

Prompt hadron production at LHCb

Andrea Contu
University of Oxford

5 April 2011

Nuclear and Particle Physics Divisional Conference 2011

University of Glasgow - UK

Contents

- Introduction
- PID Calibration
- Analysis Strategy
- Preliminary Results
- Systematics
- Improvements
- Conclusions

RICH Detectors

2 Ring Imaging CHerenkov (RICH) detectors provide charged particle identification in a momentum range of 2 - 100 GeV

RICH Detectors

RICH detectors provide excellent Particle Identification

Vital for $K/\pi/p$ discrimination and good tagging efficiency

3 Radiators needed RICH1 (2<p<60 GeV):

- ◆ Aerogel, n~1.03
- $+ C_4 F_{10}$, n~1.0014

RICH2 (p>20 GeV)

◆ CF₄, n~1.0005

DLL(x-y) = Delta Log Likelihood between x and y particle hypotheses

Motivation

Hadron ratios carry information on

- Baryon number transport
- Hadronisation mechanisms
- Monte Carlo Tuning

No need to know absolute luminosity!

P. Skands http://home.fnal.gov/~skands/

PID Calibration

- Pure samples of protons selected with RICH particle ID
- Need to select samples of K and π to keep contamination under control

bkgd_yield = 967957 ± 1236

peak yield = 122928 ± 826

1030

 m_{KK} (MeV/c²)

1020

Selecting Protons

Tracks from calibration samples demonstrate that protons are effectively selected

Contamination from K and π is also quantified

Analysis strategy

Contamination correction

From data $\begin{vmatrix} p_{Sel} \\ K_{Sel} \\ \pi_{Sel} \end{vmatrix} = \begin{vmatrix} p \to p & K \to p & \pi \to p \\ p \to K & K \to K & p \to K \\ p \to \pi & K \to p & \pi \to \pi \end{vmatrix} \begin{vmatrix} p_{True} \\ K_{True} \\ \pi_{True} \end{vmatrix}$ for each (P_T,η) bin particle charge

All corrections are applied independently for each (P_{τ}, η) bin and

$$\begin{pmatrix}
p_{True} \\
K_{True} \\
\pi_{True}
\end{pmatrix} = \begin{pmatrix}
p \to p & K \to p & \pi \to p \\
p \to K & K \to K & p \to K \\
p \to \pi & K \to p & \pi \to \pi
\end{pmatrix}^{-1} \begin{pmatrix}
p_{Sel} \\
K_{Sel} \\
\pi_{Sel}
\end{pmatrix}$$

Different interaction cross-sections in the material between p and p, particularly at low momentum Therefore limit analysis to tracks with P > 5 GeV and correct using MC

Preliminary Results – √s=0.9 TeV

CERN-LHCb-CONF-2010-009

Baryon transport higher than predictions and consistent with Λ/Λ analysis

CERN-LHCb-CONF-2010-011

Preliminary Results – √s=7 TeV

CERN-LHCb-CONF-2010-009

Ratios become flatter as predicted by models

Better agreement with MC

Preliminary Results Comparison

Results over the wide LHCb Δy spread show consistency with other experiments

 $\Delta y = y(beam) - y(\Lambda, p)$

Indications of P₊ dependence

Systematics

Ratio measurements have relatively low systematic uncertainty (it cancels at the first order)

Systematics considered:

- PID (Dominant)
- Material interactions (very important for protons)
- Detector description
- Ghosts (fake tracks)
- Non-prompt contamination
- Tracking asymmetries

5 Apr 2011

Magnet polarity differences

Improvements

Several aspects are being studied in detail to finalise the analysis:

- Data-driven bin-by-bin DLL cuts retuning
- PID efficiencies have been re-weighted according to event multiplicity and momentum distribution
- Ghost estimation now relies more on data

 Better translation of results in terms of rapidity and rapidity loss

Conclusions

- Preliminary results indicate:
 - Higher baryon transport
 - Possible P_T dependence
- Analysis is crucial to understand PID, currently being finalised towards a paper
- It will be extended to provide further ratios such as K^{-}/K^{+} and π^{-}/π^{+} , K/π is under investigation

LHCb explores a unique kinematical region and provides valuable physics results and input to theoretical models

5 Apr 2011