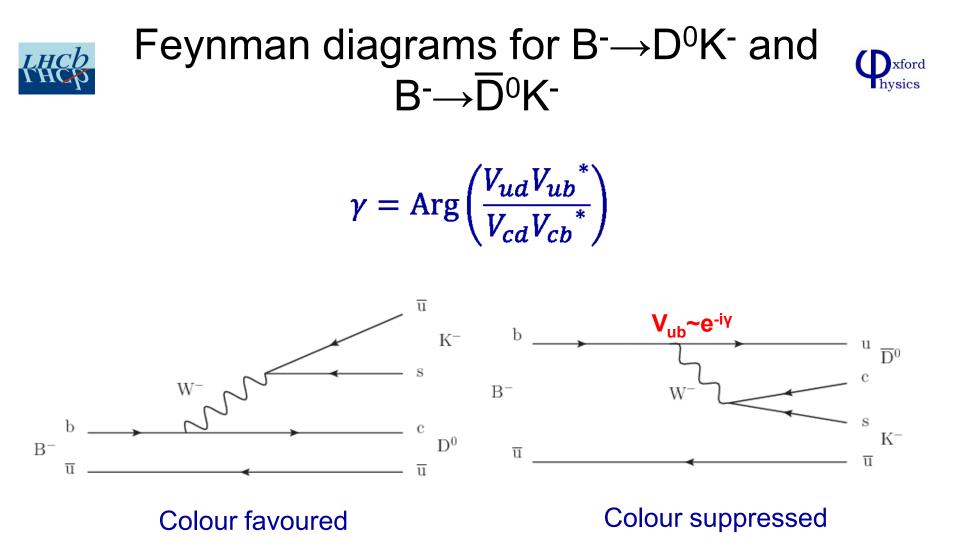


CKMFitter Summer 2010 global fit results (from direct measurement): $\alpha = (89.0^{+4.4}_{-4.2})^{\circ}$ $\beta = (21.15^{+0.90}_{-0.88})^{\circ}$ $\gamma = (71^{+21}_{-25})^{\circ}$

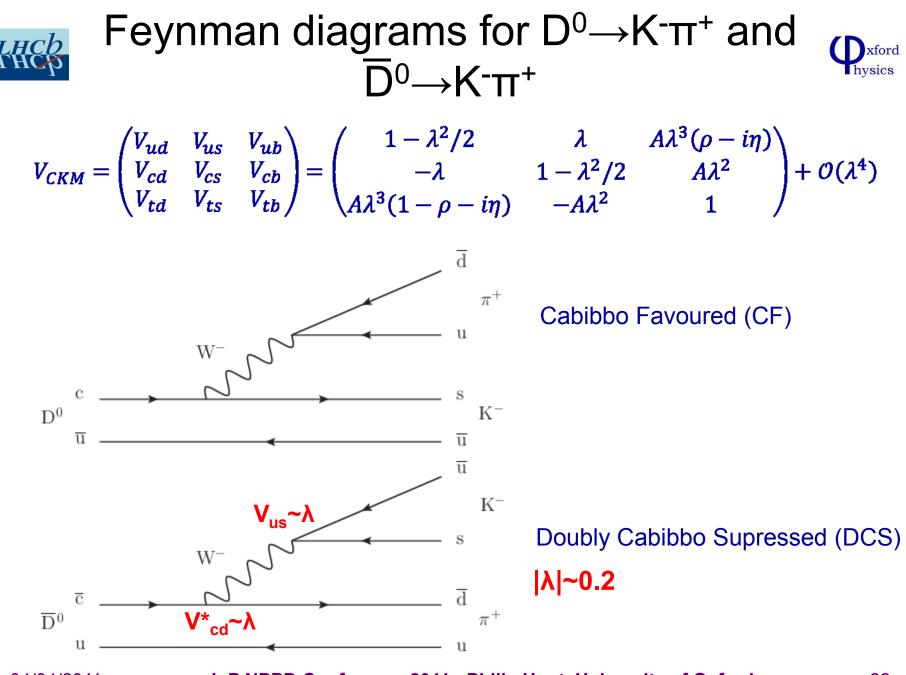
- Decays with internal loops in the Standard Model (SM) are sensitive to new physics (NP) processes
 - NP can distort the angles of the unitary triangle
- Measuring γ from "tree-level" processes gives a SM benchmark, since they are much less sensitive to NP



