Doubly Charged Higgs Bosons at Hadron Colliders

Andrew Akeroyd

NExT Institute, SHEP, University of Southampton

- Higgs Triplet Model (HTM) and doubly charged scalars $(H^{\pm\pm})$
- Leptonic decay channels $H^{\pm\pm} \to \ell^{\pm}\ell^{\pm}$
- Production of $H^{\pm\pm}$ at hadron colliders
- Searches for $H^{\pm\pm}$ at Tevatron and at LHC

Collaborators: Mayumi Aoki (Kanazawa), Hiroaki Sugiyama (Ritsumeikan), Cheng-Wei Chiang (Nat.Cent.Univ),

Naveen Gaur (Delhi): Phys.Rev.D72,035011 (2005), Phys.Rev.D77,075010 (2008), JHEP1011,005 (2010)

IOP Meeting, University of Glasgow, 05 April 2011

Higgs Triplet Model (HTM)

SM Lagrangian with one $SU(2)_L$ I=1,Y=2 Higgs triplet

$$\Delta = \begin{pmatrix} \delta^{+}/\sqrt{2} & \delta^{++} \\ \delta^{0} & -\delta^{+}/\sqrt{2} \end{pmatrix}$$

Higgs potential invariant under $SU(2)_L \otimes U(1)_Y$: $m^2 < 0$, $M_{\Delta}^2 > 0$

$$V = m^{2}(\Phi^{\dagger}\Phi) + \lambda_{1}(\Phi^{\dagger}\Phi)^{2} + M_{\Delta}^{2}\operatorname{Tr}(\Delta^{\dagger}\Delta)$$

$$+\lambda_i$$
 (quartic terms) $+\frac{1}{\sqrt{2}}\mu(\Phi^T i\tau_2\Delta^{\dagger}\Phi) + h.c$

Triplet vacuum expectation value:

$$<\delta^0>=v_\Delta\sim \mu v^2/M_\Delta^2$$
 $(v_\Delta<5~GeV~{\rm to~keep}~\rho\sim1)$

Neutrino mass in Higgs Triplet Model (HTM)

No additional (heavy) neutrinos: $\mathcal{L} = h_{ij}\psi_{iL}^TCi\tau_2\Delta\psi_{jL} + h.c$ $\psi_{iL}^T = (\nu_i, \ell_i); i = e, \mu, \tau$

Neutrino mass from triplet-lepton-lepton coupling (h_{ij}) :

$$h_{ij}\left[\sqrt{2}\,\bar{\ell}_i^c P_L \ell_j \delta^{++} + (\bar{\ell}_i^c P_L \nu_j + \bar{\ell}_j^c P_L \nu_i) \delta^{+} - \sqrt{2}\,\bar{\nu}_i^c P_L \nu_j \delta^{0}\right] + h.c$$

Light neutrinos receive a Majorana mass: $\mathcal{M}^{\nu}_{ij} \sim v_{\Delta} h_{ij}$

$$h_{ij} = \frac{1}{\sqrt{2}v_{\Delta}} V_{\text{PMNS}} diag(m_1, m_2, m_3) V_{\text{PMNS}}^T$$

$$(V_{\text{PMNS}} = V_{\ell}^{\dagger} V_{\nu}; \text{ take } V_{\ell} = I \text{ and } V_{\nu} = V_{\text{PMNS}})$$

Production of $H^{\pm\pm}$ at Hadron Colliders

First searches at a Hadron collider in 2003 CDF,D0

$$\mathcal{L} = i \left[\left(\partial^{\mu} H^{--} \right) H^{++} \right] \left(g W_{3\mu} + g' B_{\mu} \right) + h.c$$

- ullet $\sigma_{H^{++}H^{--}}$ is a simple function of $m_{H^{\pm\pm}}$ Barger 82, Gunion 89, Raidal 96
- ullet $\sigma_{H^{++}H^{--}}$ has no dependence on Yukawa coupling h_{ij}

