

Trends in neutron single-particle levels in N=51 isotones

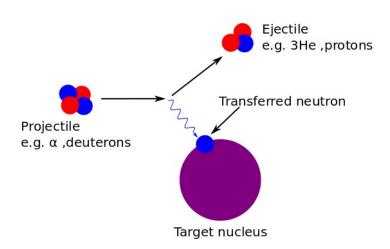
D.K.Sharp¹, S.J.Freeman¹, J.P.Schiffer², B.B.Back², T.Bloxham³, J.A.Clark², C.M.Deibel^{2,4}, A.Heinz⁵, C.M.Hoffman², A.M.Howard¹, B.P.Kay², J.C.Lighthall^{2,6}, S.T.Marley^{2,6}, A.J.Mitchell¹, P.D.Parker⁵, J.S.Thomas¹ and A.H.Wuosmaa⁶.

¹University of Manchester, UK

²Physics Division, Argonne National Laboratory, USA,

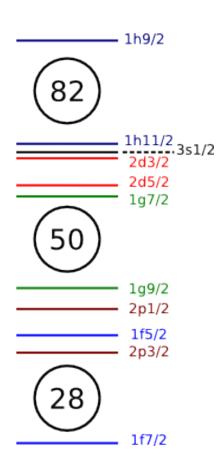
³Lawrence Berkeley Laboratory, USA,

⁴Joint Institute for Nuclear Astrophysics, Michigan State University, USA, ⁵A.W.Wright Nuclear Structure Laboratory, Yale University, USA, ⁶Western Michigan University, USA.



Evolution of single-particle states

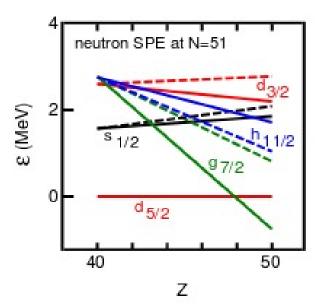
Investigating trends in energies of $vh_{11/2}$ and $vg_{7/2}$ in N=51 nuclei as part of ongoing study.

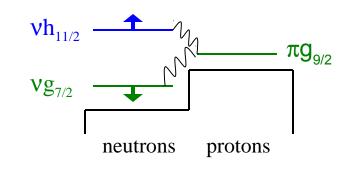

Populating states in nuclei with Z=36-42. Filling the fp-shell and then the $g_{q/2}$ orbital.

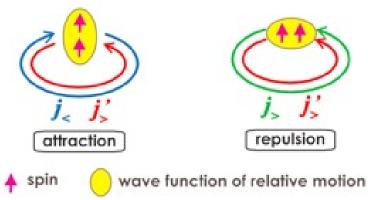
Use transfer reactions to populate states of interest.

- · Direct/single step processes
- Favoured population depends on kinematics of reaction

Need to measure **relative spectroscopic factors** in order to find the energy of the underlying state.




Motivation


Are monopole shifts in single-particle energies driven by tensor interaction with protons?

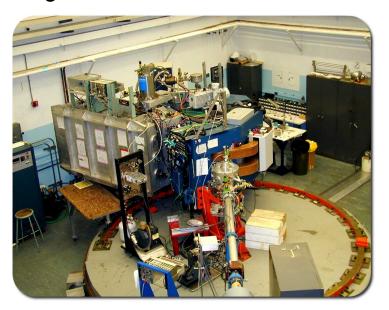
Expect **increase** in separation of $vh_{11/2}$ and $vg_{7/2}$ neutron orbitals as $\pi g_{9/2}$ is filled.

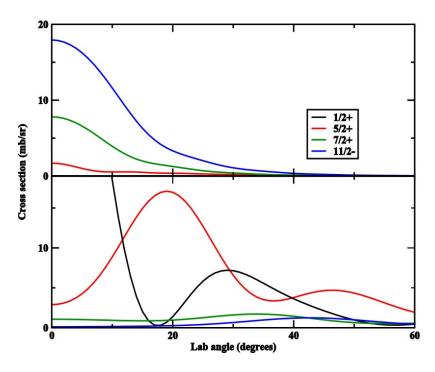
Opposite effect expected in filling *fp*-shell.

Tensor interaction **attractive** for different j_{<>} - **raises** energy.

Repulsive for like $j_{>,>}$ or $j_{<,<}$ - **lowers** energy.

