

First measurements of $B^0_s \to J/\psi \phi$ at LHCb

C. Fitzpatrick (University of Edinburgh)

IoP NPPD 2011, Glasgow

 ${\rm B}_{\rm S}^0 \to {\rm J}/\psi\,\phi\,$ at LHCb

Introduction

CP Violation in $B_s^0 \to J/\psi \, \phi$

Selection

Flavour tagging

Angular Analysis

Untagged Measurement

Tagged Measurement

Conclusions

C. Fitzpatrick

Introduction

 ${
m B}_{\rm S}^0
ightarrow {
m J}/\psi\,\phi$ at LHCb

Introdu

CP Violation in ${\rm B}^0_{\rm S} \to {\rm J}/\psi\,\phi$

Selection

Flavour tagging

Angular Analysis

Untagged Measurement

Tagged Measurement

Conclusions

► This talk will focus on one of the flagship channels at LHCb: $B_s^0 \rightarrow J/\psi \phi$

- ▶ I will present results from the 36pb⁻¹ collected at 7 TeV throughout 2010
- ► See Ailsa's slides for a description of LHCb

C. Fitzpatrick

CP Violation in $B_s^0 \rightarrow J/\psi \phi$

- ▶ B_s^0 and \overline{B}_s^0 mix: States oscillate as a function of time
- ▶ Both can **decay** to $J/\psi\phi$ as it's a CP eigenstate
- ▶ CP Violating weak phase difference between the interfering amplitudes, $\phi_{\rm S} = \phi_{\rm mix} 2\phi_{\rm decay}$
- ϕ_s precisely predicted in the SM: $\phi_s=-2\beta_s=-0.036\pm0.002$ rad (excluding penguin pollution)
- $lackbox{} \phi_{
 m decay}$ is dominated by SM contribution, but new physics can alter $\phi_{
 m mix}$
- This can also affect the decay width difference, ΔΓ_s

 ${
m B}_{
m S}^0
ightarrow {
m J}/\psi\,\phi$ at LHCb

Introduction

CP Violation i $B_{-}^{0} \rightarrow J/\psi \phi$

Selection

Flavour tagging

Angular Analysis

Untagged Measurement

Tagged Measurement

Conclusions

C. Fitzpatrick

Hints of New Physics?

- ▶ Both Tevatron experiments have measured ϕ_s , originally finding a combined $\sim 2\sigma$ deviation from $-2\beta_s$
- Since then this deviation has decreased with higher statistics, but the errors are still large

DØ Conf Note 6093

CDF Public Note 10206

- ▶ LHCb is in a unique position to make the most precise measurement of ϕ_s in ${\rm B_s^0} \to {\rm J}/\psi \phi$
- ▶ We can also boost sensitivity with our latest observation: $B_s^0 \rightarrow J/\psi f_0(980)$

 ${
m B}_{
m S}^0
ightarrow {
m J}/\psi\,\phi$ at LHCb

Introduction

CP Violation in $B_s^0 \to J/\psi \, \phi$

Selection

Flavour tagging

Angular Analysis

Untagged Measurement

Tagged Measurement Conclusions

C. Fitzpatrick

Trigger and Selection

- ▶ We use a common selection for $B_s^0 \rightarrow J/\psi \phi$ and control channels
- All samples are selected with $\tau > 0.3$ ps to reduce prompt J/ψ background
- Two trigger types used: lifetime "unbiased" and "biased".
- After selection, 757 ± 28 signal candidates

 "biased" sample acceptance determined from data:
 ε_B(t) ∝ ε_B(t) · (a · t)^c/(1+(a · t)^c)

 ${\rm B}_{\rm S}^0 \to {\rm J}/\psi\,\phi$ at LHCb

Introduction

CP Violation in $B_n^0 \to J/\psi \phi$

Selection

Flavour tagging

Angular Analysis

Untagged Measurement

Tagged Measurement Conclusions

C. Fitzpatrick

Flavour tagging

- lacktriangle To measure $\phi_{\mathcal{S}}$ we need to know the B^0_s flavour at the production vertex
- ▶ B_s flavour is determined by **tagging** algorithms:
 - ▶ Opposite Side (OS): Decay products of the other b-meson
 - Same Side (SS): particles produced in fragmentation alongside signal B