Strategy of most recent search by Tevatron

- $H^{\pm\pm}$ decays via h_{ij} to same charge $ee, \mu\mu, \tau\tau, e\mu, e\tau, \mu\tau$
- Four leptons $(\ell^+\ell^+\ell^-\ell^-)$ from pair production of $H^{++}H^{--}$
- For $H^{\pm\pm} \to e^{\pm}e^{\pm}$, $e^{\pm}\mu^{\pm}$, $\mu^{\pm}\mu^{\pm}$, sufficient to search for

three leptons of high momentum with two leptons

having the same charge

→ Six distinct signatures

$$e^{\pm}e^{\pm}e^{\mp}$$
, $e^{\pm}e^{\pm}\mu^{\mp}$, $e^{\pm}\mu^{\pm}e^{\mp}$, $e^{\pm}\mu^{\pm}\mu^{\mp}$, $\mu^{\pm}\mu^{\pm}e^{\mp}$ and $\mu^{\pm}\mu^{\pm}\mu^{\mp}$

- Only $\mu^{\pm}\mu^{\pm}\mu^{\mp}$ has been searched for (1.1 fb⁻¹ of data)
- \bullet Tevatron currently has 7 fb⁻¹, and expects 9 \to 12 fb⁻¹

Tevatron search (D0, 2007) for $p\overline{p} \rightarrow H^{++}H^{--}$, $H^{\pm\pm} \rightarrow \mu^{\pm}\mu^{\pm}$

Selection	Preselection	Isolation	$\Delta \phi < 2.5$	Like sign	Third muon
	S1	S2	S3	S4	S5
$Z/\gamma^* o \mu^+\mu^-$	69181 ± 4642	58264 ± 3910	4936 ± 333	5.3 ± 1.6	< 0.01
Multijet	4492 ± 120	194 ± 18	18 ± 2	6.3 ± 0.8	0.2 ± 0.1
$Z/\gamma^* ightarrow au^+ au^-$	328 ± 25	269 ± 21	20 ± 3	< 0.01	< 0.01
$tar{t}$	38 ± 3	20 ± 1	14 ± 1	0.03 ± 0.01	< 0.01
WW	40 ± 3	34 ± 2	20 ± 1	< 0.01	< 0.01
WZ	19 ± 1	16 ± 1	11 ± 1	2.95 ± 0.20	1.62 ± 0.11
ZZ	10 ± 1	9 ± 1	5 ± 1	0.63 ± 0.05	0.47 ± 0.03
Total background	74108 ± 4644	58806 ± 3910	5024 ± 333	15.2 ± 1.8	2.3 ± 0.2
$M_{H^{\pm\pm}}=$ 140 GeV	20.5 ± 2.7	18.5 ± 2.4	16.3 ± 2.1	11.6 ± 1.5	10.1 ± 1.3
Data	72974	58763	4558	16	3

Signal is defined as $\mu^+\mu^+\mu^-$ or $\mu^-\mu^-\mu^+$

Tevatron search (D0, 2007) for $p\overline{p} \rightarrow H^{++}H^{--}$, $H^{\pm\pm} \rightarrow \mu^{\pm}\mu^{\pm}$

Mass limit $m_{H^{\pm\pm}} > 150$ GeV, assuming BR $(H^{\pm\pm} \to \mu^\pm \mu^\pm) = 100\%$

Current status of Tevatron searches

	ee	$e\mu$	$\mu\mu$	e au	μau	au au
21	> 133 GeV	> 113 GeV	> 136 GeV	X	X	×
31			> 150 GeV	> 114 GeV	> 112 GeV	
41				> 114 GeV	> 112 GeV	

- \bullet > 150 GeV limit uses 1.1 fb⁻¹
- \bullet Other limits use 0.24 fb⁻¹ or 0.35 fb⁻¹
- \bullet Run II has accumulated \sim 7 fb $^{-1}$
- Expect up to 12 fb^{-1} by 2011
- ullet Sensitivity to $m_{H^{\pm\pm}} \sim$ 250 GeV in $ee, e\mu, \mu\mu$ channels

