X-ray Rocking Curve and Topography Study of High Quality Coherent Bremsstrahlung Radiators

G. Yang Glasgow University

- Diamond radiator is used to produce linearly polarized photon.
- Diamond quality affects the degree of polarization.

Diamond radiator requirements

- Minimum size: 4 mm x 4 mm
- Orientation: [100]
- Orientation error: 5° maximum
- Mosaic spread: 20 μr r.m.s.
 maximum (integrated over the whole crystal)
- Thickness: 20 to 100 μm

Sources of single crystal diamond radiator

natural diamonds

- used in the past (eg. SLAC)
- Obtained from the gem industry

synthetic diamonds – CVD

• potentially low cost, but large mosaic

synthetic diamonds – HPHT

- a reliable source of low-mosaic crystals
- is responding to a growing world-wide demand (eg. X-ray monochromators)

Mosaic spread

- Diamond crystal quality can be described by its mosaic spread.
- Experimentally, we can estimate the value of the mosaic spread from the rocking curve width.

rms angular deviation = "mosaic spread"

Effects of mosaic spread on coherent bremsstrahlung

Measuring mosaic: X-ray diffraction

X-ray diffraction of crystals

$$\lambda = 2 d \sin(\theta)$$

- transmission-mode diffraction
 - whole crystal volume is probed (not only the surface)
 - white beam topographs
 - monochromatic beam "rocking curves"

detector

diamond crystal

Experimental set up

Experimental results from SRS

Experimental results from CHESS

Rocking curve peak position over the measured regions

Contour map of the rocking curve width

Interpretation of the diffraction data

• CHESS data analysis results for a 20 microns thick diamond:

<u>Hypothesis:</u>
 Diamond is mechanically warped.

• Questions:

- 1. Why?
- 2. mounting strains?
- 3. 20 microns only?
- 4. surface damage?
- 5. What else?

reconstructed [1 0 0] plane profile

Another sample for mechanical warping

• stone M100

- 100 µm thick
- shape is very similar to the 20 micron diamond

questions:

- Is the warping interpretation correct?
- Did radiation damage cause it?

reconstructed [1 0 0] plane profile

Is the warping interpretation correct?

Comparison between simulated and measured rocking

Conclusions

- 1. The above results clearly demonstrate that rocking curve imaging is a very powerful method for assessing the suitability of diamond crystals for use as CB radiators
- 2. The resulted 2D maps of rocking curve width as well as the rocking curve peak position can serve as a monitor of the crystal quality for the whole crystal and for local regions.
- 3. It was confirmed by the measured variation of rocking curve widths across the samples studied that the defect distribution is non-uniform in these samples.
- 4. Crystal warping contributes significantly to the rocking curve width for the region to be sampled by the electron beam in the coherent bremsstrahlung process.

Thank you for your attention!