 At present we only use OS tagging. This is optimised and calibrated on control channels

$$\epsilon_{\it eff}({\rm J}/\psi\phi)=\epsilon(1-2\omega)^2=2.66\pm0.12\%$$
 determined from ${\rm B}^+\to{\rm J}/\psi{\rm K}^+$

▶ Per-event mistag probability (η) treated in the fit, Gaussian constraints on P_0, P_1 :

$$\omega = P_0 + P_1(\eta - < \eta >)$$

$${\rm B}_{\rm S}^0 \to {\rm J}/\psi\,\phi$$
 at LHCb

Introduction

CP Violation in $B_c^0 \to J/\psi \phi$

Selection

Flavour tagging

Angular Analysis

Untagged

Measurement

Tagged Measurement

Conclusions

C. Fitzpatrick

Measurement by angular analysis

- ▶ $B_s^0 \rightarrow J/\psi \phi$ is a pseudoscalar to vector vector decay
- ► Three polarisation amplitudes and phases:
 - $|A_0|^2, |A_{||}|^2 \delta_0, \delta_{||}$ (CP-even)
 - $|A_{\perp}|^2$, δ_{\perp} (CP-odd)
- S-wave component introduces another amplitude and phase: $|A_s|^2, \delta_s$
- ► These must be extracted by angular analysis
- ▶ LHCb uses the transversity basis to define the angles θ, φ, ψ :

 ${
m B}_{
m S}^0
ightarrow {
m J}/\psi\,\phi$ at LHCb

Introduction

CP Violation in $B_s^0 \to J/\psi \, \phi$

Selection

Flavour tagging

Angular Analysis

Untagged Measurement

Tagged Measurement Conclusions

C. Fitzpatrick

Untagged Analysis

- $B_c^0 \to J/\psi \phi$ at LHCb

Introduction

CP Violation in

Selection

Flavour tagging

Angular Analysis

Tagged Measurement

- $B_n^0 \to J/\psi \phi$

- Conclusions

- The untagged analysis is an interim step on the way to measuring ϕ_s
- Permits extraction of Γ_s and $\Delta\Gamma_s$ as well as two amplitudes.
- This is still a complicated fit!
 - ▶ Uses the full ϕ_s PDF with $\phi_s = 0$, without tagging information
 - Only lifetime-unbiased events are used
 - Observables:
- $\theta, \ \varphi, \ \psi, \ t, \ m_{\mathrm{B}0}$
- Physics parameters: Γ_s , $\Delta\Gamma_s$, Δm_s , δ_{\parallel} , $|A_0|^2$, $|A_{\perp}|^2$
- Detector parameters: time, mass resolutions, angular acceptances, etc
- Two separate fitting strategies, three fitters independently verified:
 - All strategies show excellent agreement

C. Fitzpatrick

The Untagged Fit

Untagged fit projections in time and angles

 ${
m B}_{
m S}^0
ightarrow {
m J}/\psi\,\phi$ at LHCb

Introduction

CP Violation in $B_c^0 \to J/\psi \phi$

Selection

Flavour tagging

Angular Analysis

Untagged Measuremen

Tagged Measurement Conclusions

C. Fitzpatrick

April 4, 2011

Signal CP-even: - - - CP-odd: · · · Background

Untagged Results

		LHCb, 36pb ⁻¹	CDF 5.2fb ⁻¹
Γ_s	=	$0.679\ \pm0.036\pm0.027\ ps^{-1}$	$0.654^\dagger \pm 0.016 \pm 0.008~\mathrm{ps^{-1}}$
$\Delta\Gamma_{\mathcal{S}}$	=	$0.077 \pm 0.119 \pm 0.021 \mathrm{ps^{-1}}$	$0.075 \pm 0.035 \pm 0.01~\mathrm{ps^{-1}}$
$ A_{\perp} ^2$	=	$0.263 \pm 0.056 \pm 0.014$	$0.245^\dagger \pm 0.014 \pm 0.015$
$ A_0 ^2$	=	$0.528\ \pm0.040\pm0.028$	$0.524 \pm 0.013 \pm 0.015$

