Entanglement between Alice and Rob the space traveller

David Edward Bruschi

April 5, 2011

Work in collaboration with J. Louko and I. Fuentes, article in preparation.

David Edward Bruschi Entanglement between Alice and Rob the space traveller

イロン 不同と 不同と 不同と

Introduction

Entanglement between an inertial and an uniformly accelerated observer...

- ...and beyond
- The instruments

Bogobogo

Boxes boxes everywhere Travels, book early not to be disappointed...

Conclusions

(4) (3) (4) (3) (4)

A ₽

Introduction

Bogobogo Conclusions Entanglement between an inertial and an uniformly accelerated c ...and beyond The instruments

Entanglement between Alice and Rob

- i First attempts in Relativistic Quantum Information.
- ii Simplest case.
- iii Basis for more general settings.

< □ > < □ > < □ >

Entanglement between an inertial and an uniformly accelerated c ...and beyond The instruments

beyond the Rindler Bob (= Rob)

- i Physically interesting, realistic
- ii Non-trivial dependences on finite period of acceleration
- iii Interesting features for quantum teleportation tasks

イロト イヨト イヨト イヨト

Introduction

Bogobogo Conclusions Entanglement between an inertial and an uniformly accelerated c ...and beyond The instruments

What will be used

- i Bogo. transformations:
- ii Entanglement
- iii Negativity ${\cal N}$

 $\begin{array}{l} \mathsf{i} \ |0\rangle \longmapsto N\left(|0'\rangle + C_2 |2'\rangle + \mathsf{e.n.p.s.}\right) \\ \mathsf{ii} \ |\Psi\rangle = \frac{1}{\sqrt{2}}\left(|0\rangle_A |0\rangle_R + |1\rangle_A |1\rangle_R\right) \neq |\psi_A\rangle \otimes |\psi_R\rangle \\ \mathsf{iii} \ \mathsf{Ent. measure from } \rho \end{array}$

・ロン ・回と ・ヨン ・ヨン

3

Boxes boxes everywhere Travels, book early not to be disappointed...

Boxes in the sky

- i Consider wider class of trajectories for Rob.
- ii Entangle Alice and Rob via

$$|\Psi
angle = rac{1}{\sqrt{2}} \left(|0
angle_A |0
angle_R + |1
angle_A |1
angle_R
ight)$$

iii Use \mathcal{N} as a measure of entanglement

Figure: General setting and building block

- - 4 回 ト - 4 回 ト

Boxes boxes everywhere Travels, book early not to be disappointed...

Inertial to inertial and one way to...

æ

Conclusions I

- i \mathcal{N} for inertial to inertial case
- ii Periodic in ϕ
- iii Periodic structure from lowest mode

Figure: Negativity degradation for the inertial to inertial case: plot $f(\phi) = \frac{\mathcal{N} - (-1/2)}{\hbar^2}$

< E

Conclusions II

Figure: Negativity degradation for the one way trip to Alpha Centauri: plot $f(v, u) = \frac{N - (-1/2)}{h^2}$

- 1 Pasting basic building blocks together
- ii \mathcal{N} for one way trip
- iii Periodic in u, v

< E

The end

- i Entanglement depends on acceleration AND the period of acceleration
- ii Results compared with analysis using fermions (with N. Friis and A. Lee)
- iii OW, can engineer periods of acceleration and inertial travel such that there is no degradation
- iv Apply these techniques on geon spacetimes

Conclusions IV

Thank you

David Edward Bruschi Entanglement between Alice and Rob the space traveller

- 4 回 2 - 4 □ 2 - 4 □

æ