Single $H^{\pm\pm}$ production via $qq' \to H^{\pm\pm}H^{\mp}$

Tevatron search assumes $q\overline{q} \rightarrow \gamma, Z \rightarrow H^{++}H^{--}$, but...

$$\mathcal{L} = ig \left[\left(\partial^{\mu} H^{+} \right) H^{--} - \left(\partial^{\mu} H^{--} \right) H^{+} \right] W_{\mu}^{+} + h.c..$$

- ullet $\sigma_{H^{\pm\pm}H^{\mp}}$ is a function of $m_{H^{\pm\pm}}$ and $m_{H^{\pm}}$ Barger 82, Dion 98
- Similar magnitude to $\sigma(p\overline{p} \to H^{++}H^{--})$ for $m_{H^{\pm\pm}} \sim m_{H^{\pm}}$

Impact of
$$qq' o H^{\pm \pm} H^{\mp}$$

Tevatron search is already sensitive to $qq' \rightarrow H^{\pm\pm}H^{\mp}!$

- $\ell^{\pm}\ell^{\pm}\ell^{\mp}$ search is sensitive to $H^{\pm\pm}H^{\mp}$ for $H^{\pm}\to\ell^{\pm}\nu$
- \rightarrow Define inclusive cross section for $\ell^{\pm}\ell^{\pm}\ell^{\mp}$ search:

$$\sigma_{H^{\pm\pm}} = \sigma(p\overline{p} \to H^{++}H^{--}) + 2\sigma(p\overline{p} \to H^{++}H^{-})$$
 Akeroyd, Aoki 05

- ullet Enables larger values of $m_{H^{\pm\pm}}$ to be probed in $\ell^\pm\ell^\pm\ell^\mp$ channels
- Not yet included in searches at the Tevatron

$$\sigma_{H^{\pm\pm}} = \sigma(p\overline{p} \to H^{++}H^{--}) + 2\sigma(p\overline{p} \to H^{++}H^{-})$$

Summary for $qq' \rightarrow H^{\pm\pm}H^{\mp}$

- $\sigma(qq' \to H^{\pm \pm}H^{\mp})$ can be as large as $\sigma(q\overline{q} \to H^{++}H^{--})$
- ullet Can enhance the discovery potential for $H^{\pm\pm}$ in 3ℓ search channels
- ullet Now receiving attention as a main production mechanism for $H^{\pm\pm}$
- First simulated at LHC in 2008 Han et al, Del Aguila et al
- Not included in Pythia (frequently used by experimentalists)
- Hopefully Tevatron will include it in next search for $H^{\pm\pm}$

March 2011: First search for $H^{\pm\pm}$ at LHC by CMS

- ullet Included both $qq' o H^{\pm \pm} H^{\mp}$ and $q\overline{q} o H^{++} H^{--}$
- ullet Performed both 3ℓ and 4ℓ searches
- Some limits already better than at the Tevatron

	ee	$e\mu$	$\mu\mu$	e au	μau	$\tau \tau$
Tevatron	> 133 GeV	> 113 GeV	> 150 GeV	> 114 GeV	> 112 GeV	X
LHC	> 144 GeV	> 154 GeV	> 156 GeV	> 106 GeV	> 106 GeV	X

Conclusions

- Higgs Triplet Model generates tree-level neutrino mass
- $H^{\pm\pm} \to \ell^{\pm}\ell^{\pm}$ a distinctive signal with fairly low backgrounds
- $H^{\pm\pm}$ produced via $pp \to H^{++}H^{--}$ and $pp \to H^{\pm\pm}H^{\mp}$
- $pp \to H^{\pm \pm}H^{\mp}$ has recently started to get recognition
- Tevatron searches have used only a fraction of the data
- LHC searches have already started
- Very promising future for $H^{\pm\pm}$ searches