- Remarkable agreement between LHCb, CDF results!
- ▶ 68, 90, 95, 99% C.L. Contours:

- $ightharpoonup \Gamma_s$, $\Delta\Gamma_s$ Profile Likelihood
- ► Central value denoted by *

- ▶ $φ_s$, $ΔΓ_s$ Profile Likelihood
- Four-fold ambiguity.

 ${\rm B}_{\rm S}^0 \to {\rm J}/\psi\,\phi$ at LHCb

Introduction

CP Violation in $B_s^0 \to J/\psi \, \phi$

Selection

Flavour tagging

Angular Analysis

Untagged Measureme

Tagged Measurement Conclusions

C. Fitzpatrick

 $^{^\}dagger$ Parameters transformed from CDF note: $\Gamma_{S}=1/c au_{S},\,|A_{\perp}|^2=1-|A_{||}|^2-|A_{0}|^2$

Tagged Analysis

- LHCD
- $B_s^0 \to J/\psi \, \phi$ at LHCb

Introduction

CP Violation in $B_s^0 \to J/\psi \phi$

Selection

Flavour tagging

Angular Analysis

Untagged Measurement

ragged ivieasu

Conclusions

- For the tagged analysis we make use of the tagging information and per-event mistag (η)
- ► To increase sensitivity we include the biased dataset
 - ➤ ≈ 30% more events
 - Simultaneous fit to both samples to extract physics parameters
- Additional parameters in the tagged fit: ϕ_s , δ_{\perp} , η , tag, mistag calibration
- ► As with the untagged analysis, several independent fitters and strategies
 - Results show good agreement

C. Fitzpatrick

NEW! Tagged Results

- ightharpoonup Presenting LHCb's first measurement of ϕ_s , simultaneously at Beauty '11
- ► Feldman-Cousins corrected C.L. contour, statistical uncertainties only
- SM value is in blue

- Tagging reduces the 4-fold ambiguity to a 2-fold one
- \blacktriangleright Coverage-corrected confidence interval for $\phi_{\mathcal{S}},$ statistical uncertainties only:

$$\phi_s \in [-2.7; -0.5]$$
rad at 68% CL
 $\phi_s \in [-3.5; 0.2]$ rad at 95% CL
1.2 σ deviation from SM

 ${
m B}_{
m S}^0
ightarrow {
m J}/\psi\,\phi$ at LHCb

Introduction

CP Violation in $B_n^0 \to J/\psi \phi$

Selection

Flavour tagging

Angular Analysis

Untagged Measurement

Conclusions

C. Fitzpatrick

Conclusions

 $B_c^0 \to J/\psi \phi$ at LHCb

Introduction

CP Violation in $B_n^0 \to J/\psi \phi$

Selection

Flavour tagging

Angular Analysis

Untagged Measurement

Tagged Measurement

C. Fitzpatrick

April 4, 2011

▶ With the first 36pb⁻¹ LHCb finds good agreement with Tevatron results

1fb⁻¹ is expected this year: $\approx 25k$ signal events

The analysis is in excellent shape, ready for this data

Extrapolated **conservative** sensitivity with this years' data: $\sigma \phi_s = 0.12$ rad excluding SS tagger

 \triangleright With it we will be able to make the single most precise measurement of ϕ_s in $B_s^0 \to J/\psi \phi$

• We will also measure ϕ_s in other channels

First Observation of $B_s^0 \rightarrow J/\psi f_0(980)$

- B_s⁰ → J/ψf₀(980) is a single CP-odd eigenstate. No need for angular analysis as with B_s⁰ → J/ψφ
- ▶ This simplifies the extraction of ϕ_s
- ▶ LHCb has made the first observation of $B_s^0 \rightarrow J/\psi f_0(980)!$ arxiv:1102.0206v2 [hep-ex]

