

The Einstein Telescope

Stefan Hild for the ET Science Team

LIGO-G1100435-v1

Overview of this presentation

- ET the start of Gravitational Wave Astronomy
- ➡ Where is the transition from 2nd to 3rd Generation?
- The Brute Force approach to achieve the 3rd Generation target sensitivity.
- The ET baseline design
- Time line towards the Einstein Telescope

We have come a long way ...

- The first Michelson interferometer: Experiment performed by Albert Michelson in Potsdam 1881.
- \bigcirc Measurement accuracy 0.02 fringe (expected Ether effect ~ 0.04 fringes)

GLASGOW

to today's network of GW detectors

Today:

Virgo, LIGO, GEO600 and Tama

LIGO

LIGO

- Sensitivity: 10⁻¹³ of a fringe
- GEO600: measures the 600m long arms to an accuracy of 0.0001 proton diameter @ 500 Hz

Stefan Hild

ET EINSTEIN TELESCOPE

IGR)

Status and future of GW observatories

- **1st** generation successfully completed:
 - Long duration observations (~1yr) in coincidence mode of 5 oberservatories.
 - Spin-down upper limit of the Crab-Pulsar beaten!
- **2nd** generation on the way:

ot **GLASGOW**

- End of design phase, construction started (Advanced LIGO project is nearly 50% complete)
- 10 times better sensitivity than 1st generation. => Scanning 1000 times larger volume of the Universe
- **3rd** generation at the horizon:
 - FP7 funded design study in Europe
 - 100 times better sensitivity than 1st \geq generation. => Scanning 1000000 times larger volume of the Universe

IGR

EINSTEI

- The Einstein Telescope project aims to the realization of a third generation of GW observatory.
- The Einstein Telescope project is currently in its conceptual design study phase, supported by the European Community FP7 with about 3M€ from May 2008 to July 2011.
- The target of this design phase is to understand the feasibility of a new generation of GW observatory that will permit to gain one order of sensibility
- The main deliverable, at the end of these 3 years, will be a conceptual design of such as infrastructure.

Participant	Country
EGO	Italy/France
INFN	Italy
MPG	Germany
CNRS	France
University of Birmingham	UK
University of Glasgow	UK
Nikhef	NL
Cardiff University	UK

of **GLASGOW**

ET Science Team (~250 Scientists)

IGR ET ELESCOPE

ET Work Package Structure

Fundamental Physics with ET

- Properties of gravitational waves
 - Testing GR beyond the quadrupole formula
 - Binary pulsars consistent with quadrupole formula; they don't measure properties of GW
 - How many polarizations are there?
 - In Einstein's theory only two polarizations; a scalar-tensor theory could have six · §·
 - Do gravitational waves travel at the speed of light?
 - There are strong motivations from string theory to consider massive gravitons .8.
 - Binary pulsars constrain the speed to few parts in a thousand
 - GW observations can constrain to 1 part in 10¹⁸ · §·
- EoS of dark energy
 - Black hole binaries are standard candles/sirens
- EoS of supra-nuclear matter
 - Signature of EoS in GW emitted when neutron stars merge
- Black hole no-hair theorem and cosmic censorship
 - Are BH (candidates) of nature BH of general relativity?
- An independent constraint/measurement of neutrino mass
 - Delay in the arrival times of neutrinos and gravitational waves · Ś·

Credits: Sathyaprakash + ET Science Team

Cosmology with ET

- Cosmography
 - \bullet Build the cosmic distance ladder, strengthen existing calibrations at high z
 - Measure the Hubble parameter, dark matter and dark energy densities, dark energy EoS w, variation of w with z
- Black hole seeds
 - Black hole seeds could be intermediate mass black holes
 - Might explore hierarchical growth of central engines of black holes
- Dipole anisotropy in the Hubble parameter
 - * The Hubble parameter will be "slightly" different in different directions due to the local flow of our galaxy
- Anisotropic cosmologies
 - In an anisotropic Universe the distribution of H on the sky should show residual quadrupole and higher-order anisotropies
- Primordial gravitational waves
 - Quantum fluctuations in the early Universe could produce a stochastic b/g
- Production of GW during early Universe phase transitions
 - Phase transitions, pre-heating, re-heating, etc., could produce detectable stochastic GW
 Credits: Sathyaprakash + I

