Angular Analysis of $B_{d} \rightarrow J / \psi K^{*}$

Ailsa Sparkes

LHCb UK Meeting, Glasgow

4th April 2011

Overview

- Motivation
- LHCb Detector
- $B_{d} \rightarrow J / \psi K^{*}$ Analysis Method
- Results
- Conclusion

Motivation

- $B_{d} \rightarrow J / \psi K^{*}$ has already been measured accurately by BaBar, Belle and CDF
- It is an important control channel for $B_{s} \rightarrow J / \psi \phi$ which is key for measuring the CP violating phase ϕ_{s}
- Similar angular distributions described by three transversity angles
- Polarisation amplitudes measured by angular analysis
- Verifies our understanding of detector effects
- It is self-tagging - the charge of the Kaon in the final state indicates the flavour of the B meson
- Used to verify tagging methods used in LHCb
- With high statistics can measure direct CP violation and Cabibbo-supressed $B_{s} \rightarrow J / \psi K^{*}$
$B_{d} \rightarrow J / \psi K^{*}$
- Angular distribution described by 3 transversity angles θ, ϕ and ψ

- θ and ϕ are the polar and azimuthal angles of the μ^{+}in the J / ψ rest frame
- ψ is the angle between the momentum of the K^{+}and B in the rest frame of the K^{*}

LHCb Detector - Production of b / \bar{b} 's in forward direction

- VELO for precise vertexing
- RICH detectors identify charged particle (important for $K^{*} \rightarrow K^{ \pm} \pi^{\mp}$)
- Muon detectors also vital for reconstruction of $J / \psi \rightarrow \mu^{+} \mu^{-}$and triggering

Method

(1) Select Data

- Dataset from 2010 corresponding to $\mathcal{L}=36 p b^{-1}$
- Lifetime unbiased trigger lines only - fully efficient for all B lifetimes
(2) Unbinned maximum likelihood fit extracting physics parameters whilst understanding:
- Lifetime and Angular Acceptance
- Backgrounds
(3) Systematic Uncertainties

Fit Procedure

- Unbinned Maximum Likelihood fit in B-mass m, proper time t, and decay angles $\Omega=(\cos \theta, \phi, \cos \psi)$
- Probability Density function consisting of signal \mathcal{S} and background component \mathcal{B} :

$$
\mathcal{P}=f_{\text {sig }} \mathcal{S}(m) \mathcal{S}(t, \Omega)+\left(1-f_{\text {sig }}\right) \mathcal{B}(m) \mathcal{B}(t, \Omega)
$$

- Signal description given by differential decay rate:

$$
\mathcal{S}(t, \Omega)=\frac{d \Gamma\left(B_{d} \rightarrow J / \psi K^{*}\right)}{d \Omega d t}
$$

- Physics Parameters to extract:
- Decay Width Γ_{d}, Polarization amplitudes $\left|A_{\|}\right|^{2},\left|A_{\perp}\right|^{2},\left|A_{0}\right|^{2}$ and phases $\delta_{\|}, \delta_{\perp}, \delta_{0}$
- Including $\left|A_{s}\right|^{2}$ and δ_{s} for description of the $m_{K \pi}$ dependent S -wave component as well as the P wave.

Time Resolution and Angular Acceptance

- Finite proper time resolution model three Gaussian fit including all proper times (prompt excluded for final fit)

- Angular acceptance correction calculated from Monte Carlo using a 3D histogram in bins of the transversity angles Ω :

Background Description

- Sources of Background:
- Random combinations of four tracks
- Prompt J / ψ events combined with random tracks
- True long-lived J / ψ from other $B_{d} \rightarrow J / \psi X$ decays
- Long-lived combinatorial background
- Modelling the background
- Cut on proper time at $t>0.3 p s$ removes most of the prompt background
- Two long lived components modelled using sidebands of B mass
- Angular dependence of the background has been described by a 3D histogram
- Additional background component seen in Monte Carlo - 'wrong signal' which is reconstructed with wrong pion contributes $\approx 10 \%$ of the background

