

The Einstein Telescope

Stefan Hild for the ET Science Team

222 LIGO-G1100435-v1

Overview of this presentation

- \supset ET the start of Gravitational Wave Astronomy
- \bullet Where is the transition from 2nd to 3rd Generation?
- The Brute Force approach to achieve the 3rd Generation target sensitivity.
- \Rightarrow The ET baseline design
- \supset Time line towards the Einstein **Telescope**

 $2G \implies 2.5G \implies 3G$

We have come a long way …

- **→ The first Michelson interferometer: Experiment performed by** Albert Michelson in Potsdam 1881.
- \supset Measurement accuracy 0.02 fringe (expected Ether effect \sim 0.04 fringes)

GLASGOW

to today's network of GW detectors

Today:

Virgo, LIGO, GEO600 and Tama

*Li***Go**

ZIGO

Sensitivity: 10^{-13} of a fringe GEO600: measures the 600m long arms to an accuracy of 0.0001 proton diameter @ 500 Hz

ET FINSTEIN

IGR

Status and future of GW observatories

- **1st** generation successfully completed:
	- \triangleright Long duration observations (\sim 1yr) in coincidence mode of 5 oberservatories.
	- \triangleright Spin-down upper limit of the Crab-Pulsar beaten!
- **2nd** generation on the way:

ot **GLASGOW**

- \triangleright End of design phase, construction started (Advanced LIGO project is nearly 50% complete)
- ≥ 10 times better sensitivity than 1st generation. => Scanning 1000 times larger volume of the Universe
- **3rd** generation at the horizon:
	- \triangleright FP7 funded design study in Europe
	- ≥ 100 times better sensitivity than 1st generation. \Rightarrow Scanning 1000000 times larger volume of the Universe

IGR

EINSTE

- **The Einstein Telescope project aims to** the realization of a third generation of GW observatory.
- **The Einstein Telescope project is** currently in its conceptual design study phase, supported by the European Community FP7 with about 3M€ from May 2008 to July 2011.
- \supset The target of this design phase is to understand the feasibility of a new generation of GW observatory that will permit to gain one order of sensibility
- \supset The main deliverable, at the end of these 3 years, will be a **conceptual design of such as infrastructure.**

of **GLASGOW**

ET Science Team (~250 Scientists)

ET Work Package Structure

Fundamental Physics with ET

- ₹ Properties of gravitational waves
	- **Example 3 Fig. 2 F**
		- Binary pulsars consistent with quadrupole formula; they don't measure properties of GW
	- \cdot How many polarizations are there?
		- ⁸ In Einstein's theory only two polarizations; a scalar-tensor theory could have six
	- \cdot . Do gravitational waves travel at the speed of light?
		- There are strong motivations from string theory to consider massive gravitons $\cdot \epsilon$
		- Binary pulsars constrain the speed to few parts in a thousand
		- GW observations can constrain to 1 part in 10¹⁸ $\cdot \xi$.
- ∙ EoS of dark energy
	- · Black hole binaries are standard candles/sirens
- \cdot EoS of supra-nuclear matter
	- \cdot Signature of EoS in GW emitted when neutron stars merge
- \cdot . Black hole no-hair theorem and cosmic censorship
	- → Are BH (candidates) of nature BH of general relativity?
- \cdot . An independent constraint/measurement of neutrino mass
	- Delay in the arrival times of neutrinos and gravitational waves $\cdot \cdot \cdot$