Measuring γ from interference between $B^+{\rightarrow}D^0K^+$ and $B^+{\rightarrow}\overline{D}{}^0K^+$



• γ can be determined from tree-level processes by exploiting the interference of B⁺ \rightarrow D⁰K⁺ and B⁺ \rightarrow \overline{D}^{0} K⁺ when decaying to the same final state:



- Gronau-London-Wyler (GLW) method (left):
 - D decays to a CP eigenstate, e.g. K⁺K⁻
 - Since r_B is relatively small (~0.1), the upper process dominates, so low γ sensitivity
- Atwood-Dunietz-Soni (ADS) method (right):
 - D decays to non-CP eigenstate, e.g. $K^+\pi^-$
 - Since the upper process is supressed, the interference is large, so maximal γ sensitivity
 - State-specific amplitudes r_D well-measured from charm decays for many modes
 - At least one other final-state (e.g. $K^+3\pi$) needed to constrain all parameters

04/04/2011

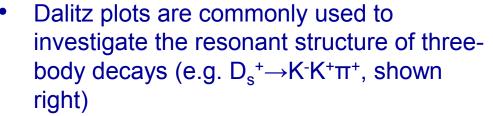
04/04/2011

04/04/2011

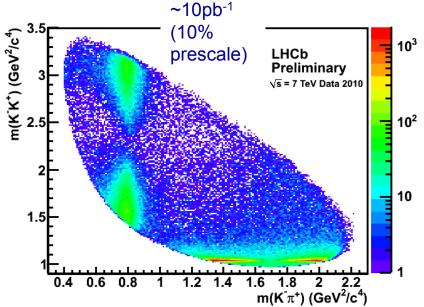
Using ADS method for multi-body modes Φ_{hysics}

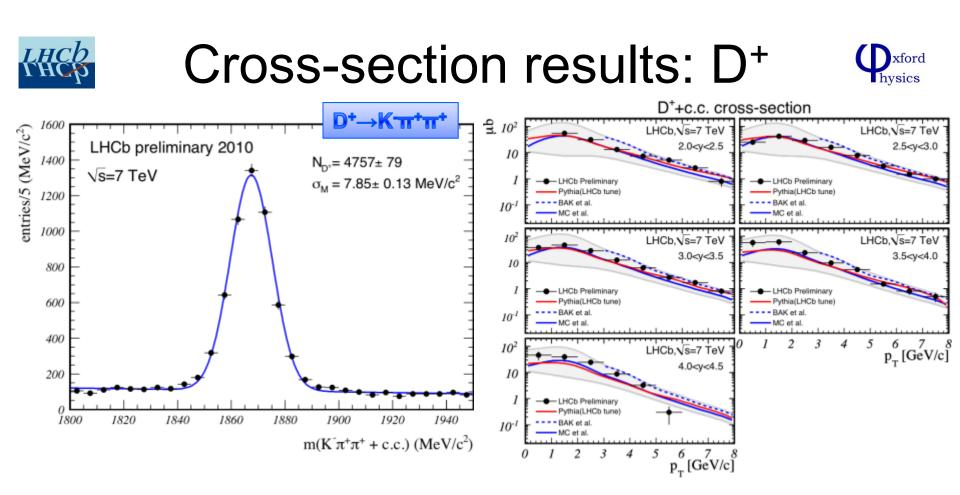
- The ADS method can be applied to multi-body final states such as $D^0 \rightarrow K^+\pi^-\pi^0$ and $D^0 \rightarrow K^+\pi^-\pi^+\pi^-$ ($D^0 \rightarrow K^+3\pi$)
- However, these are complicated by the fact that the D⁰ or D⁰ can decay to the final state via several short-lived intermediate resonances
 - These resonances can interfere with one another, so the amplitude ratio and strong phase difference can vary over the phase space
- There are two ways to account for this:
 - "Pseudo-two-body" (coherence factor) method
 - Amplitude model

