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The Self-Similar LTB Spacetime

Inhomogeneous dust collapsing into a singularity.

Self-similarity can be imposed by requiring the spacetime to admit a
homothetic Killing vector field ~ξ such that

L~ξ
gµν = 2gµν . (1)

The resulting line-element is given by

ds2 = e2p(−dz2 + (eν(z) − z2)dp2 − 2zdpdz + S2(z)dΩ2), (2)

where z = −t/r and p = ln(r).

We get a naked singularity for λ ∈ (0, 0.09), where m(r) = λr is the
Misner-Sharp mass.

Gerlach-Sengupta formalism - gives gauge invariant linear
perturbations for the stress-energy and the metric using a spherical
decomposition. Even parity only.
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The Self-Similar LTB Spacetime

z = zc

z = zi

zp

R = 0

b
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First Order Reduction

The 5 dimensional symmetric hyperbolic system

τ
∂~u

∂τ
+ A(τ)

∂~u

∂p
+ B(τ)~u = ~Σ(τ, p). (3)

Theorem 1: Existence and Uniqueness

The IVP consisting of the system (3) along with the initial data

~u|τ1 = ~f (p), (4)

where ~f ∈ C∞

0 (R, R5), possesses a unique solution ~u(τ, p),
~u ∈ C∞(R × (0, τ1], R

5). For all τ ∈ (0, τ1], ~u(τ, ·) : R → R
5 has compact

support.
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Behaviour of the Averaged Perturbation

We introduce û :=
∫

R
~u dp which obeys

τ
dû

dτ
= −B(τ)û + Σ̂(τ). (5)

Theorem 2: Behaviour of û

Let ~u be a solution of (3) obeying theorem 1. Then the behaviour of û is
given by

ûi is O(1) as τ → 0, û5 is O(τ−b) as τ → 0 (6)

for i = 1, ..4, where b is the only non-zero eigenvalue of the matrix
B(τ = 0), after it is put in Jordan canonical form. b > 0.

Theorem 3: L
q Divergence

limτ→0 ||~u||q = ∞ for 1 ≤ q < ∞.
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Behaviour of ~x on the Cauchy horizon

Corollary 1: Bound on ~x = τ
b~u

~x := τb~u is uniformly bounded in the range τ ∈ (0, τ∗) for some τ∗ > 0.
That is

|~x | = |τb~u| ≤ λ + ǫτ2b−1 + O(τ2b), (7)

where λ and ǫ are constants.

Note that x̂ is non-zero on the Cauchy horizon. Define

~x (n) := ~x(τ (n), p), (8)

where τ (n) is a sequence of τ -values such that as n → ∞, τ (n) → 0.

Theorem 4: ~x exists on the Cauchy horizon

~xch := limτ→0 ~x(τ, p) exists on the Cauchy horizon.

Theorem 5: ~x ∈ L
1

~x(·, p) ∈ L1(R, R5) for all fixed τ .
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Behaviour of ~x on the Cauchy horizon

Lemma 1: Existence of a Dominated Subsequence

Define ~x (n) as in (8). Then there exists a subsequence

~x (nm) := ~x(τ (nm), p) (9)

which converges to ~x(0, p) as nm → ∞, such that ~x (nm) is dominated, that
is, there exists some h(p) ∈ L1(R) such that

|~x (nm)| ≤ h(p) ∀ m. (10)

Theorem 6: ~x is non-zero at τ = 0

Define ~x (n) as in (8). Then there exists some interval (a, b) ⊂ R such that
~x(0, p) 6= 0 within this interval.
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Physical Interpretation of Results

The perturbed Weyl scalars are given by

δΨ0 =
Q

2r2
l̄A l̄BkAB , (11)

δΨ4 =
Q∗

2r2
n̄An̄BkAB , (12)

and the scalar δP−1 is given by δP−1 = |δΨ0δΨ4|
1/2.

Theorem 7: Perturbed Weyl Scalars

Given a solution ~u to the same IVP, the perturbed Weyl scalars δΨ0 and
δΨ4, as well as the scalar δP−1, generically diverge on the Cauchy horizon.
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Conclusions

Unsolved mystery: How to handle the problem of scaling?

Results so far show that the even parity perturbations diverge on the
Cauchy horizon for all l .

In the odd parity case, perturbations were found to remain finite on
the Cauchy horizon for all l .

Apply these methods to the self-similar perfect fluid spacetime.
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