Astrophysics with ET

- Unveiling progenitors of short-hard GRBs
 - Understand the demographics and different classes of short-hard GRBs
- Understanding Supernovae
 - Astrophysics of gravitational collapse and accompanying supernova?
- Evolutionary paths of compact binaries
 - Evolution of compact binaries involves complex astrophysics
 - Initial mass function, stellar winds, kicks from supernova, common envelope phase
- Finding why pulsars glitch and magnetars flare
 - * What causes sudden excursions in pulsar spin frequencies and what is behind ultra high-energy transients of EM radiation in magnetars
 - Could reveal the composition and structure of neutron star cores
- \Rightarrow Ellipticity of neutron stars as small as 1 part in a billion (10µm)
 - Mountains of what size can be supported on neutron stars?
- NS spin frequencies in LMXBs
 - * Why are spin frequencies of neutron stars in low-mass X-ray binaries bounded?
- Onset/evolution of relativistic instabilities
 - CFS instability and r-modes Credits: Sathyaprakash + ET Science Team

More Details ...

- For detailed information on the astrophysical motivation and benefits of 3rd generation detectors please have a look at:
 - Punturo et al: The third generation of gravitational wave observatories and their science reach, doi: 10.1088/0264-9381/27/8/084007
 - Einstein Telescope design study: Vision Document https://pub3.ego-gw.it/itf/tds/file.php?callFile=ET-031-09.pdf
 - Sathyprakash et al: Cosmography with the Einstein Telescope

Please also see the talk by Thomas Dent: Please also see the talk by Thomas Dent: Fundamental physics and astrophysics Wednesday With the Einstein Telescope', Wednesday 14:45 Concert Hall

Overview of this presentation

- ET the start of Gravitational Wave Astronomy
- Where is the transition from 2nd to 3rd Generation?
- The Brute Force approach to achieve the 3rd Generation target sensitivity.
- The ET baseline design
- Time line towards the Einstein Telescope

2G 🔿 2.5G 🏓 3G

Enhancements of the Advanced Detectors

- People started to look into enhancements of the Advanced Detectors (see for example R. Adhikari's talk at GWADW 2010).
- Especially at high frequencies (and also in the mid-frequency range) improvements by a factor of a few seem potentially achievable.

R.Adhikari: LIGO G100 0524

Facility limits of Advanced Detectors

Facility limits of Advanced Detectors

However, using currently available technology we will hit the facility limits.

GLASGOW

- At all frequencies:
 - Arm length
- At low frequencies:
 - Gravity Gradient Noise.
 - Perhaps also Seismic
- At mid frequencies:
 - > Thermal noise

GLASGOW

3rd generation

- To surpass the facility limits of the 2nd generation instruments, 3rd **Generation 'lives' in new** infrastructures.
- Observatories like ET will be infrastructures that will stay 'on air' for decades, hosting also future generations (3.5, 4 ...) of Gravitational Wave detectors

Overview of this presentation

- ET the start of Gravitational Wave Astronomy
- Where is the transition from 2nd to 3rd Generation?
- The Brute Force approach to achieve the 3rd Generation target sensitivity.
- The ET baseline design
- Time line towards the Einstein Telescope

2G 🔿 2.5G 🏓 3G

The starting point: 2nd Generation

- We consider:
 - Michelson topology with dual recycling.
 - One detector covering the full frequency band
 - A single detector (no network)
- Start from a 2nd Generation instrument.
- Each fundamental noise at least for some frequencies above the ET target.

=> OUR TASK: All fundamental noises have to be improved !!

oţ

Step 1: Increasing the arm length

EINS1

Step 2: Optimising signal recycling

DRIVER: Quantum noise

ACTION: From detuned SR to tuned SR (with 10% transmittance)

- EFFECTS: Reduced shot noise by ~ factor 7 at high freqs
 - Reduced radiation pressure by ~ factor 2 at low freqs
 - Reduced peak sensitivity by ~ factor sqrt(2) :(

EINST

E

of

Step 3: Increasing the laser power

EINST

H

Injection of Squeezed Light

- To reduce photon shot noise and radiation pressure noise we require a frequency dependent squeezing angle.
- Use dispersion in reflection of filter cavities.

- Quantum noise can be reduced by the injection of squeezed light states.
- Squeezing already successfully implemented in GEO600.

of **GLASGOW**

Step 4: Quantum noise suppression

DRIVER: Shot noise at high frequencies

ACTION: Introduced 10dB of squeezing (frequency depend angle)

EFFECT: Decreases the shot noise by a factor 3

SIDE EFFECTS: Decreases radiation pressure noise by a factor 3

10²

Frequency [Hz]

EINS1

Quantum noise

Seismic noise

Excess Gas

Total noise

ET target

10³

Gravity Gradients

Suspension thermal noise

Coating Thermo-optic noise

10⁴

Substrate Brownian noise

Coating Brownian noise

Advanced Detectors

Increasing the beam size to reduce **Coating Brownian noise**

Increasing the beam size at the mirrors reduces the contribution of Coating Brownian.

