Cauchy Horizon Stability in the Self Similar LTB Spacetime

Emily Duffy

Dublin City University, Ireland Supported by the Irish Research Council for Science, Engineering and Technology

Outline

- 2 The LTB Spacetime
- 3 Cauchy Horizon Behaviour
- 4 Conclusions

Emily Duffy (DCU)

(B)

- Inhomogeneous dust collapsing into a singularity.
- Self-similarity can be imposed by requiring the spacetime to admit a homothetic Killing vector field $\vec{\xi}$ such that

$$\mathcal{L}_{\vec{\xi}} g_{\mu\nu} = 2g_{\mu\nu}. \tag{1}$$

・ロト ・聞ト ・ヨト ・ヨト

The resulting line-element is given by

 $ds^{2} = e^{2p}(-dz^{2} + (e^{\nu}(z) - z^{2})dp^{2} - 2zdpdz + S^{2}(z)d\Omega^{2}), \quad (2)$

where z = -t/r and $p = \ln(r)$.

- We get a naked singularity for λ ∈ (0, 0.09), where m(r) = λr is the Misner-Sharp mass.
- Gerlach-Sengupta formalism gives gauge invariant linear perturbations for the stress-energy and the metric using a spherical decomposition. Even parity only.

- Inhomogeneous dust collapsing into a singularity.
- Self-similarity can be imposed by requiring the spacetime to admit a homothetic Killing vector field $\vec{\xi}$ such that

$$\mathcal{L}_{\vec{\xi}} g_{\mu\nu} = 2g_{\mu\nu}. \tag{1}$$

・ロン ・雪 と ・ ヨ と

• The resulting line-element is given by

$$ds^2 = e^{2p}(-dz^2 + (e^{\nu}(z) - z^2)dp^2 - 2zdpdz + S^2(z)d\Omega^2),$$
 (2)

where z = -t/r and $p = \ln(r)$.

- We get a naked singularity for $\lambda \in (0, 0.09)$, where $m(r) = \lambda r$ is the Misner-Sharp mass.
- Gerlach-Sengupta formalism gives gauge invariant linear perturbations for the stress-energy and the metric using a spherical decomposition. Even parity only.

- Inhomogeneous dust collapsing into a singularity.
- Self-similarity can be imposed by requiring the spacetime to admit a homothetic Killing vector field $\vec{\xi}$ such that

$$\mathcal{L}_{\vec{\xi}} g_{\mu\nu} = 2g_{\mu\nu}. \tag{1}$$

・ 留 と ・ ヨ と ・ ヨ と

• The resulting line-element is given by

$$ds^2 = e^{2p}(-dz^2 + (e^{\nu}(z) - z^2)dp^2 - 2zdpdz + S^2(z)d\Omega^2),$$
 (2)

where z = -t/r and $p = \ln(r)$.

- We get a naked singularity for $\lambda \in (0, 0.09)$, where $m(r) = \lambda r$ is the Misner-Sharp mass.
- Gerlach-Sengupta formalism gives gauge invariant linear perturbations for the stress-energy and the metric using a spherical decomposition. Even parity only.

First Order Reduction

• The 5 dimensional symmetric hyperbolic system

$$\tau \frac{\partial \vec{u}}{\partial \tau} + A(\tau) \frac{\partial \vec{u}}{\partial p} + B(\tau) \vec{u} = \vec{\Sigma}(\tau, p).$$
(3)

Theorem 1: Existence and Uniqueness

The IVP consisting of the system (3) along with the initial data

$$\vec{u}|_{\tau_1} = \vec{f}(p),\tag{4}$$

(4 回) (4 回) (4 回)

where $\vec{f} \in C_0^{\infty}(\mathbb{R}, \mathbb{R}^5)$, possesses a unique solution $\vec{u}(\tau, \rho)$, $\vec{u} \in C^{\infty}(\mathbb{R} \times (0, \tau_1], \mathbb{R}^5)$. For all $\tau \in (0, \tau_1]$, $\vec{u}(\tau, \cdot) : \mathbb{R} \to \mathbb{R}^5$ has compact support.

First Order Reduction

• The 5 dimensional symmetric hyperbolic system

$$\tau \frac{\partial \vec{u}}{\partial \tau} + A(\tau) \frac{\partial \vec{u}}{\partial p} + B(\tau) \vec{u} = \vec{\Sigma}(\tau, p).$$
(3)

Theorem 1: Existence and Uniqueness

The IVP consisting of the system (3) along with the initial data

$$\vec{u}|_{\tau_1} = \vec{f}(p),\tag{4}$$

where $\vec{f} \in C_0^{\infty}(\mathbb{R}, \mathbb{R}^5)$, possesses a unique solution $\vec{u}(\tau, p)$, $\vec{u} \in C^{\infty}(\mathbb{R} \times (0, \tau_1], \mathbb{R}^5)$. For all $\tau \in (0, \tau_1]$, $\vec{u}(\tau, \cdot) : \mathbb{R} \to \mathbb{R}^5$ has compact support.

