

A search for H->WW->lvlv with first ATLAS data

Gemma Wooden
University of Oxford
On behalf of the ATLAS collaboration

Institute of Physics Nuclear and Particle Physics Divisional Conference

University of Glasgow

4th – 7th April 2011

Motivation

- With 1 fb⁻¹ ATLAS can exclude a Higgs boson with $129 < M_H < 460 \text{ GeV}$
- Can also achieve 3 σ evidence with 1 fb-1 for Higgs masses between $139 < M_H < 180 \text{ GeV}$

- H->WW is the dominant decay mode in the intermediate mass region
- This channel alone provides main contribution to exclusion potential in this region

2

Overview of Higgs search

 Higgs produced via gluon-gluon fusion (ggF) and vector-boson fusion (VBF):

- Search for Higgs via H->WW->|v|v, $| = e, \mu$
- Separate search into 0, 1 and 2 jet bins
- Select events with two well-identified leptons
- Further separate into ee, $\mu\mu$ and $e\mu$ channels
- Apply preselection then further cuts, tailored to the jet channel

Obtained **first LHC Higgs search** result (ATLAS-CONF-2011-005)

Preselection requirements

- Require $M_{\parallel} > 15$ GeV and $|M_{\parallel} M_{7}| > 10$ GeV in ee and $\mu\mu$ channels
- Additionally require missing E_T (MET) > 30 GeV
- Then separate into 0, 1 and 2 jet channels

MET distribution after requiring 2 leptons

Number of jets after MET cut

Missing E_{_} [GeV]

Z background estimation

- Use Z dominated control regions to estimate Z background in signal regions
- Correct for mis-modelling of MET tails using events in Z peak region

$$A_{data}^{estimate} = D_{data} imes rac{A_{MC}}{D_{MC}} imes rac{B_{data}}{E_{data}} rac{E_{MC}}{B_{MC}}$$

- Calculate ratios A/D & B/E as a function of MET cut
- Fit with an exponential & evaluate at MET cut used in analysis (30 GeV)
- Good agreement between MC and data-driven estimate:
 - Estimate/MC = 1.02 for ee channel and 0.98 for $\mu\mu$ channel

Top background estimation

- Use WW sample with >=1 b-jet as a ttbar control region
- This is completely dominated by top, with contamination from other backgrounds much less than 1 event after preselection

 Estimate top background in 0 b-jet signal region using:

$$N_{data}^{SR} = N_{data}^{CR} imes rac{N_{MC}^{SR}}{N_{MC}^{CR}}$$

 Improves agreement between data and MC

0 jet channel

- Apply additional requirement of P_T|| > 30 GeV
- Then apply topological cuts to separate Higgs from WW:
 - $-M_{\parallel}$ < 65 GeV
 - $-\Delta\phi_{II}$ < 1.8
 - $0.75xM_{H} < M_{T} < M_{H}$

Plots are after all previous cuts have been applied

1 jet channel

- Require P_T^{tot} < 30 GeV
- Veto events with b-jets
- Use collinear approx. to calculate $M_{\tau\tau}$
- Remove events with $|M_{\tau\tau} M_z| < 25 \text{ GeV}$
- Cut on same topological variables as 0 jet channel

Plots are after all previous cuts have been applied

2 jet channel

- Apply cuts to select VBF events:
 - $\eta_{j1} x \eta_{j2} < 0$
 - $-\Delta\eta_{ii} > 3.8$
 - $M_{ii} > 500$
- Veto events with b-jets and central jets
- Cut on 0 & 1 jet channel topological variables

Results

. H→WW (m_∟=170 GeV)

- M_⊤ distributions:
 - After all other cuts for 0 and 1 jet channels
 - After $\eta_{j1}x\eta_{j2}$ cut for 2 jet channel (due to low statistics)
- Signal region lies within the dotted lines

50

100

200

150

250

m_T [GeV]

300

→ Data

Systematics

- The uncertainty on the extrapolation from CRs to SRs is taken into account
- Additional systematics also accounted for

	α_{WW}	α_{top}	α_{W+jets}	β_{top}	α_{Z+jets}		
	H + 0j analysis						
Total Uncertainty	7%	69%	52/46%		47/22%		
	H+1j analysis						
Total Uncertainty	19%	42%	52/46%	20%	30/21%		
	H + 2j analysis						
Total Uncertainty		44%	_	18%	42/29%		

Treatment in analysis
~ 14%,
$< 10\%$ for $p_{\rm T} > 15$ GeV and $ \eta < 4.5$,
$6-16\%$ as a function of $p_{\rm T}$
1% for $ \eta < 1.4$, 3% for $1.4 < \eta < 2.5$
Sampling term 20%, a small constant term has a large variation with η
1.2% for $p_{\rm T} < 20~{\rm GeV}$ and 0.4% for $p_{\rm T} > 20~{\rm GeV}$
η dependent scale offset in $p_{\rm T}$, up to $\sim 3.5\%$
$p_{\rm T}$ and η dependent resolution smearing functions, $\leq 10\%$
$p_{\rm T}$ dependent scale factor uncertainties, 10-12%,
up to 26%
Add/subtract object uncertainties into the $E_{\rm T}^{\rm miss}$, up to 20%
11%