Otsuka et al. Phys. Rev. Lett. 104, 012501 (2010)




Single-particle transfer

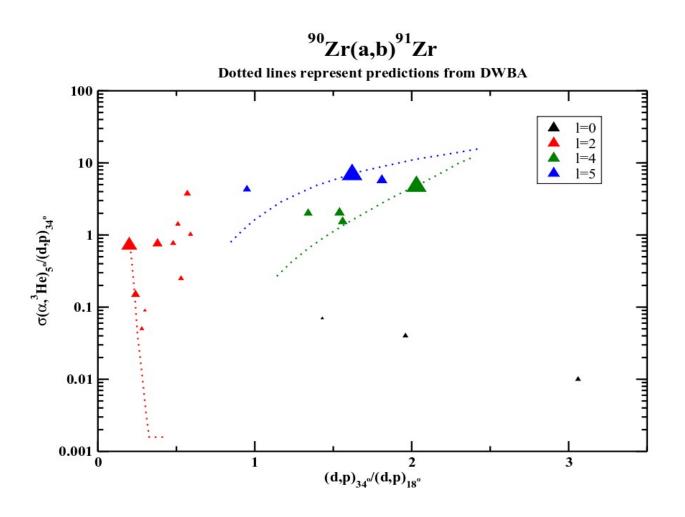
Use DWBA to calculate predicted cross sections assuming $S_{ij}=1$.

$$S = \frac{\sigma_{\text{exp}}}{\sigma_{\text{ptolemy}}}$$

Angles chosen to coincide with **peak cross sections** of l=0,2,4 and 5 angular distributions.



Beams produced by Tandem accelerator at A. W. Wright Nuclear Structure lab, Yale University.

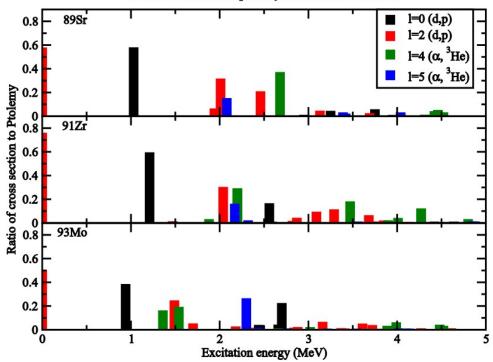

Split-pole spectrograph momentum separates ejectiles and delivers them to the focal-plane detector.

Spin-parity assignments, (d,p) distributions

Spin-parity assignments, reaction ratios

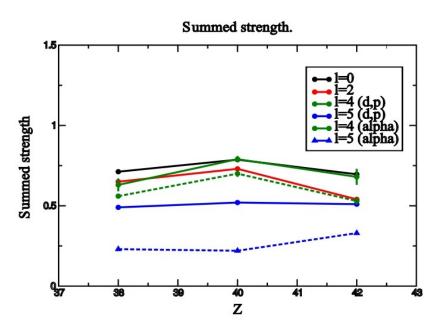
Spectroscopic factors

States have high degree of fragmentation.

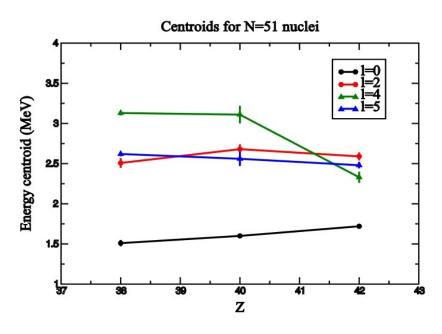

First excited state is not necessarily the strongest.

Need to calculate **centroid** of underlying single-particle level.

$$E = \frac{\sum NS_{i}E_{i}}{\sum NS_{i}}$$


Fragmentation of single particle strength

Unnormalised ratio to ptolemy for each identified state

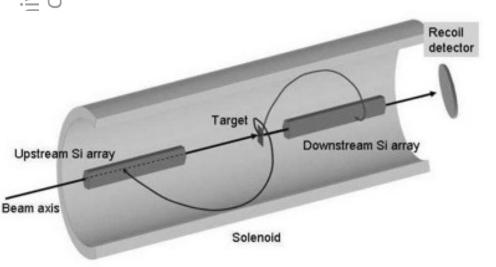


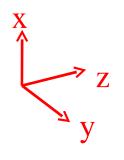
Trends

Summed strengths for l=0,2 and 4 are consistent.

Missing l=5 strength.

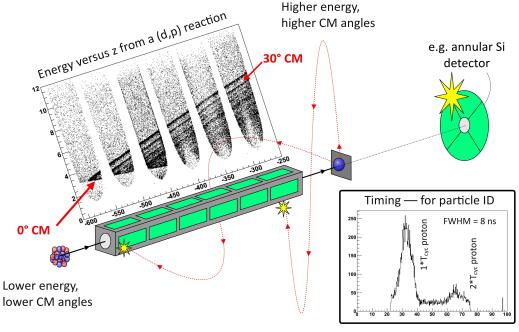
Difference between l=4 and l=5 centroids increases as *fp*-shell is filled.