Behaviour of the Averaged Perturbation

• We introduce
$$\hat{u}:=\int_{\mathbb{R}}ec{u}\,dp$$
 which obeys

$$\tau \frac{d\hat{u}}{d\tau} = -B(\tau)\hat{u} + \hat{\Sigma}(\tau). \tag{5}$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem 2: Behaviour of \hat{u}

Let \vec{u} be a solution of (3) obeying theorem 1. Then the behaviour of \hat{u} is given by

$$\hat{u}_i$$
 is $O(1)$ as $au o 0,$ \hat{u}_5 is $O(au^{-b})$ as $au o 0$ (0

for i = 1, ..4, where b is the only non-zero eigenvalue of the matrix $B(\tau = 0)$, after it is put in Jordan canonical form. b > 0.

Theorem 3: L^q Divergence $\lim_{\tau \to 0} ||\vec{u}||_q = \infty$ for $1 \le q < \infty$.

Emily Duffy (DCU)

Behaviour of the Averaged Perturbation

• We introduce $\hat{u} := \int_{\mathbb{R}} \vec{u} \, dp$ which obeys

$$\tau \frac{d\hat{u}}{d\tau} = -B(\tau)\hat{u} + \hat{\Sigma}(\tau).$$
(5)

Theorem 2: Behaviour of \hat{u}

Let \vec{u} be a solution of (3) obeying theorem 1. Then the behaviour of \hat{u} is given by

$$\hat{u}_i$$
 is $O(1)$ as $au o 0,$ \hat{u}_5 is $O(au^{-b})$ as $au o 0$ (6)

for i = 1, ..4, where b is the only non-zero eigenvalue of the matrix $B(\tau = 0)$, after it is put in Jordan canonical form. b > 0.

Theorem 3: L^q Divergence $\lim_{ au o 0} ||ec{u}||_q = \infty$ for $1 \leq q < \infty$.

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Behaviour of the Averaged Perturbation

• We introduce $\hat{u} := \int_{\mathbb{R}} \vec{u} \, dp$ which obeys

$$\tau \frac{d\hat{u}}{d\tau} = -B(\tau)\hat{u} + \hat{\Sigma}(\tau).$$
(5)

Theorem 2: Behaviour of \hat{u}

Let \vec{u} be a solution of (3) obeying theorem 1. Then the behaviour of \hat{u} is given by

$$\hat{u}_i$$
 is $O(1)$ as $au o 0,$ \hat{u}_5 is $O(au^{-b})$ as $au o 0$ (6)

for i = 1, ..4, where b is the only non-zero eigenvalue of the matrix $B(\tau = 0)$, after it is put in Jordan canonical form. b > 0.

Theorem 3: L^q Divergence $\lim_{\tau\to 0} ||\vec{u}||_q = \infty$ for $1 \le q < \infty$.

(人間) トイヨト イヨト

Corollary 1: Bound on $\vec{x} = \tau^b \vec{u}$

 $\vec{x} := \tau^b \vec{u}$ is uniformly bounded in the range $\tau \in (0, \tau^*)$ for some $\tau^* > 0$. That is

$$|\vec{x}| = |\tau^b \vec{u}| \le \lambda + \epsilon \tau^{2b-1} + O(\tau^{2b}), \tag{7}$$

where λ and ϵ are constants.

Note that \hat{x} is non-zero on the Cauchy horizon. Define

$$\vec{x}^{(n)} := \vec{x}(\tau^{(n)}, p),$$
 (8)

where $au^{(n)}$ is a sequence of au-values such that as $n o\infty,\ au^{(n)} o 0.$

Theorem 4: \vec{x} exists on the Cauchy horizon

 $\vec{x}_{ch} := \lim_{\tau \to 0} \vec{x}(\tau, p)$ exists on the Cauchy horizon.

Theorem 5: $\vec{x} \in L^1$ $\vec{x}(\cdot, \rho) \in L^1(\mathbb{R}, \mathbb{R}^5)$ for all fixe

Corollary 1: Bound on $\vec{x} = \tau^b \vec{u}$

 $\vec{x} := \tau^b \vec{u}$ is uniformly bounded in the range $\tau \in (0, \tau^*)$ for some $\tau^* > 0$. That is

$$|\vec{x}| = |\tau^b \vec{u}| \le \lambda + \epsilon \tau^{2b-1} + O(\tau^{2b}), \tag{7}$$

where λ and ϵ are constants.

Note that \hat{x} is non-zero on the Cauchy horizon. Define

$$\vec{x}^{(n)} := \vec{x}(\tau^{(n)}, p),$$
 (8)

where $\tau^{(n)}$ is a sequence of τ -values such that as $n \to \infty$, $\tau^{(n)} \to 0$.

Theorem 4: \vec{x} exists on the Cauchy horizon

 $\vec{x}_{ch} := \lim_{\tau \to 0} \vec{x}(\tau, p)$ exists on the Cauchy horizon.

Theorem 5: $\vec{x} \in L^1$

 $ec{x}(\cdot, oldsymbol{
ho}) \in L^1(\mathbb{R}, \mathbb{R}^5)$ for all fixed au.