of **GLASGOW**

Coating Brownian noise of one mirror:

$$S_x(f) = rac{4k_{
m B}T}{\pi^2 fY} rac{d}{r_0^2} \left(rac{Y'}{Y} \phi_{\parallel} + rac{Y}{Y'} \phi_{\perp}
ight)$$
beam radius on mirror

IGR

Please note: a beam radius of 12cm requires mirrors of 60 to 70cm diameter

ET EINSTEI TELESCOP

Step 5: Increasing the beam size

IGR

DRIVER: Coating Brownian noise

ACTION: Increase of beam radius from 6 to 12cm

EFFECT: Decrease of Coating Brownian by a factor 2

SIDE EFFECTS:

- Decrease of Substrate Brownian noise (~factor 2)
- Decrease of Thermo-optic noise (~factor 2)
- Decrease of residual gas pressure noise (~10-20%)

Step 6: Cooling the test masses

DRIVER: Coating Brownian noise

ACTION: Reduce the test mass temperature from 290K to 20K

EFFECT: Decrease Brownian by ~ factor of 4

- SIDE EFFECTS: Decrease of substrate Brownian
 - Decrease of thermo-optic noise

Seismic noise

Suspension Thermal noise

- Suspension thermal noise is probably the main driver for going to cryogenic temperatures.
- Actual level strongly depends design details of suspension.

DRIVER: Seismic noise

ACTION: Build 50m tall 5 stage suspension (corner freq = 0.158 Hz)

EFFECT: Decrease seismic noise by many orders of magnitude or pushes the seismic wall from 10 Hz to about 1.5 Hz

Same performance can be achived by a 17m high superattenuator S.Brachini: http://gw.icrr.u-

tokyo.ac.jp/gwadw2010/program/ 2010_GWADW_Braccini.ppt

What is Gravity Gradient Noise

- Changes in the gravitational potential around a test mass.
- Causes 1: Humans, Lorries, Clouds etc
 - Hopefully not problematic because at frequency below detection band.
- Causes 2: Seismic driven changes
 - Density waves, shaking of cave walls etc.
- Can be approximated by:

```
Testmass Noise = Seismic Excitation x Coupling
Transfer function
```

Coupling Transfer function given by law of gravity. Not much we can do!

Seismic Excitation can be reduced by finding a quiet site !

ot **GLASGOW**

Tackling Gravity Gradient noise: going underground

Surface (Cascina)

about
$$1 \cdot 10^{-7} \,\mathrm{m}/f^2$$
 for $f > 1 \,\mathrm{Hz}$

Figure 7. Low seismic noise environment at the Kamioka site. Displacement noises at Kamioka, TAMA site, Tokyo, Black Forest Geophysical Observatory (Germany) and a low noise model (a hybrid spectrum of quiet sites in the world) are described.

Underground (Kamioka)

about $5 \cdot 10^{-9} \,\mathrm{m}/f^2$ for $f > 1 \,\mathrm{Hz}$

DRIVER: Gravity gradient noise

ACTION: Go from the surface to underground location

EFFECT: Decrease gravity gradients by a factor 20

SIDE EFFECTS: Decrease in seismic noise by a factor 20

Seismic measurements

- Seismic measurement campaign showed that there are several underground sites which have a seismic level even below Kamioka.
- Gravity gradient noise compitabile with 3rd generation sensitivity for frequencies above 2Hz.

M.Baker: http://gw.icrr.u-tokyo.ac.jp/gwadw2010/program/2010_GWADW_Beker.pdf

Step 9: Gravity gradient suppression

DRIVER: Gravity gradient noise

of **GLASGOW**

ACTION: Very quite underground site + active subtraction of the gravity gradients below a few Hz

EFFECT: Decrease gravity gradient noise by a factor 50.

EINSTEI

IGR

H,

DRIVER: Quantum noise at low frequencies

ACTION: Increase test mass weight from 42 kg to 120 kg (or even 200 kg)