▶ 111 ± 14 signal events within $m_{\rm B_c^0}$ ± 30 MeV (33pb⁻¹)

 ${
m B}_{
m S}^0
ightarrow {
m J}/\psi\,\phi$ at LHCb

Backup Slides

 $B_s^0 \to J/\psi f_0(980)$

Systematics Selection

Yields Decay Rates

S-wave Δm_S

Propertime resolution
More Theory

C. Fitzpatrick

April 4, 2011

3/13

Systematics

 ${
m B}_{\rm s}^0
ightarrow {
m J}/\psi\,\phi$ at LHCb

Backup Slides

 $\rm B_S^0 \rightarrow \rm J/\psi\,f_0(980)$ Systematics

Selection Yields Decay Rates S-wave Δm_s Propertime resolution More Theory

▶ In general, systematics are very small. This analysis will benefit greatly from larger statistics this year

Effect	Abs. deviation for parameter				
	Γ_s	$\Delta\Gamma_{\mathcal{S}}$	$ A_{\perp} ^2$	$ A_{ } ^{2}$	δ_{\parallel}
Lifetime resolution	0.0001	-	-	-	-
Angular acceptance	-	-	-	0.0007	-
Acceptance parametrization	0.0002	0.001	0.0017	0.0013	-
Lifetime acceptance	0.0272	0.001	0.0003	0.0002	-
S-wave	0.003	0.003	0.013	0.028	0.13
Background description	0.0002	0.02	0.0016	0.0012	-
Mass model	0.0004	0.004	0.0032	0.0006	-
Σ (quadrature)	0.0274	0.0206	0.0136	0.0281	0.13

C. Fitzpatrick April 4, 2011

Selection

- Selection optimised to minimise bias on propertime
- ▶ Common to $J/\psi \phi$ and control channels

Decay mode	Cut parameter	Stripping value	Selection value
$J/\psi \rightarrow \mu^- \mu^+$	$\Delta_{LL}(\mu^{\pm} - \pi^{\pm})$	> 0	> 0
	$\Delta_{LL}(\mu^{\pm} - \pi^{\pm}) $ $\chi^2_{\text{track}}/\text{nDoF}(\mu^{-})$	< 5	< 4
	$min(p_{\mathrm{T}}(\mu^{-}), p_{\mathrm{T}}(\mu^{+}))$	-	> 0.5 GeV/ c
	$\chi^2_{ m vtx}$ /nDoF(J/ ψ)	< 16	< 11
		$< 60 {\rm MeV}/c^2$	$< 60 \text{MeV} / c^2$
$\phi \rightarrow K^+K^-$	$\Delta_{LL}(K^{\pm} - \pi^{\pm})$ $\chi^2_{track}/nDoF(K^{\pm})$	> -2	> 0
	$\chi^2_{\text{track}}/\text{nDoF}(K^{\pm})$	< 5	< 4
	$p_{\mathrm{T}}\left(\phi\right)$	> 1GeV/c	> 1 GeV/c
	$M(\phi)$	\in [980, 1050] MeV/ c^2	\in [1008, 1032] MeV/ c^2
	$\chi^2_{\rm vtx}$ /nDoF(ϕ)	< 16	< 16
$B_S^0 \to J/\psi \phi$	$M(B_s^0)$	\in [5100, 5550] MeV/ c^2	\in [5200, 5550] MeV/ c^2
	$\chi^2_{\rm vtx}/{\rm nDoF}({\rm B}^0_{\rm s})$	< 10	< 10
	$\chi^2_{\mathrm{DTF}(\mathrm{B+PV})}/\mathrm{nDoF}(\mathrm{B}^0_{\mathrm{s}})$	-	< 5
	$IP\chi^2(\mathrm{B}^0_\mathrm{S})$	-	< 25