Fit Results

- Single Gaussian for mass signal
- Shallow exponential plus Gaussian for background

- Exponential for the signal
- Double exponential for the background

Transversity Angles

- Fitted signal
- Fitted background
- Wrong -signal background
- S-wave component

Results

- The following are the parameters from the final fit result with 2631 ± 51 signal candidates
- Within errors these are consistent with earlier measurements

Parameter	Result	
Γ_{d}	$0.661 \pm 0.020 \pm 0.018$	
$\left\|A_{\\|}\right\|^{2}$	$0.252 \pm 0.020 \pm 0.016$	
$\left\|A_{\perp}\right\|^{2}$	$0.178 \pm 0.022 \pm 0.017$	
$\delta_{\\|}$	$-2.87 \pm 0.11 \pm 0.10$	
δ_{\perp}	$3.02 \pm 0.10 \pm 0.07$	
$\left\|A_{s}\right\|^{2}$	0.051 ± 0.022	
δ_{s}	2.16 ± 0.15	

Parameter	BaBar Result	
Γ_{d} (PDG)	0.656 ± 0.017	
$\left\|A_{\\|}\right\|^{2}$	$0.211 \pm 0.010 \pm 0.006$	
$\left\|A_{\perp}\right\|^{2}$	$0.233 \pm 0.010 \pm 0.005$	
$\delta_{\\|}$	$-2.93 \pm 0.08 \pm 0.04$	
δ_{\perp}	$2.91 \pm 0.05 \pm 0.03$	

- There is an S-wave component of $5 \pm 2 \%$

Systematic Uncertainties

- All systematic uncertainties considered are shown in the table below:

Systematic Effect	$\left\|A_{\\|}\right\|^{2}$	$\left\|A_{\perp}\right\|^{2}$	$\delta_{\\|}$	δ_{\perp}
proper time acceptance	-	-	-	-
data/MC differences	0.008	0.006	0.07	0.05
statistical error of acceptance	0.002	0.001	-	0.01
wrong-signal fraction	0.004	0.001	-	0.01
background treatment	0.002	0.008	0.04	0.01
statistical error of background	0.008	0.005	0.02	0.01
mass model	0.010	0.002	0.01	0.01
s-wave treatment	0.001	0.013	0.05	0.05
sum	0.016	0.017	0.10	0.07

Summary

- The decay $B_{d} \rightarrow J / \psi K^{*}$ provides a valuable control sample for $B_{s} \rightarrow J / \psi \phi$ since it occurs via similar decay amplitudes which are already well measured
- The preliminary results presented here are consistent with previous results and therefore confirm that we understand our detector
- With data from 2010 and 2011, LHCb will improve the uncertainty on the results presented here and will go on to measure direct CP violation in $B_{d} \rightarrow J / \psi K^{*}$.

For more information see: LHCb-Conf-2011-001 LHCb-Conf-2011-002

Backup

- The differential decay rate for $B_{d} \rightarrow J / \psi K^{*}$ is:

$$
\begin{array}{r}
\frac{d^{4} \Gamma}{d t d \Omega}=e^{-\Gamma_{d} t}\left[f_{1}(\Omega)\left|A_{0}(0)\right|^{2}+f_{2}(\Omega)\left|A_{\|}(0)\right|^{2}\right. \\
+f_{3}(\Omega)\left|A_{\perp}(0)\right|^{2} \\
\pm f_{4}(\Omega) \sin \left(\delta_{\perp}-\delta_{\|}\right)\left|A_{\|}(0)\right|\left|A_{\perp}(0)\right| \\
+f_{5}(\Omega) \cos \delta_{\|}\left|A_{0}(0)\right|\left|A_{\|}(0)\right| \\
\left. \pm f_{6}(\Omega) \sin \delta_{\perp}\left|A_{0}(0)\right|\left|A_{\perp}(0)\right|\right]
\end{array}
$$

