Imperial College London

 u_{μ} Oscillation
An independent analysis

P. Masliah

High Energy Physics group Imperial College London

April 4, 2011

Outline

Introduction

 u_{μ} oscillation Signal and backgrounds at Super-K

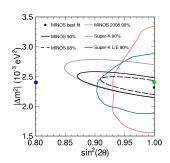
Analysis

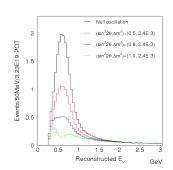
Unbinned Likelihood method PDF construction and prediction of expected number of events at Super-K Systematic uncertainties

Results

Monte-Carlo study for first T2K results

Summary

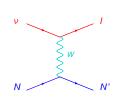



ν_{μ} oscillation

• $\nu_{\mu} \rightarrow \nu_{\tau}$ oscillation probability in two flavour approximation:

$$P(\nu_{\mu} \to \nu_{\tau}) = \sin^2 2\theta_{23} \sin^2 \left(\frac{1.27 \Delta m_{23}^2 (\text{eV}^2) L(\text{km})}{E_{\nu}(\text{GeV})} \right)$$

- Oscillation varies with values of oscillation parameters $\sin^2 2 heta_{23}$ and Δm_{23}^2 :
- MINOS experiment: $\sin^2 2\theta = 1.0$, $\Delta m^2 = 2.32 \times 10^{-3}$
- Accumulated data corresponding to 22.8 expected events in the Null hypothesis case (0.3% of total requested data)

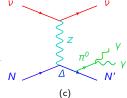


Signal and backgrounds at Super-K

Signal

- ν_{μ} Charged Current Quasi Elastic (CCQE)
 - μ -like ring at Super-K, reconstructed using two body kinematics

$$E_{\nu} = \frac{m_p^2 - (m_n - V)^2 + 2(m_n - V)E_{\mu} - m_{\mu}^2}{2(m_n - V - E_{\mu} + p\cos\theta_{\mu})}$$



Backgrounds

- ν_μ:
 - CC1 π (Dominant background)
 - CCOther (Multi- π , Charged Current Coherent π ...)
 - $NC\pi^0$

- ullet $ar
 u_\mu$ and u_e :
 - ullet CCQE + same as u_{μ}

Unbinned Likelihood method

The Likelihood function is the product of spectrum shape and normalisation terms and penalty terms to constrain systematic errors:

$$L(\sin^2 2\theta, \Delta m^2, f) = L_{\text{Norm}}(\sin^2 2\theta, \Delta m^2, f) \times L_{\text{Shape}}(\sin^2 2\theta, \Delta m^2, f) \times L_{\text{Pen}}(f)$$

L_{Norm} assuming Poisson probability:

$$L_{\mathrm{Norm}} = \frac{(N_{\mathrm{SK}}^{\mathrm{exp}} (\sin^2 2\theta, \Delta m^2, \mathbf{f}))^{N_{\mathrm{SK}}^{\mathrm{obs}}}}{N_{\mathrm{SK}}^{\mathrm{obs}}!} e^{-N_{\mathrm{SK}}^{\mathrm{exp}} (\sin^2 2\theta, \Delta m^2, \mathbf{f})}$$

ullet $L_{
m Shape}$ calculated from spectrum shape Probability Density Function:

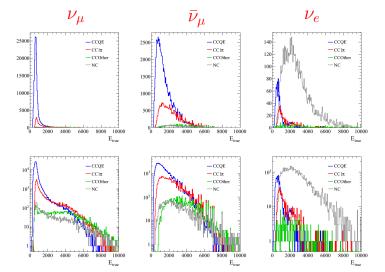
$$L_{
m Shape} = \prod_{i=1}^{N_{
m SKS}^{
m out}} P(E_{
m Recon} | \sin^2 2\theta_{23}, \Delta m_{23}^2, {
m f})$$

ullet L_{Pen} assuming Gaussian systematic errors

$$L_{\rm Pen} = \prod_{\rm pen} e^{-\left(\frac{\Delta f}{\sigma_{\rm f}}\right)^2}$$

PDF Construction

Super-K un-oscillated true MC data (NEUT generator)


- Super-K un-oscillated true MC data (NEUT generator)
- Super-K cuts to select muon like particles

- 1 Super-K un-oscillated true MC data (NEUT generator)
- Super-K cuts to select muon like particles
- 3 Seperation of signal and backgrounds
 - 12 Un-oscillated histograms (1 signal, 11 backgrounds)

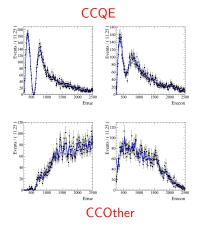
True Un-oscillated histograms from Super-K MC

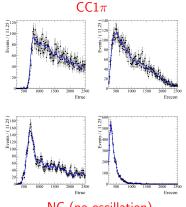
- Super-K un-oscillated true MC data (NEUT generator)
- Super-K cuts to select muon like particles
- 3 Seperation of signal and backgrounds
 - 12 Un-oscillated histograms (1 signal, 11 backgrounds)
- 4 Flux correction applied by re-weighting histograms