EFFECT: Decrease of radiation pressure noise

	advanced detector	potential ET design			
Arm length	3 km	10 km			
SR-phase	detuned (0.15)	tuned (0.0)			
SR transmittance	11 %	10 %			
Input power (after IMC)	$125\mathrm{W}$	$500\mathrm{W}$			
Arm power	$0.75\mathrm{MW}$	3 MW			
Quantum noise suppression	none	$10\mathrm{dB}$			
Beam radius	$6\mathrm{cm}$	$12\mathrm{cm}$			
Temperature	290 K	20 K			
Suspension	Superattenuator	5 stages of each 10 m length			
Seismic	$1 \cdot 10^{-7} \mathrm{m}/f^2$ for $f > 1 \mathrm{Hz}$ (Cascina)	$5 \cdot 10^{-9} \mathrm{m}/f^2$ for $f > 1 \mathrm{Hz}$ (Kamioka)			
Gravity gradient reduction	none	factor 50 required			
Mirror masses	$42 \mathrm{kg}$	$120 \mathrm{kg}$			
BNS range	$150\mathrm{Mpc}$	$2650\mathrm{Mpc}$			
BBH range	$800\mathrm{Mpc}$	$17700\mathrm{Mpc}$			

S.Hild et al: arXiv:0810.0604

Overview of this presentation

- ET the start of Gravitational Wave Astronomy
- Where is the transition from 2nd to 3rd Generation?
- The Brute Force approach to achieve the 3rd Generation target sensitivity.
- The ET baseline design
- Time line towards the Einstein Telescope

Motivation for Xylophone observatories

- Due to residual absorption in substrates and coatings high optical power (3MW) and cryogenic test masses (20K) don't go easily together.
- IDEA: Split the detection band into 2 or 3 instruments, each dedicated for a certain frequency range. All 'xylophone' interferometer together give the full sensitivity.
- Example of a 2-tone xylophone:
 - Low frequency: low power and cryogenic
 - High frequency: high power and room temperature

High Frequency Detector

- Quantum noise: 3MW, tuned Signal-Recyling, 10dB Squeezing, 200kg mirrors.
- Suspension Thermal and Seismic:

Superattenuator at surface location.

- Gravity gradient: No Subtraction
- Thermal noise: 290K, 12cm beam radius, fused Silica, LG33 (reduction factor of 1.6 compared to

TEM00).

Coating Brownian reduction factors (compared to 2G): 3.3 (arm length), 2 (beam size) and 1.6 (LG33) = 10.5

Low Frequency Detector

- Quantum noise: 18kW, detuned Signal-Recyling, 10 dB frequency dependent Squeezing, 211kg mirrors.
- Seismic: 5x10m suspensions, underground.
- Gravity gradient: Underground, factor 50 subtraction
- Thermal noise: 10K, Silicon, 12cm beam radius, TEM00.
- Suspension Thermal: not included. :(

As mirror TN is no longer limiting, one can relax the assumptions on the material parameters and the beam size...

ET-Xylophone: ET-D

Parameter	ET-D-HF	ET-D-LF					,							
Arm length	10 km	10 km		E E E E	ĒĒŦŦ	티크네크	= = = :	<u>+</u> = = = +	ΞΞΞ	EEEE		ET-B		
				- + + :	+ + ·	+!+!+ -	: :	+ - - - + 	:!#!= =		1			.
Input power (after IMC)	$500\mathrm{W}$	3 W					· ·		[-]-			EI-C	(Xylop	ohone)
Arm power	$3\mathrm{MW}$	18 kW					·	; -, -, -, -, -, -, -, -, -, -, -, -, -,	[-]-	- in - in		ET-D	(Xvlor	ohone)
Temperature	$290\mathrm{K}$	10 K	10 ⁻²²				I		11	1 1				1
Mirror material	Fused silica	Silicon		EEE		트 브 브 크	= = = :	ŧ =! =! =! =! ŧ	:!=!= =	= = = :	= = = = =	: <u>=</u> = = = = = = = = = = = = = = = = = =	$= \pm = \pm$	
Mirror diameter / thickness	$62\mathrm{cm}$ / $30\mathrm{cm}$	$\min 45 \mathrm{cm}/\mathrm{TBD}$	N N	= = = -				+ - - + +	+				= + - +	
Mirror masses	$200 \mathrm{kg}'$	211 kg	rt(Hz)]	+	⊢ - + -	+ 1 + 1 + -		+ - - - +	- 1+ 1	- -	- + + -	++++	- + - +	+ $+$ $+$ $+$ $+$
Laser wavelength	1064 nm	1550 nm	LE	<u>+</u> -				+ _ _ _ +	-1+1	_		1+1+		
SR-phase	tuned (0.0)	detuned (0.6)	ערייב 10 ⁻²³				1							
-			ເຊິ_10 ⁻²³		E E I E		= = = =			E E E E				
SR transmittance	10%	20%			= = \ = :						E 🖬 E E	, <u> </u>	= $=$ $=$ $=$ $=$ $=$	
Quantum noise suppression	freq. dep. squeez.	freq. dep. squeez.	<u>-</u>	₋ -	- r- -	רודו		ד רורור ד	T T		- <mark>-</mark>	י דוד	— т — т	
Filter cavities	$1 imes 10 \mathrm{km}$	$2 imes10\mathrm{km}$	Strain											
Squeezing level	10 dB (effective)	10 dB (effective)	່ທ 				N							
Beam shape	LG_{33}	TEM_{00}	10 ⁻²⁴	EEEE	EEŦŦ			ELEIE	EEE	EEEI	EEE	TEIE	ŦΞŦ	BBEEE
Beam radius	$7.25\mathrm{cm}$	9 cm		====		<u> </u>	= = = =			E			= = = = =	
Scatter loss per surface	$37.5\mathrm{ppm}$	37.5 ppm			_ L	L'-'	/	1 _1 _1 _1 _1 _1 _1 _1 _1 _1 _1 _1 _1 _1	1+1					
Partial pressure for H ₂ O, H ₂ , N ₂	$10^{-8}, 5 \cdot 10^{-8}, 10^{-9}$ Pa	$10^{-8}, 5 \cdot 10^{-8}, 10^{-9}$ Pa		L .					.11					
Seismic isolation	SA, 8m tall	mod SA, 17 m tall	10 ⁻²⁵	I			1							
Seismic (for $f > 1 \text{ Hz}$)	$5 \cdot 10^{-10} \mathrm{m}/f^2$	$5 \cdot 10^{-10} \mathrm{m}/f^2$				1			2			3		
	,.	, · ·	10)		10'			10			10 [°]		10
Gravity gradient subtraction	Gravity gradient subtraction none none Frequency [Hz]													