Credits: Sathyaprakash + ET Science Team

Cosmology with ET

- Cosmography $\cdot \epsilon$
	- \cdot Build the cosmic distance ladder, strengthen existing calibrations at high z
	- **EXECUTE:** Measure the Hubble parameter, dark matter and dark energy densities, dark energy EoS w , variation of w with z
- \cdot Black hole seeds
	- \cdot . Black hole seeds could be intermediate mass black holes
	- **EXECUTE:** Might explore hierarchical growth of central engines of black holes
- \cdot . Dipole anisotropy in the Hubble parameter
	- ⁸ The Hubble parameter will be "slightly" different in different directions due to the local flow of our galaxy
- \cdot Anisotropic cosmologies
	- \cdot In an anisotropic Universe the distribution of H on the sky should show residual quadrupole and higher-order anisotropies
- **E** Primordial gravitational waves
	- Extraording Productual Constantial View Produce a stochastic b/g
- Production of GW during early Universe phase transitions
	- Phase transitions, pre-heating, re-heating, etc., could produce detectable $\cdot \cdot \cdot$ stochastic GW

Astrophysics with ET

- Unveiling progenitors of short-hard GRBs
	- **EXECUTE:** Understand the demographics and different classes of short-hard GRBs
- + Understanding Supernovae
	- \cdot Astrophysics of gravitational collapse and accompanying supernova?
- Evolutionary paths of compact binaries
	- * Evolution of compact binaries involves complex astrophysics
		- Initial mass function, stellar winds, kicks from supernova, common envelope phase \cdot .
- Finding why pulsars glitch and magnetars flare
	- * What causes sudden excursions in pulsar spin frequencies and what is behind ultra high-energy transients of EM radiation in magnetars
		- * Could reveal the composition and structure of neutron star cores
- \cdot . Ellipticity of neutron stars as small as I part in a billion (10µm)
	- \cdot Mountains of what size can be supported on neutron stars?
- \cdot NS spin frequencies in LMXBs
	- * Why are spin frequencies of neutron stars in low-mass X-ray binaries bounded?
- \cdot . Onset/evolution of relativistic instabilities
	- ↑ CFS instability and r-modes *Credits: Sathyaprakash + ET Science Team*

More Details ...

- **→** For detailed information on the astrophysical motivation and benefits of 3rd generation detectors please have a look at:
	- \triangleright Punturo et al: The third generation of gravitational wave observatories and their science reach, doi: 10.1088/0264-9381/27/8/084007
	- Einstein Telescope design study: Vision Document https://pub3.ego-gw.it/itf/tds/file.php?callFile=ET-031-09.pdf
	-

Sathyprakash et al: Cosmography with the Einstein Telescope
http://arxiv.org/abs/0906.4151
Please also see the talk by Thomas Dent: Please also see the talk by Thomas -
Fundamental physics and astrophysics
Fundamental physics and astrophysics
wednesday Please also see the tain by
Fundamental physics and astrophysics
Fundamental physics and astrophysics
with the Einstein Telescope', Wednesday
with the Einstein Telescope', with the Einstein
14:45 Concert Hall

I**INIVERSITV GLASGOW**

Overview of this presentation

- \supset ET the start of Gravitational Wave Astronomy
- \supset Where is the transition from 2nd to 3rd Generation?
- The Brute Force approach to achieve the 3rd Generation target sensitivity.
- \Rightarrow The ET baseline design
- \supset Time line towards the Einstein **Telescope**

Enhancements of the Advanced **Detectors**

 \supset People started to look into enhancements of the Advanced **Detectors** (see for example R. Adhikari's talk at GWADW 2010).

of **GLASGOW**

 \supset Especially at high frequencies (and also in the mid-frequency range) improvements by a factor of a few seem potentially achievable.

R.Adhikari: LIGO G100 0524

EINSTEIN

ET

IGR

Facility limits of Advanced Detectors

Facility limits of Advanced Detectors

 \Rightarrow However, using currently available technology we will hit the facility limits.