Corollary 1: Bound on $\vec{x} = \tau^b \vec{u}$

 $\vec{x} := \tau^b \vec{u}$ is uniformly bounded in the range $\tau \in (0, \tau^*)$ for some $\tau^* > 0$. That is

$$|\vec{x}| = |\tau^b \vec{u}| \le \lambda + \epsilon \tau^{2b-1} + O(\tau^{2b}), \tag{7}$$

where λ and ϵ are constants.

Note that \hat{x} is non-zero on the Cauchy horizon. Define

$$\vec{x}^{(n)} := \vec{x}(\tau^{(n)}, p),$$
 (8)

where $\tau^{(n)}$ is a sequence of τ -values such that as $n \to \infty$, $\tau^{(n)} \to 0$.

Theorem 4: \vec{x} exists on the Cauchy horizon

 $\vec{x}_{ch} := \lim_{\tau \to 0} \vec{x}(\tau, p)$ exists on the Cauchy horizon.

Theorem 5: $\vec{x} \in L^1$ $\vec{x}(\cdot, p) \in L^1(\mathbb{R}, \mathbb{R}^5)$ for all fixed τ .

Lemma 1: Existence of a Dominated Subsequence Define $\vec{x}^{(n)}$ as in (8). Then there exists a subsequence

$$\vec{x}^{(n_m)} := \vec{x}(\tau^{(n_m)}, p)$$
 (9)

which converges to $\vec{x}(0, p)$ as $n_m \to \infty$, such that $\vec{x}^{(n_m)}$ is dominated, that is, there exists some $h(p) \in L^1(\mathbb{R})$ such that

$$|\vec{x}^{(n_m)}| \leq h(p) \quad \forall \quad m.$$
 (10)

Theorem 6: $ec{x}$ is non-zero at au=0

Define $\vec{x}^{(n)}$ as in (8). Then there exists some interval $(a, b) \subset \mathbb{R}$ such that $\vec{x}(0, p) \neq 0$ within this interval.

Lemma 1: Existence of a Dominated Subsequence Define $\vec{x}^{(n)}$ as in (8). Then there exists a subsequence

$$\vec{x}^{(n_m)} := \vec{x}(\tau^{(n_m)}, p)$$
 (9)

which converges to $\vec{x}(0, p)$ as $n_m \to \infty$, such that $\vec{x}^{(n_m)}$ is dominated, that is, there exists some $h(p) \in L^1(\mathbb{R})$ such that

$$|\vec{x}^{(n_m)}| \leq h(p) \quad \forall \quad m.$$
 (10)

Theorem 6: \vec{x} is non-zero at $\tau = 0$

Define $\vec{x}^{(n)}$ as in (8). Then there exists some interval $(a, b) \subset \mathbb{R}$ such that $\vec{x}(0, p) \neq 0$ within this interval.

Physical Interpretation of Results

The perturbed Weyl scalars are given by

$$\delta \Psi_0 = \frac{Q}{2r^2} \bar{l}^A \bar{l}^B k_{AB}, \qquad (11)$$

$$\delta \Psi_4 = \frac{Q^*}{2r^2} \bar{n}^A \bar{n}^B k_{AB}, \qquad (12)$$

and the scalar δP_{-1} is given by $\delta P_{-1} = |\delta \Psi_0 \delta \Psi_4|^{1/2}$.

Theorem 7: Perturbed Weyl Scalars

Given a solution \vec{u} to the same IVP, the perturbed Weyl scalars $\delta \Psi_0$ and $\delta \Psi_4$, as well as the scalar δP_{-1} , generically diverge on the Cauchy horizon.

・ 同 ト ・ ヨ ト ・ ヨ ト

Physical Interpretation of Results

The perturbed Weyl scalars are given by

$$\delta \Psi_0 = \frac{Q}{2r^2} \bar{l}^A \bar{l}^B k_{AB}, \qquad (11)$$

$$\delta \Psi_4 = \frac{Q^*}{2r^2} \bar{n}^A \bar{n}^B k_{AB}, \qquad (12)$$

and the scalar δP_{-1} is given by $\delta P_{-1} = |\delta \Psi_0 \delta \Psi_4|^{1/2}$.

Theorem 7: Perturbed Weyl Scalars

Given a solution \vec{u} to the same IVP, the perturbed Weyl scalars $\delta \Psi_0$ and $\delta \Psi_4$, as well as the scalar δP_{-1} , generically diverge on the Cauchy horizon.

Conclusions

- Unsolved mystery: How to handle the problem of scaling?
- Results so far show that the even parity perturbations diverge on the Cauchy horizon for all *I*.
- In the odd parity case, perturbations were found to remain finite on the Cauchy horizon for all *I*.
- Apply these methods to the self-similar perfect fluid spacetime.

< 回 > < 三 > < 三 >

Conclusions

- Unsolved mystery: How to handle the problem of scaling?
- Results so far show that the even parity perturbations diverge on the Cauchy horizon for all *I*.
- In the odd parity case, perturbations were found to remain finite on the Cauchy horizon for all *I*.
- Apply these methods to the self-similar perfect fluid spacetime.

A B < A B </p>