Selection

Decay mode	Cut parameter	Stripping value	Offline value
$J / \psi \rightarrow \mu \mu$	$\Delta \ln \mathcal{L}_{\mu \pi}$	>0	-
	$\chi_{\text {track }}^{2} / \mathrm{nDoF}(\mu)$	<5	<4
	$\min \left(P^{T}\left(\mu^{+}\right), p T\left(\mu^{-}\right)\right)$	-	$>0.5 \mathrm{GeV}$
	$\chi_{\mathrm{vtx}}^{2} / \mathrm{nDoF}(J / \psi)$	<16	<11
	$\mid M\left(\mu^{+} \mu^{-}\right)-M_{J / \psi}$	$<80 \mathrm{MeV}$	-
	$\left\|M_{J / \psi(\text { reco })}-M_{J / \psi(P D G)}\right\| / \sigma_{m} / \psi$	-	$<1.4 \times 3$
	J / ψ mass constrained to PDG value		

Decay mode	Cut parameter	Stripping value	Offline value
$K^{*} \rightarrow K \pi$	$\begin{array}{r} \Delta \ln \mathcal{L}_{K \pi} \\ \Delta \ln \mathcal{L}_{K p} \\ \chi_{\text {track }}^{2} / \mathrm{nDoF}(K, \pi) \\ \mathrm{pT}\left(\mathrm{~K}^{* 0}\right) \\ \left\|M\left(K^{+} \pi^{-}\right)-M\left(K^{*}\right)\right\| \\ \chi_{\mathrm{vtx}}^{2} / \mathrm{nDoF}\left(K^{*}\right) \end{array}$	$\begin{aligned} & >-2 \\ & - \\ & <5 \\ & >1 \mathrm{GeV} \\ & <90 \mathrm{MeV} \\ & <16 \end{aligned}$	$\begin{aligned} & >0 \\ & >-2 \\ & <4 \\ & - \\ & <70 \mathrm{MeV} \end{aligned}$
$B_{d} \rightarrow J / \psi K^{*}$	$\begin{array}{r} M\left(B_{d}\right) \\ p T\left(B_{d}\right) \\ \chi_{\mathrm{vtx}}^{2} / \mathrm{nDoF}\left(B_{d}\right) \\ \chi_{\mathrm{DTF}(\mathrm{~B}+\mathrm{PV})}^{2} / \mathrm{nDoF}\left(B_{d}\right) \\ I P \chi^{2}\left(B_{d}\right) \end{array}$	$\begin{aligned} & (5100,5550) \mathrm{MeV} \\ & >2 \mathrm{GeVc} \\ & <10 \end{aligned}$	$\begin{aligned} & (5100,5450) \mathrm{MeV} \\ & - \\ & - \\ & <5 \\ & <25 \end{aligned}$

Results with and withouth s-wave

Parameter	Result with S-wave	Result without S-wave	
$\left\|A_{\\|}\right\|^{2}$	0.252 ± 0.020	0.253 ± 0.020	
$\left\|A_{\perp}\right\|^{2}$	0.178 ± 0.022	0.191 ± 0.019	
$\delta_{\\|}$	-2.87 ± 0.11	-2.82 ± 0.12	
δ_{\perp}	3.02 ± 0.10	3.07 ± 0.09	
$\left\|A_{s}\right\|^{2}$	0.051 ± 0.022	-	
δ_{s}	2.16 ± 0.15	-	
Γ_{d}	0.659 ± 0.015	0.661 ± 0.015	

Systematics on Γ_{d}

signal mass model	0.004
signal time model	0.074
bkg. mass model	0.039
bkg. time model	0.012
time resolution model	0.010
momentum scale	0.002
decay length scale	0.002
quadratic sum	0.082