GLASGOW

- \Rightarrow At all frequencies:
	- \triangleright Arm length
- \Rightarrow At **low** frequencies:
	- ▶ Gravity Gradient Noise.
	- \triangleright Perhaps also Seismic
- At **mid** frequencies:
	- \triangleright Thermal noise

3rd generation

- \supset To surpass the facility limits of the 2nd generation instruments, **3rd Generation 'lives' in new infrastructures.**
- **C** Observatories like ET will be infrastructures that will stay **'on air' for decades,** hosting also future generations (3.5, 4 …) of Gravitational Wave detectors

Overview of this presentation

- \supset ET the start of Gravitational Wave Astronomy
- \bullet Where is the transition from 2nd to 3rd Generation?
- The Brute Force approach to achieve the 3rd Generation target sensitivity.
- \Rightarrow The ET baseline design
- \supset Time line towards the Einstein **Telescope**

The starting point: 2nd Generation

- \supset We consider:
	- \triangleright Michelson topology with dual recycling.
	- \triangleright One detector covering the full frequency band
	- A single detector (no network)
- **■** Start from a 2nd Generation instrument.
- \supset Each fundamental noise at least for some frequencies above the ET target.

=> OUR TASK: All fundamental noises have to be improved !!

3G target sensitivity (approximated)

ot

Step 1: Increasing the arm length

IGR

Step 2: Optimising signal recycling

DRIVER: Quantum noise

GLASGOW

ACTION: From detuned SR to tuned SR (with 10% transmittance)

- EFFECTS: **•** Reduced shot noise by \sim factor 7 at high freqs
	- Reduced radiation pressure by \sim factor 2 at low freqs
	- Reduced peak sensitivity by \sim factor sqrt(2) :

 \mathbf{E} .

ÍGR)

ot

Step 3: Increasing the laser power

EINS

H.

IGR

- \supset To reduce photon shot noise and radiation pressure noise we require a frequency dependent squeezing angle.
- Use dispersion in reflection of filter cavities.
- \supset Quantum noise can be reduced by the injection of squeezed light states.
- Squeezing already successfully implemented in GEO600.

of

Step 4: Quantum noise suppression

IGR

DRIVER: Shot noise at high frequencies

ACTION: Introduced 10dB of squeezing (frequency depend angle)

EFFECT: Decreases the shot noise by a factor 3

SIDE EFFECTS: Decreases radiation pressure noise by a factor 3

Increasing the beam size to reduce Coating Brownian noise

Increasing the beam size at the mirrors reduces the contribution of Coating Brownian.

Coating Brownian noise of one mirror:

$$
S_x(f) = \frac{4k_B T}{\pi^2 fY} \frac{d}{r_0^2} \left(\frac{Y'}{Y} \phi_{\parallel} + \frac{Y}{Y'} \phi_{\perp} \right)
$$

beam radius on mirror

Please note: a beam radius of 12cm requires mirrors of 60 to 70cm diameter

Step 5: Increasing the beam size

DRIVER: Coating Brownian noise

ACTION: Increase of beam radius from 6 to 12cm

EFFECT: Decrease of Coating Brownian by a factor 2

- SIDE EFFECTS: Decrease of Substrate Brownian noise (~factor 2)
	- Decrease of Thermo-optic noise (~factor 2)
	- Decrease of residual gas pressure noise (\sim 10-20%)

Step 6: Cooling the test masses

DRIVER: Coating Brownian noise

ACTION: Reduce the test mass temperature from 290K to 20K

EFFECT: Decrease Brownian by \sim factor of 4

- SIDE EFFECTS: Decrease of substrate Brownian
	- Decrease of thermo-optic noise

LIGO-G080060

Seismic noise

Suspension Thermal noise

- **Suspension** thermal noise is probably the main driver for going to cryogenic temperatures.
- \Rightarrow Actual level strongly depends design details of suspension.

