

Colliders at the energy frontier

Brian Foster (JAI, Oxford)

IoP NPPD Conference Glasgow

Lessons of history

Colliders

JAI

	T	en	tati	ve s	cł	nec	dul	e r	le	W			Color (R&D R&D to	ode cDR				appro	oved	envi <u>sa</u>	<u>sed/pro</u>	pose
The state) of			pro	jе	ects	5						Techni Constr Opera	ical des uction tion	sign to	TDR					7.1	
Last update: 28/07/2010	Project	2010	2011 201	2 2013 2014	2015	5 2016 2	2017 201	18 2019	2020	2021	2022	2023	2024	2025	2026	2027 2	2028	2029	2030	2031	2032	2033
	LHC to nominal	7Te\	/ Intere	14 TeV		linac4P SB		10^3	84													
Protons	LHC-HL									5.10)^34	with	lum	inosi	ty le	veling	5					
	LHC-HE									New magnets										33 TeV		
		500 GeV																				
Linear															500	GeV		3 Te	V	ŕ		
Colliders	PWFA		FA	CET					FAC	ET-II	ĩ		-	1								
	LWFA		BE	LLA															-			
Muons &																						
Neutrinos	Neutrino Fact																					
	Project X/FNAL																					
	·								RR o	or LR	insta	alati	on						Том	/ards	HE-L	HeC
e-hadrons	eRHIC/BNL			CD0							upg	grade	e froi	n 5 x	(325	GeV		t	:0 3	0 x 3	25 Ge	V
	ELIC/JLAB									MEL	.IC			_	•					ELIC		
	ENC/GSI							_						shar	ed o	perat	ion	HESR	R/EN	<u>с</u>		
lons	LHIC/CERN	2.8T	eV/n	5.5 TeV/	n: P	b-Pb, p	o-Pb, A	. r-Ar ,	•		i			1	i	1		1	Tow	/ards	HE-L	HeC
	RHIC II/BNL		_																			
	NICA/DUBNA																					
	FAIR/GSI																					
Beauty	SuperKEKB/KEK								50/a	ab												
Factories	SuperB/LNF																					

Why lepton colliders?

Simple particles

- Well defined: energy/ang. mom.
- E can be scanned precisely
- Particles produced democratically
- Final states generally fully reconstructable

BUT – Synchrotron Rad. => Massive particles or LC!

Parameters

Tec	hno]	logv
		-

	Cen	tre-o	f-mass	energy	(GeV
--	-----	-------	--------	--------	------

Total (Peak 1%) luminosity (10³⁴⁾

Total site length (km)

Loaded accel. gradient (MV/m)

Main linac RF frequency (GHz)

Beam power/beam (MW)

Bunch charge (10⁹ e+/-)

Bunch separation (ns)

Beam pulse duration (ns)

Repetition rate (Hz)

Hor./vert. norm. emitt (10⁻⁶/10⁻⁹)

Hor./vert. IP beam size (nm)

Hadronic events/crossing at IP

Coherent pairs at IP

Wall plug to beam transfer eff

Total power consumption (MW)

B. Foster - Glasgow 4/11

	CLIC								
500	3000								
2.3(1.4)	5.9(2.0)								
13.0	48.3								
80	100								
12 (Norm	al Conducting)								
4.9	14								
6.8	3.72								
	0.5								
177	156								
	50								
4.8/25	0.66/20								
202 / 2.3	40 / 1								
0.19	2.7								
100	3.8 10 ⁸								
7.5%	6.8%								
241	568								

ILC SCRF progress continues JAI.

ILC SCRF progress continues JAI

ILC SCRF proof of principle FLASH @ DESY

Full beam-loading long pulse operation \rightarrow "S2"

ILC COST

Summary **RDR "Value" Costs Total Value Cost (FY07)** 4.80 B ILC Units Shared **1.82 B Units Site Specific 14.1 K person-years** ("explicit" labor = 24.0 M person-hrs @ 1,700 hrs/yr) 1 ILC Unit = \$1 (2007)alue = 6.62 B LC Units

The reference design was "frozen" on 1-12-06 for RDR production, including costs.