Coherence Factor

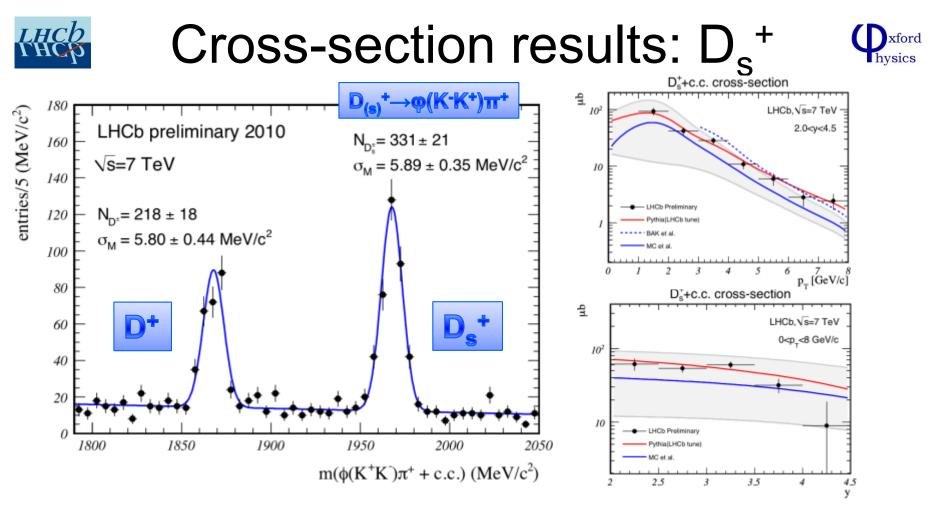

 An additional parameter is introduced into the two-body amplitude equations called a coherence factor, which quantifies the interference between the resonances:

$$-R_{K3\pi}e^{-i\delta_D}{}^{K3\pi} = \frac{\int A_{K-3\pi}(\vec{x})A_{K+3\pi}(\vec{x})d\vec{x}}{\int |A_{K-3\pi}(\vec{x})|^2d\vec{x}\int |A_{K+3\pi}(\vec{x})|^2d\vec{x}}$$


- Can take any value in range 0-1
- Low coherence factor means the resonances are largely incoherent => low γ sensitivity
- The coherence factors for D⁰→Kππ⁰ and D⁰→Kπππ have been measured by the CLEO-c collaboration (Phys.Rev.D80,(2009)031105)
- For Kπππ, the central value is quite small, albeit with very large errors (0.33^{+0.26}-0.23)
- Reduction in γ sensitivity, but heightened sensitivity to $r_B (0.103^{+0.015}_{-0.024})$ [CKMFitter, ICHEP 2010]


Amplitude model

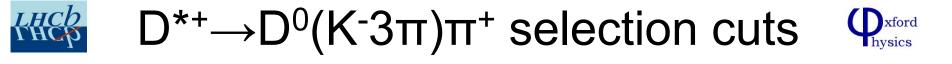
- Such plots can be used to fit for the amplitudes and phases of the resonances
- Things are more complicated for decays with four final-state tracks. e.g. D⁰→K⁺3π, as we have to deal with a 5D Dalitz space



- For neutral D decays, it is necessary to consider events in which the D comes from a D*± decay, since the charge of the pion tells us whether a D⁰ or D⁰ decayed
- A full amplitude model already exists for the Cabibbo favoured (CF) D⁰→K⁻3π, and we are working on incorporating the model into the LHCb framework
- There is no amplitude model yet for the doubly Cabibbo suppressed (DCS)
 D⁰→K⁺3π. We plan to exploit the vast number of charm events that LHCb will generate to determine the first amplitude model for this decay channel