R. Nawrodt: http://aw.icrr.u-tokyo.ac.jp/gwadw2010/program/2010_GWADW_Nawrodt_ETWP2.pptx

DRIVER: Seismic noise

ACTION: Build 50m tall 5 stage suspension (corner freq = 0.158 Hz)

EFFECT: Decrease seismic noise by many orders of magnitude or pushes the seismic wall from 10 Hz to about 1.5 Hz

Same performance can be achived by a 17m high superattenuator S.Brachini: http://gw.icrr.u-

tokyo.ac.jp/gwadw2010/program/ 2010_GWADW_Braccini.ppt

What is Gravity Gradient Noise

- Changes in the gravitational potential around a test mass.
- **→ Causes 1: Humans, Lorries, Clouds etc**
	- \triangleright Hopefully not problematic because at frequency below detection band.
- **Causes 2: Seismic driven changes**
	- \triangleright Density waves, shaking of cave walls etc
- \supset Can be approximated by:

```
 Testmass Noise = Seismic Excitation x Coupling 
Transfer function
```
→ Coupling Transfer function given by law of gravity. Not much we can do!

 \supset Seismic Excitation can be reduced by finding a quiet site !

ot **GLASGOW**

Tackling Gravity Gradient noise: going underground

$$
\text{about} \quad 1 \cdot 10^{-7} \, \text{m} / f^2 \text{ for } f > 1 \, \text{Hz} \quad \text{about}
$$

Figure 7. Low seismic noise environment at the Kamioka site. Displacement noises at Kamioka, TAMA site, Tokyo, Black Forest Geophysical Observatory (Germany) and a low noise model (a hybrid spectrum of quiet sites in the world) are described.

Surface (Cascina) Underground (Kamioka)

DRIVER: Gravity gradient noise

ACTION: Go from the surface to underground location

EFFECT: Decrease gravity gradients by a factor 20

SIDE EFFECTS: Decrease in seismic noise by a factor 20

Seismic measurements

- \supset Seismic measurement campaign showed that there are several underground sites which have a seismic level even below Kamioka.
- **S** Gravity gradient noise compitabile with 3rd generation sensitivity for frequencies above 2Hz.

M.Baker: http://gw.icrr.u-tokyo.ac.jp/gwadw2010/program/2010_GWADW_Beker.pdf

Step 9: Gravity gradient suppression

DRIVER: Gravity gradient noise

of

GLASGOW

ACTION: Very quite underground site + active subtraction of the gravity gradients below a few Hz

EFFECT: Decrease gravity gradient noise by a factor 50.

EINS1

SCOP

IGR

DRIVER: Quantum noise at low frequencies

ACTION: Increase test mass weight from 42 kg to 120 kg (or even 200 kg)

EFFECT: Decrease of radiation pressure noise

I**INIVERSITV GLASGOW**

Overview of this presentation

- \supset ET the start of Gravitational Wave Astronomy
- \bullet Where is the transition from 2nd to 3rd Generation?
- The Brute Force approach to achieve the 3rd Generation target sensitivity.
- \Rightarrow The ET baseline design
- \supset Time line towards the Einstein **Telescope**

Motivation for Xylophone observatories

- \supset Due to residual absorption in substrates and coatings high optical power (3MW) and cryogenic test masses (20K) don't go easily together.
- **→ IDEA: Split the detection band into 2 or 3 instruments, each** dedicated for a certain frequency range. All 'xylophone' interferometer together give the full sensitivity.
- **→** Example of a 2-tone xylophone:
	- \triangleright Low frequency: low power and cryogenic
	- \triangleright High frequency: high power and room temperature

High Frequency Detector

- **Quantum noise:** 3MW, tuned Signal-Recyling, 10dB Squeezing, 200kg mirrors.
- **Suspension Thermal and Seismic:**

Superattenuator at surface location.

- **Gravity gradient:** No Subtraction
- **Thermal noise:** 290K, 12cm beam radius, fused Silica, LG33 (reduction factor of 1.6 compared to

TEM00).