 ${\rm B}_{\rm S}^0 \to {\rm J}/\psi\,\phi$ at LHCb

Backup Slides $B_s^0 \to J/\psi f_0(980)$ Systematics

Selection

Yields

Decay Rates

S-wave

wave

 Δm_S

Propertime resolution

More Theory

C. Fitzpatrick

Signal Yields

All events:

	all	(t > 0.3)	signal yield	signal yield ($t > 0.3$)
unbiased-only	38225	250	230 ± 53	161 ± 13
biased-only	653	345	208 ± 16	196 ± 15
both	1123	521	398 ± 22	400 ± 20
total	40001	1116	836 ± 60	757 ± 28

Only tagged events:

	all	(t > 0.3)	signal yield	signal yield ($t > 0.3$)
unbiased-only	7443	58	52 ± 24	36 ± 6
biased-only	150	83	56 ± 9	52 ± 8
both	315	136	111 ± 12	115 ± 11
total	7908	277	219 ± 28	203 ± 15

 ${\rm B}_{\rm s}^0 \to {\rm J}/\psi\,\phi$ at LHCb

Backup Slides $\mathrm{B_S^0} \rightarrow \mathrm{J/\psi\,f_0}(980)$ Systematics Selection

Yields

Decay Rates S-wave Δm_s

Propertime resolution More Theory

C. Fitzpatrick

Differential Decay rates

▶ Differential Decay rates for \overline{B}_s^0 , highlighted signs flip for B_s^0

$$\begin{split} |\bar{A}_{0}(t)|^{2} &= |\bar{A}_{0}(0)|^{2} \mathrm{e}^{-\Gamma_{S}t} \Big[\cosh \left(\frac{\Delta \Gamma_{S}t}{2} \right) - \cos \phi_{S} \sinh \left(\frac{\Delta \Gamma_{S}t}{2} \right) - \sin \phi_{S} \sin(\Delta m_{S}t) \Big] \\ |\bar{A}_{\parallel}(t)|^{2} &= |\bar{A}_{\parallel}(0)|^{2} \mathrm{e}^{-\Gamma_{S}t} \Big[\cosh \left(\frac{\Delta \Gamma_{S}t}{2} \right) - \cos \phi_{S} \sinh \left(\frac{\Delta \Gamma_{S}t}{2} \right) - \sin \phi_{S} \sin(\Delta m_{S}t) \Big] \\ |\bar{A}_{\perp}(t)|^{2} &= |\bar{A}_{\perp}(0)|^{2} \mathrm{e}^{-\Gamma_{S}t} \Big[\cosh \left(\frac{\Delta \Gamma_{S}t}{2} \right) + \cos \phi_{S} \sinh \left(\frac{\Delta \Gamma_{S}t}{2} \right) + \sin \phi_{S} \sin(\Delta m_{S}t) \Big] \\ \Im \mathbb{M} \Big\{ \bar{A}_{\parallel}^{*}(t) \bar{A}_{\perp}(t) \Big\} &= |\bar{A}_{\parallel}(0)| |\bar{A}_{\perp}(0)| \mathrm{e}^{-\Gamma_{S}t} \Big[-\cos(\delta_{\perp} - \delta_{\parallel}) \sin \phi_{S} \sinh \left(\frac{\Delta \Gamma_{S}t}{2} \right) \\ &- \sin(\delta_{\perp} - \delta_{\parallel}) \cos(\Delta m_{S}t) + \cos(\delta_{\perp} - \delta_{\parallel}) \cos \phi_{S} \sin(\Delta m_{S}t) \Big] \\ \Re \mathfrak{e} \left\{ \bar{A}_{0}^{*}(t) \bar{A}_{\parallel}(t) \right\} &= |\bar{A}_{0}(0)| |\bar{A}_{\parallel}(0)| \mathrm{e}^{-\Gamma_{S}t} \cos \delta_{\parallel} \Big[\cosh \left(\frac{\Delta \Gamma_{S}t}{2} \right) - \cos \phi_{S} \sinh \left(\frac{\Delta \Gamma_{S}t}{2} \right) \\ &- \sin \phi_{S} \sin(\Delta m_{S}t) \Big] \\ \Im \mathbb{M} \Big\{ \bar{A}_{0}^{*}(t) \bar{A}_{\perp}(t) \Big\} &= |\bar{A}_{0}(0)| |\bar{A}_{\perp}(0)| \mathrm{e}^{-\Gamma_{S}t} \Big[-\cos \delta_{\perp} \sin \phi_{S} \sinh \left(\frac{\Delta \Gamma_{S}t}{2} \right) \\ &- \sin \delta_{\perp} \cos(\Delta m_{S}t) + \cos \delta_{\perp} \cos \phi_{S} \sin(\Delta m_{S}t) \Big] \end{split}$$