Important to realise this is a snapshot; design will continue to evolve, due to R&D, accelerator studies & value engineering.

The value costs have already been reviewed many times; all reviews have been very positive and generally consider there is scope for further cost reductions.

Towards the TDR in 2012

- Single Tunnel for main linac
- •Move positron source to end of linac
- Reduce number of bunches factor of two (lower power)
- Reduce size of damping rings (3.2km)
- Integrate central region

•Single stage bunch compressor ????

B. Foster - Glasgow 4/11

Towards the TDR in 2012

B. Foster - Glasgow 4/11

Colliders

13

What about LHC results?

- Intuitively, the better the LHC SUSY exclusion limits, the less likely there will be SUSY particles kinematically accessible at a 500 GeV linear collider
- Try to quantify this: y-axis: % of generated models which escape LHC observation which have no SUSY particles accessible at 500 GeV LC

Understanding in gradient limits and inventing breakthrough solutions are responsible for gradient progresses. This has been a tradition in SRF community and rapid gradient progress continues. Up to 60 MV/m gradient has been demonstrated in 1-cell 1300 MHz Nb cavity. 45-50 MV/m gradient demonstration in 9-cell cavity is foreseen in next 5 years.

B. Foster - Glasgow 4/11

From 500 GeV -> 1 TeV

B. Foster - Glasgow 4/11

B. Foster - Glasgow 4/11

ALL TY OF OXYON XTO	Parameters	S JAI
Technology	ILC	LIC
Centre-of-mass energy (GeV)	500	3000
Total (Peak 1%) luminosity (10 ³⁴⁾	2.0(1.5)	5.9(2.0)
Total site length (km)	31	48.3
Loaded accel. gradient (MV/m)	31.5	100
Main linac RF frequency (GHz)	1.3 (Super Cond.)	l Conducting)
Beam power/beam (MW)	20	14
Bunch charge (10 ⁹ e+/-)	20	3.72
Bunch separation (ns)	176	0.5
Beam pulse duration (ns)	1000	156
Repetition rate (Hz)	5	50
Hor./vert. norm. emitt (10 ⁻⁶ /10 ⁻⁹)	10/40	0.66/20
Hor./vert. IP beam size (nm)	640/5.7	40 / 1
Hadronic events/crossing at IP	0.12	2.7
Coherent pairs at IP	10	3.8 10 ⁸
Wall plug to beam transfer eff	9.4%	6.8%
Total power consumption (MW)	216	568
-oster - Glasgow 4/11	Colliders	

20

.

Demonstrate Drive Beam generation (fully loaded acceleration, beam intensity and bunch frequency multiplication x8)

- Demonstrate RF Power Production and test Power Structures
- Demonstrate Two Beam Acceleration and test Accelerating Structures

RF Structure Breakdown

0 [1] 220 no. 1400 h

Scaled @ 100 MV/m (unloaded) Accelerating Gradient and 180 ns pulse length)

B. Foster - Glasgow 4/11

B. Foster - Glasgow 4/11

Muon Collider

Muon Collider Conceptual Layout

Project X Accelerate hydrogen ions to 8 GeV using SRF technology.

ተ

North

Compressor Ring Reduce size of beam.

Target Collisions lead to muons with energy of about 200 MeV.

Muon Cooling Reduce the transverse motion of the muons and create a tight beam.

Initial Acceleration In a dozen turns, accelerate muons to 20 GeV.

Recirculating Linear Accelerator In a number of turns, accelerate muons up to 2 TeV using SRF technology.

Collider Ring Located 100 meters underground. Muons live long enough to make about 1000 turns.