- Data from ET-LF and ET-HF can be coherently or incoherently be added, depending on the requirements of the analysis.
- For more details please see S.Hild et al: 'A Xylophone Configuration for a third Generation 0 Gravitational Wave Detector', CQG 2010, 27, 015003 and S.Hild et al: 'Sensitivity Studies for Third-Generation Gravitational Wave Observatories', <u>arXiv:1012.0908v1</u> [gr-gc].

How to build an Observatory?

- For efficiency reasons build a triangle.
- Start with a single xylophone detector.

How to build an Observatory?

- For efficiency reasons build a triangle.
- Start with a single xylophone detector.

Add second Xylophone de

Xylophone detector to fully resolve polarisation.

How to build an Observatory?

- For efficiency reasons build a triangle.
- Start with a single xylophone detector.
- Add second

Xylophone detector to fully resolve polarisation.

Add third Xylophone detector for redundancy and nullstreams.

Artist's View of ET

Overview of this presentation

- ET the start of Gravitational Wave Astronomy
- Where is the transition from 2nd to 3rd Generation?
- The Brute Force approach to achieve the 3rd Generation target sensitivity.
- The ET baseline design
- Time line towards the Einstein Telescope

Stefan Hild

Time Lines (from GWIC Roadmap)

ET Timeline

Stefan Hild

ET Conceptual Design

- Conceptual design study is the main deliverable.
- Public presentation of the design study will take place on 20th of May in Pisa, Italy.

Summary

- 2nd generation GW detectors will make the first direct detection of gravitational waves. With ET will provide us with frequent high-SNR events and therefore mark the start of gravitational wave astronomy.
- ET can provide lots of exciting science in the fields of astrophysics, fundamental physics and cosmology.
- We identified the best technologies for reaching the very demanding sensitivity target of ET and are about to complete the conceptual design.
- Build up a very strong Science Team working on ET.
- Next steps include:
 - Side identification (long term seismic measurements and discussions with national funding agencies).
 - Lots of R+D (e.g. materials, interferometry, lasers, cryogenics) to support the transition from the conceptual to the technical design stage.

EXTRA SLIDES

LF-Detector: Cryogenic Test masses

- Thermal noise of a single cryogenic end test mass.
- Assumptions:

of **GLASGOW**

- Silicon at 10K
- Youngs Modulus = 164GP
- Coating material similar to what is currently available for fused silica at 290K (loss angles of 5e-5 and 2e-4 for low and high refractive materials)

IGR

How to get from here to total mirror TN in ET?

- Sum over the 4 different noise types.
- Go from displacement to strain (divide by 10000).
- Uncorrelated sum of 2 end mirrors and 2 input mirrors

EINSTEI

Is there any chance to substract the gravity gradient noise?

- Theoretically = YES.
- If it is possible to determine the seismic `all around' the test masses and the corresponding coupling transfer functions to a certain accuracy it should be possible to subtract gravity gradient noise from h(t).
- This would require a big 3D array of seismometers, very homogenous rock, etc
- Has never been done ... work in progress (and probably our only chance to get to the ET target sensitivity below about 2-3Hz).