 $B_c^0 \to J/\psi \phi$ at LHCb

Backup Slides $B_s^0 \rightarrow J/\psi f_0(980)$ Systematics Selection Yields

Decay Rates

S-wave

 Δm_s

Propertime resolution More Theory

C. Fitzpatrick

S-wave

S-wave introduces additional amplitude and phase, A_S, δ_S:

$$\begin{split} \left|A_{S}(t)\right|^{2} &= \left|A_{S}\right|^{2} \mathrm{e}^{-\Gamma_{S}t} \Big[\mathrm{cosh} \left(\frac{\Delta \Gamma_{S}t}{2}\right) + \mathrm{cos} \, \phi_{S} \, \mathrm{sinh} \left(\frac{\Delta \Gamma_{S}t}{2}\right) - \, \mathrm{sin} \, \phi_{S} \, \mathrm{sinh} (\Delta m_{S}t) \Big] \\ \Re \epsilon \left\{A_{S}^{*}(t)A_{\parallel}(t)\right\} &= \left|A_{S}\right| \left|A_{\parallel}\right| \mathrm{e}^{-\Gamma_{S}t} \Big[- \, \mathrm{sin}(\delta_{\parallel} - \delta_{S}) \, \mathrm{sin} \, \phi_{S} \, \mathrm{sinh} \left(\frac{\Delta \Gamma_{S}t}{2}\right) \\ &+ \, \mathrm{cos}(\delta_{\parallel} - \delta_{S}) \, \mathrm{cos}(\delta m_{S}t) - \, \mathrm{sin}(\delta_{\parallel} - \delta_{S}) \, \mathrm{cos} \, \phi_{S} \, \mathrm{sinh} (\Delta m_{S}t) \Big] \\ \Im \mathfrak{m} \left\{A_{S}^{*}(t)A_{\perp}(t)\right\} &= \left|A_{S}\right| \left|A_{\perp}\right| \mathrm{e}^{-\Gamma_{S}t} \, \mathrm{sin}(\delta_{\perp} - \delta_{S}) \Big[\mathrm{cosh} \left(\frac{\Delta \Gamma_{S}t}{2}\right) + \mathrm{cos} \, \phi_{S} \, \mathrm{sinh} \left(\frac{\Delta \Gamma_{S}t}{2}\right) \\ &- \, \mathrm{sin} \, \phi_{S} \, \mathrm{sin} (\Delta \Gamma_{S}t) \Big] \\ \Re \epsilon \left\{A_{S}^{*}(t)A_{0}(t)\right\} &= \left|A_{S}\right| \left|A_{0}\right| \mathrm{e}^{-\Gamma_{S}t} \Big[- \, \mathrm{sin}(\delta_{0} - \delta_{S}) \, \mathrm{sin} \, \phi_{S} \, \mathrm{sinh} \left(\frac{\Delta \Gamma_{S}t}{2}\right) \\ &+ \, \mathrm{cos}(\delta_{0} - \delta_{S}) \, \mathrm{cos}(\Delta m_{S}t) - \, \mathrm{sin}(\delta_{0} - \delta_{S}) \, \mathrm{cos} \, \phi_{S} \, \mathrm{sin}(\Delta m_{S}t) \Big] \end{split}$$

