B and bottomonium spectroscopy from lattice NRQCD

Rachel Dowdall

University of Glasgow
HPQCD Collaboration
with: C. Davies, J. Daldrop

Why do lattice heavy quark physics?

Only way to calculate some quantities is non-perturbatively How? Discretise QCD on a spacetime lattice of size $=a$

- Monte Carlo simulate

Research aims:

- Spectroscopy of mesons containing b quarks
- B meson mixing
- Semileptonic form factors
- b quark mass
- Accurate tests of QCD

Bottomonium spectrum

- Many states accurately known
- several gaps that the lattice can predict
- First D-wave states (date) and η_{b} found at CLEO and BABAR
- Check we can reproduce the spectrum before we trust more complicated calculations (mixing, decays)

Status of heavy quark physics on the lattice

Lattice QCD calculations improved significantly in last 5-10 yrs

- Now in the precision era (see C.Davies plenary talk)
- Include effect of u, d, s, c sea quarks
- very expensive computationally
- previous calculations were quenched - unknown syst. error
- Stat and syst errors improved - aiming for $\simeq 1 \%$ errors
- Spacing still not small enough to handle relativistic b quarks - Use effective theories: NRQCD, HQET

Quarks: Non-relativistic QCD

- Effective field theory valid for small $v, v^{2} \sim 0.1$ for Upsilon
- Hamiltonian (don't worry about the details!):

$$
\begin{aligned}
a H_{0}= & -\frac{\Delta^{(2)}}{2 a M_{b}} \\
a \delta H= & -c_{1} \frac{\left(\Delta^{(2)}\right)^{2}}{8\left(a M_{b}\right)^{3}}+c_{2} \frac{i g}{8\left(a M_{b}\right)^{2}}(\nabla \cdot \tilde{\mathbf{E}}-\tilde{\mathbf{E}} \cdot \nabla) \\
& -c_{3} \frac{g}{8\left(a M_{b}\right)^{2}} \sigma \cdot(\tilde{\nabla} \times \tilde{\mathbf{E}}-\tilde{\mathbf{E}} \times \tilde{\nabla}) \\
& -c_{4} \frac{g}{2 a M_{b}} \sigma \cdot \tilde{\mathbf{B}}+c_{5} \frac{a^{2} \Delta^{(4)}}{24 a M_{b}}-c_{6} \frac{a\left(\Delta^{(2)}\right)^{2}}{16 n\left(a M_{b}\right)^{2}}
\end{aligned}
$$

- Expansion up to $O\left(v^{4}\right)$
- Wilson coeff. $c_{i}=1$ at tree level
- c_{1}, c_{5}, c_{6} are improved to one loop - $O\left(\alpha_{s} v^{4}\right)$
- Computationally cheap

Gluons

Gluons included by Monte-Carlo simulation

- We use 5 MILC collaboration ensembles
- Symanzik improved gluon action with one-loop coefficients
- u,d,s,c sea quarks included with HISQ action
- ~ 1000 configurations in each ensemble

β	$\mathrm{a}(\mathrm{fm})$	m_{l} / m_{s}	$L^{3} \times T$
5.80	~ 0.15	0.2	$16^{3} \times 48$
5.80	~ 0.15	0.1	$24^{3} \times 48$
6.00	~ 0.12	0.2	$24^{3} \times 64$
6.00	~ 0.12	0.1	$32^{3} \times 64$
6.30	~ 0.09	0.2	$32^{3} \times 96$

Calculation

Spectrum is extracted from meson 2-point functions

$$
C(t)=\sum_{\vec{x}}\left\langle\bar{\psi}(t, \vec{x}) \Gamma \psi(t, \vec{x})(\bar{\psi}(0) \Gamma \psi(0))^{\dagger}\right\rangle
$$

Energies extracted from simultaneous Bayesian fit to

$$
C(t)=\sum_{n=1}^{n_{\text {exp }}} A_{n} \exp \left(-E_{n} t\right)
$$

Calculation

Performed on Darwin cluster at Cambridge University
S-waves:

- 16 correlators per configuration
- 5 different smearings per meson

P-waves and D-waves:

- 32 correlators per configuration

- 2 different smearings per meson

Radial and spin independent splittings

$\Upsilon(2 S-1 S)$ is used to fix lattice spacings (not a prediction)

- Results for a single ensemble shown

Dominant syst error from missing $O\left(v^{6}\right), O\left(\alpha_{s}^{2} v^{4}\right)$ terms

P-wave splittings

P-wave spectrum is used to non-perturbatively tune c_{3}, c_{4}

- Plot relative to spin average ${ }^{\overline{3 P}}$ state
- Tree level coefficients give slightly incorrect splittings
- Untuned in red, tuned in blue
- Errors are statistical and lattice spacing only

D-wave splittings prediction from full QCD

Use tuned Wilson coefficients to predict splittings

- Statistical errors dominate
- Leading systematic from $O\left(v^{6}\right)$
- Plot relative to spin average ${ }^{3} D$ state
- All splittings resolved for the first time

B meson spectrum (preliminary)

Also have improved values for B, B_{s}, B_{c} meson masses

- Only a few ensembles so far
- Significant improvement on previous HPQCD values
- No free parameters

Summary

- Lattice NRQCD accurately reproduces bottomonium spectrum
- First full prediction of D-wave states
- Systematic errors under much better control
- More than $10 \times$ the statistics of previous bottomonium calculations

Appendix: Gauge action

Symanzik improved - 2 additional terms: Plaquette, Rectangle, Twisted rectangle

$$
\begin{aligned}
S_{G}= & \beta\left[c_{P} \sum_{P}\left(1-\frac{1}{3} \operatorname{Re} \operatorname{Tr}(\mathrm{P})\right)+c_{R} \sum_{R}\left(1-\frac{1}{3} \operatorname{Re} \operatorname{Tr}(\mathrm{R})\right)\right. \\
& \left.+c_{T} \sum_{T}\left(1-\frac{1}{3} \operatorname{Re} \operatorname{Tr}(\mathrm{~T})\right)\right]
\end{aligned}
$$

Coefficients calculated to one loop in gluons and quarks

$$
\begin{aligned}
& C_{P}=1.0 \\
& C_{R}=\frac{-1}{20 u_{0 P}^{2}}\left(1-\left(0.6264-1.1746 N_{f}\right) \log \left(u_{0 P}^{2}\right)\right) \\
& C_{T}=\frac{1}{u_{0 P}^{2}}\left(0.0433-0.0156 N_{f}\right) \log \left(u_{0 P}^{2}\right)
\end{aligned}
$$

$u_{0 P}$ removes tadpole diagrams