 $\sigma(D^+;p_T < 8 \text{GeV/c}, 2 < y < 4.5) = 717 \pm 39(\text{stat.}) \pm 26(\text{uncorr.}) \pm 98(\text{corr.}) \mu b$ $\sigma(D^+;p_T < 8 \text{GeV/c}, 2 < y < 4.5) = 717 \pm 109 \mu b$ PYTHIA prediction: $\sigma(D^+;p_T < 8 \text{GeV}, 2 < y < 4.5) = 509 \pm 1 \mu b$

04/04/2011


Cross-section results

- Cross-sections results in agreement with MC and theory predictions
- Calculating open charm cross-section for each analysis (in fitted pt and y range), and performing a least-squares fit to a constant:

 $- \sigma(pp \rightarrow H_cX, 2 < y < 4.5, p_T < 8GeV/c) = 1.23 ± 0.19mb, χ²/ndf = 2.28/3$

- Using PYTHIA to extrapolate to 4π, we obtain the following (preliminary) total open charm cross-section:
 - σ(pp→cc̄)=6.10±0.93mb

- -7.5< Δ m-(Δ m)_{PDG}<15MeV/c² D⁰ daughter max(IP χ^2) > 30
- |m_{D0}-m_{PDG}|<75MeV/c²
- D* DOCA < 0.45mm
- D⁰ DOCA < 0.5mm
- D^0 daughter $p_T > 300 MeV/c$
- D^0 daughter p > 3GeV/c
- D*/D⁰ p_T > 3GeV/c
- Bachelor $\pi p_T > 70 MeV/c$
- D^* vertex $\chi^2/d.o.f. < 20$
- D^0 vertex $\chi^2/d.o.f. < 10$
- D⁰ daughter IP $\chi^2 > 1.7$

- D⁰ FD χ² > 48
- $D^0 IP \chi^2 > 30$
- D⁰ DIRA > 0.9998
- Track $\chi^2/d.o.f. < 5$
- Kaon $\Delta \ln L(K-\pi) > 0$
- Pion Δ In L(π -K) > -3*

* No PID cut applied to bachelor $\boldsymbol{\pi}$

 $B^+ \rightarrow (K^+ 3\pi)_D K^+$ stripping cuts

Cut variable	B2DXWithDhh	B2DXWithD2hhhh	
B^{\pm} mass window	$\pm 500 \text{ MeV}/c^2$	$\pm 500 \text{ MeV}/c^2$	
D^0 mass window	$\pm 100 \text{ MeV}/c^2$	$\pm 100 \text{ MeV}/c^2$	
$D^0 p_T$	> 1 GeV/c	> 2 GeV/c	$ D^+ (k^+ 2\pi) k^+$
D^0 daughter $K^{\pm} p_T$	$> 250 \mathrm{MeV}/c$	$> 250 \mathrm{MeV}/c$	$$ B ⁺ \rightarrow (K ⁺ 3 π) _D K ⁺
D^0 daughter $\pi^{\pm} p_T$	$> 250 \mathrm{MeV}/c$	$> 150 \mathrm{MeV}/c$	
D^0 daughter $\pi^0 p_T$	_	_	
Bachelor p_T	$> 500 \mathrm{MeV}/c$	$> 500 \mathrm{MeV}/c$	
D^0 daughter K^{\pm} $ \vec{p} $	> 2 GeV/c	> 3 GeV/c	
D^0 daughter $\pi^{\pm} \vec{p} $	> 2 GeV/c	> 2 GeV/c	
	←		$ B^+ \rightarrow (K^+ \pi^-)_D K^+$
Bachelor $ \vec{p} $	> 5 GeV/c	> 5 GeV/c	
B^{\pm} IP χ^2	< 25	< 25	
D^0 daughter K^{\pm} , π^{\pm} sIP χ^2	> 4	> 4	
$\max(D^0 \text{ daughter } K^{\pm}, \pi^{\pm})$	> 40	> 40	
sIP χ^2)			
Bachelor sIP χ^2	> 16	> 16	
D^0 FD χ^2	> 36	> 36	
B^{\pm} DOCA	$< 1.5 \mathrm{mm}$	$< 1.5 \mathrm{mm}$	
$D^0 \max(\text{DOCA})$	$< 1.5 \mathrm{mm}$	$< 1.5 \mathrm{mm}$	
B^{\pm} DIRA	> 0.9998	> 0.9998	
D^0 DIRA	> 0.9	> 0.9	
B^{\pm} lifetime	$> 0.2 \mathrm{ps}$	$> 0.2 \mathrm{ps}$	
B^{\pm} vertex χ^2 / d.o.f.	< 12	< 12	
D^0 vertex χ^2 / d.o.f.	< 12	< 10	
D^0 daughter K^{\pm} , π^{\pm} track χ^2	< 5	< 5	
/ d.o.f.			
Bachelor track χ^2 / d.o.f.	< 5	< 5	