- At present not possible to fit for this small amplitude.
- ▶ We include the CDF upper limit ($|A_{\rm S}|^2 < 0.067$ 95% C.L.) as a systematic by studying the bias introduced into toys when neglecting the presence of such a component

 ${\rm B}_{\rm S}^0 \to {\rm J}/\psi\,\phi$ at LHCb

Backup Slides $B_s^0 \rightarrow J/\psi f_0(980)$ Systematics Selection Yields Decay Rates

S-wave

∆m_S
Propertime resolution
More Theory

C. Fitzpatrick
April 4, 2011

E STATE OF THE STA

Δm_s

For the present analysis we apply a gaussian constraint to Δm_s at the CDF measured value:

CDF:
$$\Delta m_s = 17.77 \pm 0.10$$
 (stat.) ± 0.07 (syst.) ps⁻¹

▶ However, LHCb has made a competitive measurement of Δm_s in the mode $B_s^0 \to D_s^-(3)\pi$:

LHCb: $\Delta m_s = 17.63 \pm 0.11$ (stat.) ± 0.04 (syst.) ps⁻¹

 $\rm B_S^0 \rightarrow J/\psi\,\phi\,$ at LHCb

Backup Slides $B_S^0 \rightarrow J/\psi \, f_0 (980)$ Systematics Selection Yields Decay Rates

 $\Delta m_{\rm S}$ Propertime resolution

S-wave

More Theory

C. Fitzpatrick

Propertime resolution

- Good propertime resolution is vital for time-dependent analyses
- ▶ LHCb was specifically designed with this in mind:
 - The VELO provides positional information on primary and secondary vertices with high resolution
- The propertime PDF is convolved with a sum of 3 Gaussians determined from the prompt ${\rm J}/\psi$ candidate lifetime distribution:

Resolution (ps ⁻¹)	Fraction
0.0337	0.527
0.0646	0.456
0.183	0.017

▶ This is in agreement with MC predictions of $\approx 50 \text{fs}^{-1}$

 ${
m B}_{
m S}^0
ightarrow {
m J}/\psi\,\phi$ at LHCb

Backup Slides $B_s^0 \rightarrow J/\psi f_0(980)$ Systematics Selection Yields Decay Rates S-wave

Propertime resolution

More Theory

 Δm_s

C. Fitzpatrick

More Theory

- Mixing phase: $\phi_{mix} = \arg(V_{ts}V_{tb}^*)^2$
- ▶ $B_s^0 \rightarrow J/\psi \phi$ is a $b \rightarrow c\bar{c}s$ transition, Tree (T) and Penguin (P_q) terms:

$$A_{c\bar{c}s} = V_{cs}V_{cb}^*(T + P_c) + V_{us}V_{ub}^*P_u + V_{ts}V_{tb}^*P_t$$

= $V_{cs}V_{cb}^*(T + P_c - P_t) + V_{us}V_{ub}^*(P_u - P_t)$

- $V_{us}V_{ub}^*$ suppressed by O(λ^2) WRT $V_{cs}V_{cb}^*$ so (P_u-P_t) penguin pollution (δP) small
- ▶ This leaves $\phi_{decay} = \arg(V_{cs}V_{cb}^*)$

$$\phi_{s} = \phi_{mix} - 2\phi_{decay} = \arg(V_{ts}V_{tb}^{*})^{2} - 2\arg(V_{cs}V_{cb}^{*}) + \delta P$$

$$= 2\arg\left[\frac{V_{ts}V_{tb}^{*}}{V_{cs}V_{cb}^{*}}\right] = -2\beta_{s} = -2\eta\lambda^{2} - \eta\lambda^{4} - O(\lambda^{6})$$

 $\rm B_S^0 \rightarrow J/\psi\,\phi$ at LHCb

Backup Slides $B_s^0 \rightarrow J/\psi f_0(980)$ Systematics Selection Yields Decay Rates S-wave Δm_s

Propertime resolution

More Theory

C. Fitzpatrick
April 4, 2011