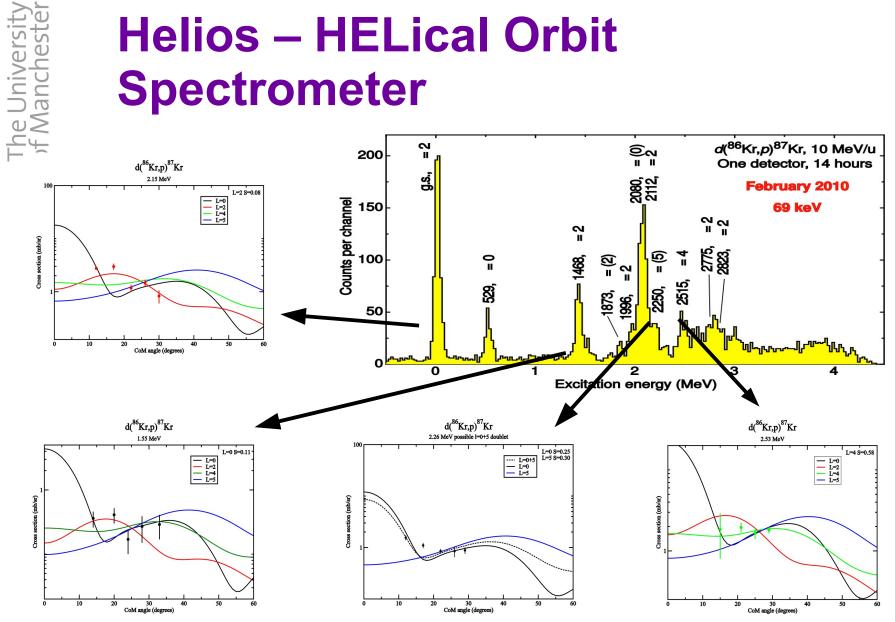

Sudden reduction in energy as $g_{9/2}$ level is filled.



iversity chester

Extending the region of interest - 87Kr

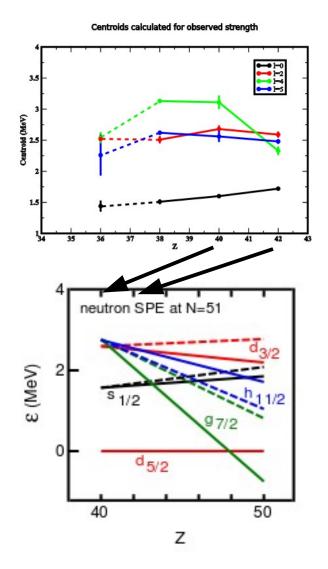



Measured quantities:

position Z cyclotron period T_{cyc} particle energy E_p

Light particles from reaction follow **helical** orbits, returning to the axis after one orbit where they are detected in position sensitive silicon detectors.

Helios – HELical Orbit Spectrometer



87Kr Preliminary results

Table 1: Ratio of experimental cross sections to Ptolemy summary for 87 Kr

	Ex	This work	S	Ex	Past work	s	
	0	2	0.38	0	2	0.56	ĺ
	0.52	0	0.55	0.529	0	0.46	ı
	1.46	2	0.07	1.468	2	0.23	ı
	1.55	0	0.11	1.570	(0,2)	50000000000	ĺ
	1.90	2	0.01	1.873	(2)	0.02	ı
	İ			1.996	2	0.09	ı
	201	(2,4)	(0.03,0.31)	2.080	(O)	0.18	ı
	211	2	0.09	2.112	2	0.30	ı
<	2.15	2	0.08			20-22-0-500	ĺ
	2.26	(0+5)	(0.25+0.30)	2.25	(5)	0.18	ı
				2.277	(O)	0.03	ĺ
/	2.40	4	0.10				ı
-	2.45	0	0.19	1			ı
	253	4	0.58	2.515	4	0.49	ı
/	261	(0,4)	(0.17,0.13)				ı
-	2.69	2	<0.01	ľ			ı
	2.76	2	0.05	2.775	2	0.1	ı
				2.823	2	0.11)	ı
1	2.86	4	0.23			10000-000	ı
-	294	2	0.02				
	3.04	2	0.05	3.015	2	0.08	ı
<	3.12	2	0.02				ı
	3.20	2	0.02	3.223/3.237	(0+2)		ı

Summary

Populated states in 89 Sr, 91 Zr and 93 Mo using (d,p) and (α , 3 He) reactions.

Extracted spectroscopic factors.

Trend for $vg_{7/2}$ states consistent with tensor force and possibly $vh_{11/2}$.

Work has been extended to include ⁸⁷Kr using inverse kinematics.

Need to investigate missing I=5 strength.