Coating Brownian reduction factors (compared to 2G): 3.3 (arm length), 2 (beam size) and 1.6 (LG33) = 10.5

Low Frequency Detector

- **Quantum noise:** 18kW, detuned Signal-Recyling, 10 dB frequency dependent Squeezing, 211kg mirrors.
- **Seismic:** 5x10m suspensions, underground.
- **Gravity gradient:** Underground, factor 50 subtraction
- **Thermal noise:** 10K, Silicon, 12cm beam radius, TEM00.
- **Suspension Thermal:**

not included. : (As mirror TN is no longer limiting, one can relax the assumptions on the material parameters and the beam size…

ET-Xylophone: ET-D

- Data from ET-LF and ET-HF can be coherently or incoherently be added, depending on the requirements of the analysis.
- For more details please see S.Hild et al: 'A Xylophone Configuration for a third Generation Gravitational Wave Detector', CQG 2010, 27, 015003 and S.Hild et al: 'Sensitivity Studies for Third-Generation Gravitational Wave Observatories', arXiv:1012.0908v1 [qr-qc].

How to build an Observatory?

- **C** For efficiency reasons build a triangle.
- \supset Start with a single xylophone detector.

VIA VERITAS VITA

How to build an Observatory?

- **C** For efficiency reasons build a triangle.
- \supset Start with a single xylophone detector.

→ Add second

Xylophone detector to fully resolve polarisation.

10_{km}

!Blu-

How to build an Observatory?

- **C** For efficiency reasons build a triangle.
- \supset Start with a single xylophone detector.
- **→ Add second**

Xylophone detector to fully resolve polarisation.

 \Rightarrow Add third Xylophone detector for redundancy and nullstreams.

UNIVERSITY $\frac{of}{\text{GLASGOW}}$

Artist's View of ET

I**INIVERSITV GLASGOW**

Overview of this presentation

- \supset ET the start of Gravitational Wave Astronomy
- \bullet Where is the transition from 2nd to 3rd Generation?
- The Brute Force approach to achieve the 3rd Generation target sensitivity.
- \Rightarrow The ET baseline design
- Time line towards the Einstein **Telescope**

Time Lines (from GWIC Roadmap)

ET Timeline

ET Conceptual Design

- **→ Conceptual** design study is the main deliverable.
- \supset Public presentation of the design study will take place on 20th of May in Pisa, Italy.

Summary

- **→** 2nd generation GW detectors will make the first direct detection of gravitational waves. With ET will provide us with frequent high-SNR events and therefore mark the start of gravitational wave astronomy.
- **ET** can provide lots of exciting science in the fields of astrophysics, fundamental physics and cosmology.
- \supset We identified the best technologies for reaching the very demanding sensitivity target of ET and are about to complete the conceptual design.
- Build up a very strong Science Team working on ET.
- **→ Next steps include:**
	- \triangleright Side identification (long term seismic measurements and discussions with national funding agencies).
	- Lots of R+D (e.g. materials, interferometry, lasers, cryogenics) to support the transition from the conceptual to the technical design stage.

EXTRA SLIDES

LF-Detector: Cryogenic Test masses

- \supset Thermal noise of a single cryogenic end test mass.
- **C** Assumptions:

ot **GLASGOW**

- \triangleright Silicon at 10K
- Youngs Modulus = 164GP
- Coating material similar to what is currently available for fused silica at 290K (loss angles of 5e-5 and 2e-4 for low and high refractive materials)

IGR

How to get from here to total mirror TN in ET?

- Sum over the 4 different noise types.
- Go from displacement to strain (divide by 10000).
- Uncorrelated sum of 2 end mirrors and 2 input mirrors

EINSTE

Is there any chance to substract the gravity gradient noise?

- \Rightarrow Theoretically = YES.
- \supset If it is possible to determine the seismic 'all around' the test masses and the corresponding coupling transfer functions to a certain accuracy it should be possible to subtract gravity gradient noise from h(t).
- **→** This would require a big 3D array of seismometers, very homogenous rock, etc
- \supset Has never been done ... work in progress (and probably our only chance to get to the ET target sensitivity below about 2-3Hz).