Limits

Outlook

- Have performed first Higgs search at ATLAS using the H->WW decay mode
- Even with only 35 pb⁻¹ of data, able to exclude a Higgs boson with a production rate of 1.2 times the SM at 160 GeV at 95% C.L.
- With 2011 data, will be able to completely exclude the SM Higgs down to at least 130 GeV
 - This will largely be due to the sensitivity offered by the H->WW channel
- Could also observe a 3σ excess if the Higgs mass lies between $139 < M_H < 180 \text{ GeV}$
- Note: these are only the baseline expectations
- Much work is in progress to improve the analyses
 - Should be able to achieve even better exclusion/observation sensitivity in practice

Backup slides

Number of events observed

- This table shows the expected and observed no. of events:
 - At each hypthosized
 Higgs mass
 - For each jet bin
- Agreement between data and background only MC is good

m _H [GeV]	Jet bin	Signal	Total Bkg.	Observed
	H + 0j	0.15	0.87	1
120	H + 1j	0.05	1.05	1
	H + 2j	0.01	0.00	0
	H+0j	0.34	0.97	2
130	H + 1j	0.13	1.07	1
	H + 2j	0.03	0.01	0
	H + 0j	0.56	1.07	2
140	H + 1j	0.22	1.02	0
	H + 2j	0.03	0.03	0
	H + 0j	0.78	1.12	1
150	H + 1j	0.32	1.03	0
	H + 2j	0.04	0.03	0
	H + 0j	1.11	1.09	1
160	H + 1j	0.50	0.93	0
	H + 2j	0.06	0.03	0
	H + 0j	1.13	1.03	2
165	H + 1j	0.50	0.93	0
	H + 2j	0.06	0.02	0
	H + 0j	1.26	1.70	3
170	H + 1j	0.6	1.26	1
	H + 2j	0.06	0.02	0
	H + 0j	0.85	1.33	3
180	H + 1j	0.42	1.25	1
	H + 2j	0.05	0.01	0
190	H + 0j	0.45	0.97	3
	H + 1j	0.24	1.12	1
	H + 2j	0.03	0.01	0
	H + 0j	0.29	0.72	3
200	H + 1j	0.15	0.85	1
	H + 2j	0.02	0.01	0

Number of events observed at $M_H = 170 \text{ GeV}$

- This table shows the expected no. of events in data and MC at $M_H = 170 \text{ GeV}$
- It can be seen clearly that WW and top are the dominant backgrounds

Channel	Signal	top	WW	$WZ/ZZ/W\gamma$	Z+jets	W+jets	Total Bkg.	Observed
H + 0j								
еμ	$0.62 \pm 0.01 \pm 0.18$	0.09	0.71	0.02	0.00	0.01	$0.83 \pm 0.07 \pm 0.13$	1
ee	$0.20 \pm 0.01 \pm 0.07$	0.03	0.20	0.00	0.00	0.02	$0.25 \pm 0.08 \pm 0.04$	1
$\mu\mu$	$0.44 \pm 0.01 \pm 0.12$	0.08	0.53	0.01	0.00	0.00	$0.62 \pm 0.05 \pm 0.10$	1
	H+1j							
еμ	$0.31 \pm 0.01 \pm 0.09$	0.26	0.18	0.01	0.00	0.02	$0.47 \pm 0.08 \pm 0.16$	0
ee	$0.08 \pm 0.01 \pm 0.03$	0.10	0.05	0.00	0.05	0.03	$0.23 \pm 0.04 \pm 0.06$	0
$\mu\mu$	$0.21 \pm 0.01 \pm 0.06$	0.15	0.16	0.00	0.25	0.00	$0.56 \pm 0.09 \pm 0.14$	1
H+2j								
еμ	$0.03 \pm 0.01 \pm 0.01$	0.01	0.00	0.00	0.00	0.00	$0.01 \pm 0.01 \pm 0.01$	0
ee	$0.01 \pm 0.01 \pm 0.01$	0.00	0.00	0.00	0.00	0.00	0.00	0
μμ	$0.02 \pm 0.01 \pm 0.01$	0.00	0.01	0.00	0.00	0.00	$0.01 \pm 0.01 \pm 0.01$	0

CMS H->WW limits

Figure 6: 95% mean expected and observed C.L. upper limits on the cross section $\sigma_{\rm H} \cdot {\rm BR}({\rm H} \to {\rm W}^+{\rm W}^- \to 2\ell2\nu)$ for masses in the range 120-600 GeV/ c^2 using (a) cut-based and (b) multivariate BDT event selections. Results are obtained using a Bayesian approach. The expected cross sections for the SM and for the SM with a fourth-fermion family cases (SM4) are also presented. The dash line indicates the mean of the expected results.

Tevatron Higgs limits

arXiv:1103.3233