04/04/2011

IoP NPPD Conference 2011 - Philip Hunt, University of Oxford

xford

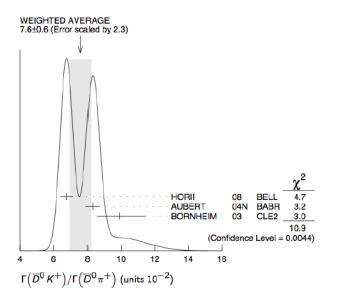
$B^+ \rightarrow (K^+ 3\pi)_D K^+$ offline cuts

Cut name	Cut name
Cut name Preselected candidates $\geq 3 \ D^0$ daughters with $p_T > 240$ MeV/c $\geq 2 \ D^0$ daughters with $p_T > 400$ MeV/c $\geq 3 \ D^0$ daughters with sIP $\chi^2 > 16$ $\geq 2 \ D^0$ daughters with sIP $\chi^2 > 16$ $\geq 2 \ D^0$ daughters with sIP $\chi^2 > 30$ B^{\pm} IP $\chi^2 < 9$ Bachelor K sIP $\chi^2 > 28$ D^0 max(DOCA) < 0.3 mm B^{\pm} DOCA < 0.1 mm B^{\pm} FD $\chi^2 > 252$ B^{\pm} DIRA > 0.99995 D^0 DIRA > 0.999 D^0 vertex $\chi^2/d.o.f. < 6$ D^0 daughter K $\Delta \ln L (K - \pi) > 0$ D^0 daughter $\pi \ \Delta \ln L (K - \pi) < 10$	Preselected candidates D^0 daughter $p_T > 330$ MeV/c D^0 daughter sIP $\chi^2 > 21$ B^{\pm} IP $\chi^2 < 9$ Bachelor K sIP $\chi^2 > 28$ D^0 max(DOCA) < 0.3 mm B^{\pm} DOCA < 0.1 mm B^{\pm} FD $\chi^2 > 76$ D^0 FD $\chi^2 > 252$ B^{\pm} DIRA > 0.99995 D^0 DIRA > 0.992 D^0 vertex χ^2 / d.o.f. < 6 D^0 daughter K $\Delta \ln L (K - \pi) > 0$ D^0 daughter $\pi \Delta \ln L (K - \pi) < 10$ Bachelor K $\Delta \ln L (K - \pi) > -2$ D^0 mass window = $\{-40, +30\}$
Bachelor K $\Delta \ln L (K - \pi) > -2$ D^0 mass window = {-40, +30} MeV/ c^2	MeV/c^2

 $B^+ \rightarrow (K^+ 3\pi)_D K^+$

 $B^+ \rightarrow (K^+ \pi)_D K^+$

04/04/2011


Measuring B(B⁻ \rightarrow D⁰K⁻)/B(B⁻ \rightarrow D⁰π⁻)

32

PDG 2010: K. Nakamura *et al.* (Particle Data Group), J. Phys. G **37**, 075021 (2010)

Well measured by BaBar and Belle Ratio (approx.) the same for all final states

- Currently considering Kπ, KK, ππ and K3π
- Can do a lot of the groundwork for measuring γ using channels with low sensitivity to the key parameters
 - Much work done to understand and fit our backgrounds
 - Fitter code blinded to $\gamma,\,r_{B}$ and δ_{B}
- Currently finalising the results and determining systematic errors