Center of mass energy E_{cm} (GeV)

-(m

-M

-M

-N

-T

PHYSICS

COST

Muon Collider Cooling

- Ionization cooling analogous to familiar SR damping process in electron storage rings
 - energy loss (SR or dE/ds) reduces p_x , p_y , p_z
 - energy gain (RF cavities) restores only p_z
 - repeating this reduces p_x , p_z (\Rightarrow 4D cooling)

Muon Collider Cooling

Need 6D cooling (emittance exchange)

increase energy loss for high-energy compared with low-energy muons

Muon Collider Cooling

• Final cooling to 25 μ m emittance requires strong solenoids

- not exactly a catalog item \Rightarrow R&D effort
- latest design uses 30 T

45 T hybrid device exists

LHeC

Two options:

Ring-Ring

Power Limit of 100 MW wall plug "ultimate" LHC proton beam **60 GeV** e[±] beam

→L = 2 10³³ cm⁻²s⁻¹ → O(100) fb⁻¹

LINAC Ring Pulsed, 60 GeV: ~ 10^{32} High luminosity: Energy recovery: P=P₀/(1- η) $\beta^*=0.1m$ [5 times smaller than LHC by reduced I*, only one p squeezed and IR quads as for HL-LHC] L = 10^{33} cm⁻²s⁻¹ \rightarrow O(100) fb⁻¹

B. Foster - Glasgow 4/11

B. Foster - Glasgow 4/11

LHeC Ring Option

- Installation of an e ring is challenging
- Modifications of the existing installations will be necessary
- No show stopper

This is the big question for the ring option (interference, activation,..)

B. Foster - Glasgow 4/11

AND	Te Te	en	tal	tive	scł	heo	dule	e ne	W			Color R&D	code				appr	oved	envi <u>sa</u>	ged/	propose
2 01.04 MILLS	E (1						K&D t Techn	o CDR ical de	sign to						4	T
13	13			p	roje	ects	S					Consti	uction								
A L	1				2							Opera	tion								_
Last update: 28/07/2010	Project	2010 2	011 20	012 2013	2014 2015	5 2016 2	2017 2018	8 2019 20	20 2021	L 2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	203	2 2033
	LHC to nominal	7TeV	nt on	n 14 Te	eV	linac4P SB		10^3 <mark>4</mark>													
Protons	LHC-HL								5.1	0^34	with	lum	inosi	ty le	velin	g					
	LHC-HE										Nev	/ ma	gnet	S						33	TeV
Linear	ILC								500) Ge\	1										
	CLIC													500	GeV		3 Te	V			
Colliders	PWFA		E.	ACET				FA	CET-I												
	LWFA		В	ELLA																	
Muons & Neutrinos	Muon Collider																				
	Neutrino Fact																				
	Project X/FNAL																				
e-hadrons	LHeC							RI	l or Ll	R inst	alati	on						Том	vards	HE	-LHeC
	eRHIC/BNL			CD0						up	grade	e fro	m 5 x	c 325	GeV	1	t	o 3	0 x 3	25 (GeV
	ELIC/JLAB								ME	LIC									ELIC	•	
	ENC/GSI												shar	ed o	pera	tion	HESF	R/EN	С		
lons	LHiC/CERN	2.8Te	eV/n	5.5 T	ˈeV/n: Pl	b-Pb, <mark>p</mark>	o-Pb, Ar	<mark>-Ar,</mark> .										Том	vards	HE	-LHeC
	RHIC II/BNL																				
	NICA/DUBNA																				
	FAIR/GSI																				
Beauty	SuperKEKB/KEK							50	/ab												
Factories	SuperB/LNF																				

Rolf Heuer: 3/4. 12. 09 at CERN: From the Proton Synchroton to the Large Hadron Collider 50 Years of Nobel Memories in High-Energy Physics

B. Foster - Glasgow 4/11

B. Foster - Glasgow 4/11

Summary and Outlook

- None of the projects I have discussed are very near realisation
- ILC technically mature but cost.
- **CLOSE** Collaboration CLIC – much development required – cost?
- MC well, what can I say? It's a great idea....
- LHeC technically "OK" probably lots of details & a TDR.
- We have to be realistic about technical maturity, schedule and cost – I don't believe that we are at the moment and politicians can smell it.
- If we want a facility in addition to LHC within YOUR active lifetime – let alone mine - we need:
- FOCUS REALISM DETERMINATION + LUCK