- Super-K un-oscillated true MC data (NEUT generator)
- Super-K cuts to select muon like particles
- 3 Seperation of signal and backgrounds
 - 12 Un-oscillated histograms (1 signal, 11 backgrounds)
- 4 Flux correction applied by re-weighting histograms
- 6 ND280 data driven correction factor on the flux×cross-section product

- Super-K un-oscillated true MC data (NEUT generator)
- Super-K cuts to select muon like particles
- 3 Seperation of signal and backgrounds
 - 12 Un-oscillated histograms (1 signal, 11 backgrounds)
- 4 Flux correction applied by re-weighting histograms
- 6 ND280 data driven correction factor on the flux×cross-section product
- 6 Histograms turned into PDFs with RooFit

- Super-K un-oscillated true MC data (NEUT generator)
- Super-K cuts to select muon like particles
- 3 Seperation of signal and backgrounds
 - 12 Un-oscillated histograms (1 signal, 11 backgrounds)
- Flux correction applied by re-weighting histograms
- 6 ND280 data driven correction factor on the flux×cross-section product
- 6 Histograms turned into PDFs with RooFit
- 7 Charged Current PDFs multiplied by oscillation probability PDF
 - Obtain true oscillated energy PDF


- 1 Super-K un-oscillated true MC data (NEUT generator)
- Super-K cuts to select muon like particles
- 3 Seperation of signal and backgrounds
 - 12 Un-oscillated histograms (1 signal, 11 backgrounds)
- Flux correction applied by re-weighting histograms
- \odot ND280 data driven correction factor on the flux \times cross-section product
- 6 Histograms turned into PDFs with RooFit
- Charged Current PDFs multiplied by oscillation probability PDF
 - Obtain true oscillated energy PDF
- True energy converted to recon energy with conversion matrices
 - Obtain reconstructed oscillated spectra

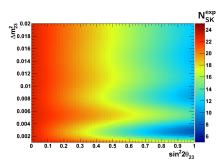


True to Reconstructed oscillated spectra

 u_{μ} spectra

- PDFs built using linear interpolation
- 10000 fake events generate below from the PDFs for each mode
- PDF accuracy for each mode limited by SK MC statistics
- Kernel method should smooth PDF

NC (no oscillation)



- Super-K un-oscillated true MC data (NEUT generator)
- 2 Super-K cuts to select muon like particles
- 3 Seperation of signal and backgrounds
 - 12 Un-oscillated histograms (1 signal, 11 backgrounds)
- 4 Flux correction applied by re-weighting histograms
- 6 ND280 data driven correction factor on the flux×cross-section product
- 6 Histograms turned into PDFs with RooFit
- Charged Current PDFs multiplied by oscillation probability PDF
 - Obtain true oscillated energy PDF
- 8 True energy converted to recon energy with conversion matrices
 - Obtain reconstructed oscillated spectra
- Add signal and background PDFs
 - Obtain final reconstructed oscillated spectra (without systematics)

 $N_{
m SK}^{
m exp}$ prediction

	Un-Oscillated	Oscillated
Total	22.8167	6.3332
$ u_{\mu}$		
CCQE	18.0705 (79.199%)	3.5907 (56.697%)
$CC1\pi$	3.0891 (13.538%)	1.5143 (23.911%)
CCOther	0.5230 (2.292%)	0.4062 (6.414%)
NC	0.3777 (1.655%)	0.3777 (5.959%)
$ar{ u}_{\mu}$		
CCQE	0.5026 (2.203%)	0.2523 (3.983%)
$CC1\pi$	0.1882 (0.825%)	0.1317 (2.079%)
CCOther	0.0281 (0.123%)	0.02486 (0.393%)
NC	0.0219 (0.096%)	0.0219 (0.346%)
$ u_e$		
CCQE	0.0017 (0.008%)	0.0006 (0.009%)
$CC1\pi$	0.0010 (0.004%)	0.0005 (0.009%)
CCOther	0.0003 (0.001%)	0.0002 (0.004%)
NC	0.0124 (0.055%)	0.0124 (0.196%)

Systematic uncertainties

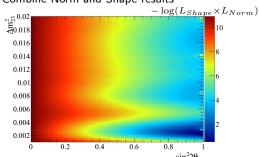
Uncertainties currently in the model:

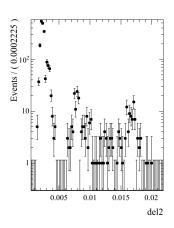
- Super-K efficiency uncertainties:
 - CCQE: 7.8%
 - CCnonQE: 25.5%
 - NC: 115.1%
 - ν_e CC: 100%

- Cross section uncertainties:
 - CCQE cross section uncertainty (Shape only effect)
 - fractional uncertainties (Shape+Normalisation effect):
 - CC1 π /CCQE: $30\%E_{\rm true}$ below 2 GeV, 20% above
 - CCOther/CCQE: $30\%E_{\rm true}$ below 2 GeV, 25% above
 - NC/CCQE: 36%

Other Uncertainties

- ND280: efficiency error
- Flux uncertainties: flux shape and normalisation uncertainties
- Neutrino generator model uncertainty: effect of Final State Interaction

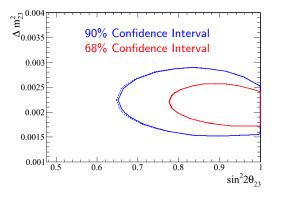



Monte-Carlo study for first T2K results

Shape and Normalisation Likelihoods. No Systematics

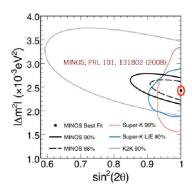
Fake Data studies:

- $\begin{tabular}{ll} \bf 0 & {\tt Generate Poisson number of expected events} \\ {\tt from $E_{\rm Recon PDF}$}. \\ \end{tabular}$
- 2 Likelihood scan over parameter space
- 3 Repeat thousands of times.
- Ombine likelihoods from each fake experiment.
- 5 Combine Norm and Shape results



Monte-Carlo study for first T2K results

Sensitivity with and without systematics


INPUT PARAMETERS		
$\sin^2 2\theta$	1.00	
Δm^2	$(2.4).10^{-3}$	

FITTED PARAMETERS		
Stats Only		
$\sin^2 2\theta$	1.00 ± 0.04	
Δm^2	$(2.14 \pm 0.49).10^{-3}$	
Systs + Stats		
$ m SK^{eff}_{CCQE}$	$(9.06 \pm 0.77).10^{-1}$	
$\mathrm{SK}^{\mathrm{eff}}_{\mathrm{CC1}\pi}$	$(9.97 \pm 2.54).10^{-1}$	
$ m SK^{eff}_{CCQther}$	$(9.74 \pm 2.54).10^{-1}$	
$ m SK^{eff}_{NC}$	2.45 ± 0.87	

Summary

- Presented MC analysis coresponding to data from first T2K run
 - · 23 expected events at SK in null oscillation hypothesis
- Currently T2K has collected 5 times more data
- 5 year results will have the best sensitivity for both oscillation parameters

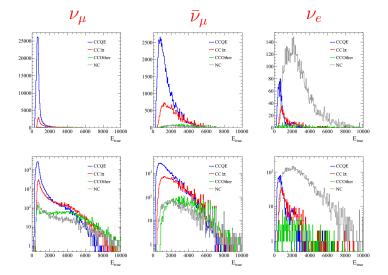
Appendix

PDF construction

Super-K selection cuts
True Un-oscillated histograms from Super-K MC

Flux Correction

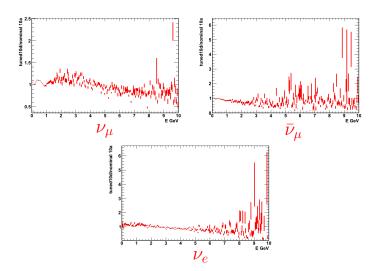
 E_{true} to E_{recon} conversion matrices True to Reconstructed oscillated spectra


Super-K selection cuts

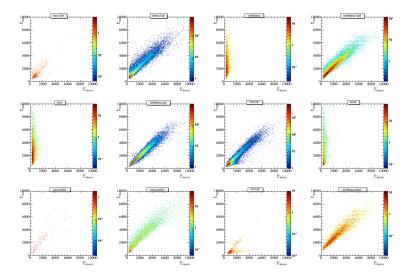
Fully Contained Full Volume (FCFV) 1 ring μ -like tight cuts

- Number of PMT hits in highest charge Outer Detector cluster <= 15
- Vertex from Inner Detector wall > 2m
- Visible energy > 30MeV
- Exactly 1 ring
- Particle ID of a muon
- Momentum of the muon like ring > 200MeV
- 0 or 1 decay electron

True Un-oscillated histograms from Super-K MC

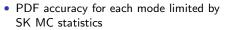


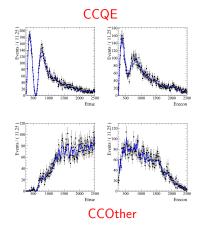
19 / 23

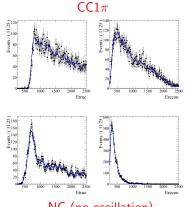

Flux Correction

Re-weighting of 10a data with ratio of 2010d_v2/10a Nominal

E_{true} to E_{recon} conversion matrices

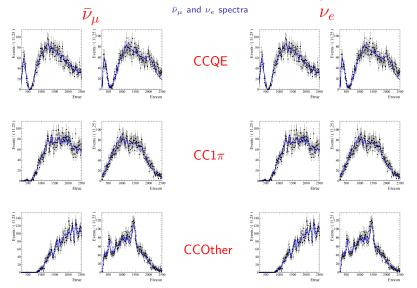



True to Reconstructed oscillated spectra


 ν_{μ} spectra

- PDFs built using linear interpolation
- 10000 fake events generate below from the PDFs for each mode

Kernel method should smooth PDF



NC (no oscillation)

True to Reconstructed oscillated spectra

